Changes between Version 35 and Version 36 of UserApp/Proba-V


Ignore:
Timestamp:
Nov 3, 2018, 10:56:15 AM (12 months ago)
Author:
Mehr Mohammad Sachal
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • UserApp/Proba-V

    v35 v36  
    1212The ‘V’ in its name stands for Vegetation: Proba-V will fly a reduced-mass version of the Vegetation instrument currently on board the Spot satellites to provide a daily overview of global vegetation growth.
    1313
    14 {| align="center"
    15 |+'''PROBA V'''
    16 |-
    17 |[wiki:File:Probav-shiny_large0.jpg 450px]
    18 |}
     14||'''PROBA V'''||
     15||[[Image(wiki:File:Probav-shiny_large0.jpg)]]||
    1916
    2017Bearing a different designation from its predecessors, Proba-V is an operational as well as experimental mission, designed to serve an existing user community.
     
    2219The aim is to guarantee data continuity for the Vegetation dataset once the current Spot missions end.
    2320
    24 {| border="1"
    25 |+ '''Proba-V facts and figures'''
    26 |-
    27 |Launch date:
    28 |mid-2012
    29 |-
    30 |Mass:
    31 |160 kg
    32 |-
    33 |Orbit:
    34 |Sun-synchronised polar orbit, 820 km, with a 10:30 AM local time at the descending node
    35 |-
    36 |Instrument:
    37 |Newly designed version of the Vegetation instrument flown on the Spot series
    38 |-
    39 |Guest technology payloads:
    40 |Gallium Nitride amplifier incorporated in communication subsystem; Energetic Particle Telescope and one other payload to be decided at a later stage
    41 |-
    42 |Prime contractor:
    43 |Qinetiq Space Belgium
    44 |-
    45 |Payload developer:
    46 |OIP Space Systems
    47 |-
    48 |Ground Station:
    49 |Satellite’s mission control centre in Redu, Belgium complemented by a data reception station to be located in the north of Europe.
    50 |-
    51 |Launcher:
    52 |To be decided – designed to be compatible with Vega, Soyuz or Falcon 1E launchers.
    53 |}
     21|| '''Proba-V facts and figures'''|||| ||
     22||Launch date:|||mid-2012||
     23||Mass:||160 kg ||
     24||Orbit: ||Sun-synchronised polar orbit, 820 km, with a 10:30 AM local time at the descending node ||
     25||Instrument:||Newly designed version of the Vegetation instrument flown on the Spot series ||
     26||Guest technology payloads:||Gallium Nitride amplifier incorporated in communication subsystem; Energetic Particle Telescope and one other payload to be decided at a later stage ||
     27||Prime contractor:||Qinetiq Space Belgium||
     28
     29||Payload developer:||||OIP Space Systems||
     30||Ground Station:||Satellite’s mission control centre in Redu, Belgium complemented by a data reception station to be located in the north of Europe.||
     31||Launcher:||To be decided – designed to be compatible with Vega, Soyuz or Falcon 1E launchers.||
    5432
    5533=  PROBA-V (Project for On-Board Autonomy - Vegetation) =
     
    9169 *  Provision of daily global coverage of the land masses in the latitudes 35º and 75º North and in the latitudes between 35° and 56° South, with a 90% daily coverage of equatorial zones - and 100% two-daily imaging, during day time, of the land masses in the latitudes between 35º North and 35º South..
    9270
    93 {| align="center"
    94 |+'''Artist's view of the PROBA-V spacecraft (image credit: ESA)'''
    95 |-
    96 |[wiki:File:ProbaV_Auto12.jpeg File:ProbaV Auto12.jpeg]
    97 |}
     71||'''Artist's view of the PROBA-V spacecraft (image credit: ESA)'''||
     72||[[Image(wiki:File:ProbaV_Auto12.jpeg File:ProbaV Auto12.jpeg)]]||
    9873
    9974An extensive feasibility study and trade-off work was undertaken to identify a solution that could meet not only the technical challenges, but that could also be developed and tested within a tight budget of a small satellite mission.
     
    11186 *  HMA (Heterogeneous Mission Access) and QA4EO (Quality Assurance for Earth Observation) implementation for user data. Planned interoperability with GSCDA V2 (GMES Space Component Data Access Version 2).
    11287
    113 {| align="center"
    114 |+'''PROBA-V project organization (image credit: ESA)'''
    115 |-
    116 |[wiki:File:ProbaV_Auto11.jpeg File:ProbaV Auto11.jpeg]
    117 |}
     88||'''PROBA-V project organization (image credit: ESA)'''||
     89||[[Image(wiki:File:ProbaV_Auto11.jpeg File:ProbaV Auto11.jpeg)]]||
    11890
    11991= Technologies =
     
    192164
    193165
    194 {| border="1"
    195 |+ '''Overview of PROBA-V subsystems'''
    196 |-
    197 |Avionics
    198 |ADPMS (cold redundant),MPM (Main Processor Module): LEON2-E Sparc V8 processor, 50 MHz,42 MIPS, 10 FLOPS,Mass memory Module: 16 Gbit Flash, EDAC protected
    199 |PROBA-2 ; New development
    200 |-
    201 |EPS (Electric Power Subsystem
    202 |Photo-Voltaic Array : Triple junction GaAs cells; Cover glass CMG 100AR coating, 25 strings, 18 cells per string;Battery:12 Ah Li-ion (7s8p) ABSL 18650HC cells
    203 |Herschel; PROBA-1
    204 |-
    205 |Bus structure
    206 |Aluminum (AA2024-T3);Aluminum (AA7075-T7351);3 CFRP (EX-1515/M55J + Redux 312L) outer panels
    207 |New development
    208 |-
    209 |AOCS actuators
    210 |3 magnetotorquers (internally cold redundant); 4 reaction wheels (3 + 1 for redundancy); 2 magnetometers (cold redundant
    211 |ROBA-2/PROBA-1
    212 |-
    213 |AOCS sensors
    214 |2 star trackers; 2 GPS (cold redundant); AOCS IF box (internally redundant); RW Power Supply box (internally redundant)
    215 |PROBA-1/-2; New development
    216 |-
    217 |Onboard SW
    218 |Operating System: RTEMS (Real-Time Executive for Multiprocessor Systems)
    219 |PROBA-2
    220 |-
    221 |Thermal
    222 |Passive (MLI and paint)
    223 |
    224 |-
    225 |RF communications
    226 |S-band TxRx: 5W BPSK; X-band Tx: 6 W filtered OQPSK; MMU (Mass Memory Unit) = 16 Gbit
    227 |PROBA-1/-2; ; New development
    228 |}
    229 
    230 
    231 {| align="center"
    232 |+'''PROBA-V spacecraft accommodation (image credit: QinetiQ Space)'''
    233 |-
    234 |[wiki:File:ProbaV_Auto10.jpeg File:ProbaV Auto10.jpeg]
    235 |}
     166|| '''Overview of PROBA-V subsystems''' ||
     167 
     168|| Avionics ||||ADPMS (cold redundant),MPM (Main Processor Module): LEON2-E Sparc/ V8 processor, 50 MHz,42 MIPS, 10 FLOPS,Mass memory Module: 16 Gbit Flash, EDAC protected ||
     169||'''PROBA-2 ; New development''' ||
     170||EPS (Electric Power Subsystem)||Photo-Voltaic Array : Triple junction GaAs cells; Cover glass CMG 100AR coating, 25 strings, 18 cells per string;Battery:12 Ah Li-ion (7s8p) ABSL 18650HC cells||
     171||'''Herschel; PROBA-1''' ||
     172||Bus structure||Aluminum (AA2024-T3);Aluminum (AA7075-T7351);3 CFRP (EX-1515/M55J + Redux 312L) outer panels||
     173||'''New development''' ||
     174||AOCS actuators ||3 magnetotorquers (internally cold redundant); 4 reaction wheels (3 + 1 for redundancy); 2 magnetometers (cold redundant)||
     175||'''ROBA-2/PROBA-1'''||
     176||AOCS sensors ||2 star trackers; 2 GPS (cold redundant); AOCS IF box (internally redundant); RW Power Supply box (internally redundant)||
     177||'''PROBA-1/-2; New development'''||
     178||Onboard SW||Operating System: RTEMS (Real-Time Executive for Multiprocessor Systems)||
     179||'''PROBA-2'''||
     180||Thermal||Passive (MLI and paint)||
     181||RF communications||S-band TxRx : 5W BPSK; X-band Tx: 6 W filtered OQPSK; MMU (Mass Memory Unit) = 16 Gbit||
     182
     183
     184
     185||'''PROBA-V spacecraft accommodation (image credit: QinetiQ Space)'''||
     186||[[Image(wiki:File:ProbaV_Auto10.jpeg File:ProbaV Auto10.jpeg)]]||
     187
    236188== AOCS (Attitude and Orbit Control Subsystem)  ==
    237189
     
    280232Data compression: The massive amount of data produced by the instrument is beyond the capabilities of the bandwidth available on board of a small satellite. Data are reduced by using a lossless data compression algorithm implemented in a specific electronics. The data compression ratio obtained using standard CCSDS compression algorithms (CCSDS 133.0 B-1) is shown in Table 2.
    281233
    282 Compression ratio
    283 
    284 {| border="1"
    285 |+ '''Spectral band'''
    286 |-
    287 |Blue
    288 |10.8
    289 |-
    290 |Red
    291 |7.2
    292 |-
    293 |NIR
    294 |SWIR 2
    295 |-
    296 |Red
    297 |5.4
    298 |}
    299 
    300 
    301 Table 2: Overview of compression rates== S-band ==
     234''Compression ratio''
     235
     236||'''Spectral band'''|| ||
     237||Blue||10.8||
     238||Red||7.2||
     239||NIR||SWIR 2||
     240||Red||5.4||
     241
     242
     243
     244Table 2: Overview of compression rates S-band
    302245
    303246The selection of an S-band transceiver and the development of an innovative and generic X-band transmitter for small satellites has been initiated in a collaborative program between CNES and ESA and is funded under GSTP-5 (General Support Technology Program-5). The X-band transmitter is a high-performance device optimized for the needs and constraints of small platforms for which small volume, low mass, low power consumption, and low cost cost are important parameters. Moreover, some key features such as modulation (filtered Offset-QSK), coding scheme (convolutional 7 ½), data and clock interfaces (LVDS packet wire serial interface) have been selected in compliance with CCSDS recommendations, but also to ease the interoperability with most of the existing on-board computers and ground station demodulators.
     
    308251
    309252
    310 {| align="center"
    311 |+'''Overview of the transmitter architecture (CNES, TES)'''
    312 |-
    313 |[wiki:File:ProbaV_AutoF.jpeg? File:ProbaV AutoF.jpeg?]|}
    314 |}
    315 
    316 {| align="center"
    317 |+'''Photo of the X-band transmitter (image credit: CNES, ESA)'''
    318 |-
    319 |[wiki:File:ProbaV_AutoE.jpeg File:ProbaV AutoE.jpeg]
    320 |}
     253||'''Overview of the transmitter architecture (CNES, TES)'''||
     254||[[Image(wiki:File:ProbaV_AutoF.jpeg? File:ProbaV AutoF.jpeg?)]]||
     255
     256||'''Photo of the X-band transmitter (image credit: CNES, ESA)'''||
     257||[[Image(wiki:File:ProbaV_AutoE.jpeg File:ProbaV AutoE.jpeg)]]||
    321258= Sensor complement: (VGT-P) =
    322259
     
    332269The optical axis of the central telescope will point to nadir and the two outer telescopes will point 34º from nadir. Together the three TMAs will cover a complete FOV of 102º. The optical system is telecentric, and the aperture is located at the position of the second (spherical) mirror.
    333270
    334 {| align="center"
    335 |+'''Conceptual accommodation of the VGT-P inside the PROBA-V spacecraft (image credit: OIP, ESA)'''
    336 |-
    337 |[wiki:File:ProbaV_AutoD.jpeg File:ProbaV AutoD.jpeg]
    338 |}
     271||'''Conceptual accommodation of the VGT-P inside the PROBA-V spacecraft (image credit: OIP, ESA)'''||
     272||[[Image(wiki:File:ProbaV_AutoD.jpeg File:ProbaV AutoD.jpeg)]]||
    339273
    340274Figure 6 shows the payload mounted on the PROBA-V platform. Given the reduced size of the platform, a H-shape structure, the only practical location of the payload is on the anti-velocity panel. This accommodation, with respect to a solution with the payload in the middle of the structure, has the advantage of a very simple assembly and clean mechanical interface. The drawback is a larger temperature gradient due to the close vicinity of the payload to the solar panel.
    341275
    342 {| align="center"
    343 |+'''Block diagram of the VGT-P (image credit: OIP)'''
    344 |-
    345 |[wiki:File:ProbaV_AutoC.jpeg File:ProbaV AutoC.jpeg]
    346 |}
     276||'''Block diagram of the VGT-P (image credit: OIP)'''||
     277||[[Image(wiki:File:ProbaV_AutoC.jpeg File:ProbaV AutoC.jpeg)]]||
     278
    347279
    348280Legend to Figure 7:
     
    367299
    368300
    369 {| border="1"
    370 |+ '''Performance requirements of MTF'''
    371 |-
    372 |Band
    373 |Nominal MTF (%)
    374 |2? MTF (%)
    375 |Max. frequency (lp/mm)
    376 |-
    377 |Blue
    378 |68.1
    379 |53
    380 |38.5
    381 |-
    382 |Red
    383 |68.5
    384 |54
    385 |38.5
    386 |-
    387 |NIR
    388 |68
    389 |53.7
    390 |38.5
    391 |-
    392 |SWIR
    393 |71
    394 |62.4
    395 |20.0
    396 |}
    397 
    398 {| align="center"
    399 |+'''Optical design concept of the TMA (ray tracing diagram), image credit: OIP'''
    400 |-
    401 |[wiki:File:ProbaV_AutoB.jpeg File:ProbaV AutoB.jpeg]
    402 |}
     301|| '''Performance requirements of MTF'''|| || || ||
     302||Band||Nominal MTF (%)|| MTF (%)||Max. frequency (lp/mm)||
     303||Blue||68.1||53||38.5||
     304||Red||68.5||54||38.5||
     305||NIR||68||53.7||38.5||
     306||SWIR||71||62.4||20.0||
     307
     308
     309||'''Optical design concept of the TMA (ray tracing diagram), image credit: OIP'''||
     310||[[Image(wiki:File:ProbaV_AutoB.jpeg File:ProbaV AutoB.jpeg)]]||
    403311
    404312Baffle design (Ref. 20): The aim of the baffle design is to block the out-of-field light which could enter the instrument and reach the detector, directly or through one or several reflections on the mirrors. This 1st order analysis didn’t consider vanes on the baffles and diffusion on M1 of out-of-field light.
     
    408316The baffle #1 is placed at the entrance of the instrument. Its role is to limit the out-of-field light that could directly reach the mirrors. The combination of the baffles #1 and #2 stops the direct view of the M3 mirror through the instrument entrance. The length of the upper side of the entrance baffle is defined to stop the light which could directly reach the M3 mirror and that could not be stopped by the lower side of the entrance baffle and by baffle #2. Some out-of-field light can also reach the M2 and M3 mirrors after reflecting on M1. This cannot be totally avoided but the length of the lower side of baffle #1 has been chosen in such a way that this straylight is stopped by the baffle #3 after reflecting on M3. The baffle #3 is placed below the M2 mirror and stops the direct view of the M1 mirror by the VNIR detector. The baffle #4 is a critical location where reflection or diffusion on the M2 structure can occur and bring stray light to the VNIR detector which is very close. Vanes will be placed at this location. The baffles #5 and #6 are placed near the focal planes to isolate the detectors from each other. The baffle #7 avoids a direct view to the SWIR detector from the M1 or M3 mirrors.
    409317
    410 {| align="center"
    411 |+'''Proba-V TMA preliminary baffles layout (image credit: CSL, OIP, ESA/ESTEC)'''
    412 |-
    413 |[wiki:File:ProbaV_AutoA.jpeg File:ProbaV AutoA.jpeg]
    414 |}
    415 
    416 {| align="center"
    417 |+'''Figure 10: Illustration of the optical assembly of VGT-P and two star trackers on the optical bench (image credit: OIP)'''
    418 |-
    419 |[wiki:File:ProbaV_Auto9.jpeg File:ProbaV Auto9.jpeg]
    420 |}
     318||'''Proba-V TMA preliminary baffles layout (image credit: CSL, OIP, ESA/ESTEC)'''||
     319||[[Image(wiki:File:ProbaV_AutoA.jpeg File:ProbaV AutoA.jpeg)]]||
     320
     321||'''Figure 10: Illustration of the optical assembly of VGT-P and two star trackers on the optical bench (image credit: OIP)'''||
     322||[[Image(wiki:File:ProbaV_Auto9.jpeg File:ProbaV Auto9.jpeg)]]||
    421323
    422324SWIR detector development: This development concerns the large format SWIR focal plane array containing at least 2704 pixels with 25 µm pitch. The solution selected uses the mechanical butting technique with 3 overlapping detectors of 1024 pixels and approximately 80 pixels in the overlap area. In Figure 11 the linear detector arrays are shown in green, while the ROICs (Readout Integrated Circuits) are presented in red. Xenics NV of Leuven, Belgium, is developing the InGaAs SWIR detector array.
     
    430332 *  Subarray PDA separation = < 1.5 mm.
    431333
    432 {| align="center"
    433 |+'''Schematic view of of the mechanically butted SWIR detector array (image credit: OIP, Xenics)'''
    434 |-
    435 |[wiki:File:ProbaV_Auto8.jpeg File:ProbaV Auto8.jpeg]
    436 |}
    437 
    438 {| align="center"
    439 |+'''Figure 12: Drawing of the subarray alignment tools with the 3 PDAs (green) mounted on the mount (image credit: OIP, Xenics)'''
    440 |-
    441 |[wiki:File:ProbaV_Auto7.jpeg File:ProbaV Auto7.jpeg]
    442 |}
    443 
    444 {| align="center"
    445 |+'''Photo of the fully assembled FPA in its package (image credit: OIP, Xenics)'''
    446 |-
    447 |[wiki:File:ProbaV_Auto6.jpeg File:ProbaV Auto6.jpeg]
    448 |}
     334||'''Schematic view of of the mechanically butted SWIR detector array (image credit: OIP, Xenics)'''||
     335||[[Image(wiki:File:ProbaV_Auto8.jpeg File:ProbaV Auto8.jpeg)]]||
     336
     337||'''Figure 12: Drawing of the subarray alignment tools with the 3 PDAs (green) mounted on the mount (image credit: OIP, Xenics)'''||
     338||[[Image(wiki:File:ProbaV_Auto7.jpeg File:ProbaV Auto7.jpeg)]]||
     339
     340||'''Photo of the fully assembled FPA in its package (image credit: OIP, Xenics)'''||
     341||[[Image(wiki:File:ProbaV_Auto6.jpeg File:ProbaV Auto6.jpeg)]]
     342
    449343= Thermal design of the VGT-P instrument:  =
    450344
     
    563457The extent of MODIS and VGT images was reduced to a subset matching the extent of Landsat TM, which was topographically normalized with the ASTER GDEM.
    564458
    565 
    566 {| border="1"
    567 |+ Image data characteristics
    568 ! !! VEGETATION II !! Modis !! Proba V
    569 |-
    570 ! Blue
    571 | 0.43 – 0.47 || 0.45 - 0.47 || 0.44 – 0.48
    572 |-
    573 ! Red
    574 | 0.61 – 0.68 || 0.62 – 0.67 || 0.62 – 0.69
    575 |-
    576 ! NIR
    577 |0.78 – 0.89 || 0.84 - 087 || 0.79 – 0.90
    578 |-
    579 ! SWIR
    580 | 1.58 – 1.75 || 1.62 –1.65 || 1.56 – 1.65
    581 |-
    582 ! Spatial Resolution
    583 | 1.15 km || 250m (R, NIR), 500m (SWIR) || 300m (VNIR), 600m (SWIR)
    584 |}
     459||'''Image data characteristics'''||
     460|| '''VEGETATION II''' || '''Modis''' || '''Proba V''' ||
     461||Blue||
     462||0.43 – 0.47 || 0.45 - 0.47 || 0.44 – 0.48
     463||Red||
     464||0.61 – 0.68 || 0.62 – 0.67 || 0.62 – 0.69||
     465||NIR ||
     466||0.78 – 0.89 || 0.84 - 087 || 0.79 – 0.90 ||
     467||SWIR||
     468||1.58 – 1.75 || 1.62 –1.65 || 1.56 – 1.65||
     469
     470 ||'''Spatial Resolution'''|| 1.15 km || 250m (R, NIR), 500m (SWIR) || 300m (VNIR), 600m (SWIR)||
     471
    585472= Generation of reference data =
    586473
     
    623510The resulting stocked/non-stocked map was used as a reference map for the study.
    624511
    625 {| border="1"
    626 |+ Results of the accuracy assessment of Landsat TM classification
    627 ! !! TM 6 bands !!TM 4 bands !! TM4 + NDVI
    628 |-
    629 ! Overall accuracy
    630 | 93.1214% || 92.9878% || 92.4135%
    631 |-
    632 ! Kappa coefficient
    633 | 0.9045 || 0.9027 || 0.8947
    634 |}
     512'''Results of the accuracy assessment of Landsat TM classification'''
     513
     514||'''TM 6 bands'''||'''TM 4 bands'''||'''TM4 + NDVI'''||
     515|| '''Overall accuracy''' ||
     516|| 93.1214% || 92.9878% || 92.4135%||
     517|| '''Kappa coefficient''' ||
     518|| 0.9045 || 0.9027 || 0.8947||
    635519
    636520= Evaluation of classification algorithms =
     
    666550forest cover (57.55%) and MODIS and VGT over-estimated the forest cover (80.72 and 79.39% respectively).
    667551
    668 {| align="center"
    669 |+'''Figure 4: Overall accuracy and Kappa Coefficients or ML, ANN and SVM classification result on MODIS, VGT and PROBA-V (B: bands)'''
    670 |-
    671 |[wiki:File:Table.png File:Table.png]
    672 |}
    673 
    674 
    675 {| align="center"
    676 |+'''Figure 5: Class distribution of the different classification results comparing to Landsat TM refer-ence (B: bands).'''
    677 |-
    678 |[wiki:File:Table2.png File:Table2.png]
    679 |}
    680 
    681 
    682 {| align="center"
    683 |+'''Figure 6: Classes distribution of simulated PROBA-V classification compared to the subset of the Landsat reference map.'''
    684 |-
    685 |[wiki:File:Table3.png File:Table3.png]
    686 |}
     552||'''Figure 4: Overall accuracy and Kappa Coefficients or ML, ANN and SVM classification result on MODIS, VGT and PROBA-V (B: bands)'''||
     553||[[Image(wiki:File:Table.png File:Table.png)]]||
     554
     555
     556||'''Figure 5: Class distribution of the different classification results comparing to Landsat TM refer-ence (B: bands).'''||
     557||[[Image(wiki:File:Table2.png File:Table2.png)]]||
     558
     559
     560||'''Figure 6: Classes distribution of simulated PROBA-V classification compared to the subset of the Landsat reference map.'''||
     561||[[Image(wiki:File:Table3.png File:Table3.png)]]||
     562
    687563= Discussion and Conclusions =
    688564
     
    750626The following table provides an overview of existing PROBA missions performed by ESA.
    751627
    752 {| border="1"
    753 |+ PROBA Missions overview
    754 !  !! Proba II !! Proba V
    755 |-
    756 ! Launch
    757 | 11/2009 || Planned in 2012
    758 |-
    759 ! Mass
    760 |130 Kg
    761 |160 Kg
    762 |-
    763 !Size
    764 |600 x 700 x 850 mm
    765 |800 x 800 x 1000 mm
    766 |-
    767 ! Orbit
    768 | Altitude between 700 km and 800 km, Sun-synchronous, Inclination 98.298 degrees
    769 | Sun-synchronised polar orbit, 820 km, with a 10:30 AM local time at the descending node
    770 |-
    771 !Launcher
    772 |Rockot
    773 |To be decided – designed to be compatible with Vega, Soyuz or Falcon 1E launchers.
    774 |-
    775 !Power consumption
    776 |53–86 Watts
    777 |131.2 Watts
    778 |-
    779 !RF
    780 |S-band, 64 kbit/s uplink; 1 Mbit/s downlink
    781 |S-band TxRx: 5W BPSK; X-band Tx: 6 W filtered OQPSK; MMU= 16 Gbit
    782 |-
    783 !Nominal Life
    784 |2 years
    785 |2.5 years
    786 |-
    787 !Ground Station
    788 |Redu (Belgium)
    789 |Satellite’s mission control centre in Redu, Belgium
    790 |-
    791 !Developed by
    792 |Consortium led by QinetiQ Space nv of Belgium
    793 |OIP Space Systems
    794 |}
     628||''' PROBA Missions overview '''|| Proba II || Proba V ||
     629|| Launch || 11/2009 || Planned in 2012||
     630|| Mass||130 Kg|||160 Kg||
     631||Size||600 x 700 x 850 mm||800 x 800 x 1000 mm||
     632||Orbit||Altitude between 700 km and 800 km, Sun-synchronous, Inclination 98.298 degrees||Sun-synchronised polar orbit, 820 km, with a 10:30 AM local time at the descending node ||
     633||Launcher||Rockot||To be decided – designed to be compatible with Vega, Soyuz or Falcon 1E launchers.||
     634||Power consumption||53–86 Watts||131.2 Watts||
     635||RF||S-band, 64 kbit/s uplink; 1 Mbit/s downlink||S-band TxRx: 5W BPSK; X-band Tx: 6 W filtered OQPSK; MMU= 16 Gbit ||
     636||Nominal Life||2 years|2.5 years||
     637||Ground Station||Redu (Belgium)||Satellite’s mission control centre in Redu, Belgium||
     638||Developed by||Consortium led by QinetiQ Space nv of Belgium||OIP Space Systems||
     639
    795640= Proba II =
    796641
     
    809654scientific payload and technology experiments
    810655
    811 {| align="center"
    812 |[wiki:File:Proba-2-in-orbit-rear-view.jpg 400px]
    813 |}
     656||[[Image(wiki:File:Proba-2-in-orbit-rear-view.jpg 400px)]]||
    814657== 1.1. Mission objectives ==
    815658
     
    849692onboard. The spacecraft platform provides full redundancy.
    850693
    851 {| align="center"
    852 |+'''PROBA 2 Block Diagram'''
    853 |-
    854 |PROBA2_Auto11.jpeg
    855 |}
     694||'''PROBA 2 Block Diagram'''||
     695||PROBA2_Auto11.jpeg||
    856696
    857697== 1.3. Ground segment ==
     
    865705missions and characterise sensors and other related technologies.
    866706
    867 {| align="center"
    868 |+'''PROBA 3'''
    869 |-
    870 |[[Image(PROBA3-02-LR_large,0.jpg)]]
    871 |}
     707||'''PROBA 3'''||
     708||[[Image(PROBA3-02-LR_large,0.jpg)]]||
    872709 
    873710== Mission objectives and Orbit ==