Changes between Version 4 and Version 5 of TBR/UserManual/RTEMS_File_System


Ignore:
Timestamp:
Feb 23, 2010, 7:10:43 AM (10 years ago)
Author:
ChrisJohns
Comment:

Updated

Legend:

Unmodified
Added
Removed
Modified
  • TBR/UserManual/RTEMS_File_System

    v4 v5  
    3838</blockquote>
    3939
    40 The block bitmap contains a single bit for every block in a group. The default format is to allocate the size of a group based on the number of bits that fit into a single block. For example a block of 1024 bytes has 8,192 bits therefore a group can have 8192 blocks including the block bitmap block. The inode bitmap has a bit for ever inode in the group. An inode is the information about a node on the disk. A node is the data that links the elements of the disk together to create directories, files, and nodes as well as hold times and flags. The number of inodes in a group is a format configuration parameter. The default is use 1% of the disk's blocks for inode data. Again with a 1024 byte block size there are 18 inodes per block and 1448 inodes per group. Inodes do not span block boundaries.
     40The block bitmap contains a single bit for every block in a group. The default format is to allocate the size of a group based on the number of bits that fit into a single block. For example a block of 1024 bytes has 8,192 bits therefore a group can have 8192 blocks including the block bitmap block. The inode bitmap has a bit for ever inode in the group. An inode is the information about a node on the disk. A node is the data that links the elements of the disk together to create directories, files, and nodes as well as hold times and flags. The number of inodes in a group is a format configuration parameter. The default is use 1% of the disk's blocks for inode data. Again with a 1024 byte block size there are 18 inodes per block and 1448 inodes per group. Inodes do not span block boundaries.
     41== Inodes ==
     42
     43
     44An inode can be a device node (block or character), directory, FIFO, regular file, link, or socket. Current RTEMS does not support FIFO or socket nodes in its file systems so they are ignored. Inodes are numbered from 1 so there is no inode number 0. The root inode is always 1 and therefore the first inode of the first group and its mode is directory. This directory can contain any number of inodes including directories. Files can be link using hard or symbolic links. Directories cannot be linked therefore avoiding the creation of a directed acyclic graph or DAG. An inode can have a map of blocks associated to it. The use of the data depends on the mode of the inode. If the inode is a directory the data in the block map is the contents of the directory. If a regular file the block map contains the file's data and if a symbolic link the data is the link path. The block map has three levels. The first is a series of block numbers held in the inode. The current value is 5 blocks. When the block map is less than or equal to 5 blocks the mapping is called direct as the block numbers map directly to data blocks. If there are more than 5 blocks the 5 inode slots point to blocks that hold the data blocks. This called singly indirect. The number of blocks that can be addressed with a single indirect map depends on the block size. For a block size of 1024 bytes and a 32bit block number a block holds 256 blocks, and with 5 indirect blockes addressable from the inode this is a total of 1280 blocks or 1.3M. If the map grows to have more blocks the map changes to a doubly indirect map. Here the block addressed from the inode holds block numbers to singly indirect blocks.
    4145= Using the RFS =
    4246