Changes between Version 13 and Version 14 of TBR/UserApp/Space/EMFISIS_on_RBSP


Ignore:
Timestamp:
12/02/11 00:36:01 (12 years ago)
Author:
JoelSherrill
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • TBR/UserApp/Space/EMFISIS_on_RBSP

    v13 v14  
    99The RBSP-EMFISIS investigation will focus on the important role played by magnetic fields and plasma waves in the processes of radiation belt particle acceleration and loss. EMFISIS offers the opportunity to understand the origin of important magnetospheric plasma waves as well as the evolution of the magnetic field that defines the basic coordinate system controlling the structure of the radiation belts and the storm-time ring current.
    1010
    11 [wiki:File:Emfisis_lg.jpg 600px]
     11[wiki:File:Emfisis_lg.jpg 300px]
    1212
    1313The physics of the creation and loss of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field dynamics and time scales are involved in this physics from ring current magnetic fields to microscopic kinetic interactions such as whistler-mode chorus waves with energetic electrons. To measure these key field interactions, NASA has selected the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Radiation Belt Storm Probes (RBSP). EMFISIS is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer and measures AC electric and magnetic fields from 10 Hz to MHz frequencies. The broad frequency range of the Waves instrument enables the identification of resonances and cutoffs from Waves to achieve high cadence, accurate plasma density measurements that are essential to RBSP theory and modeling efforts. The instruments are integrated through a Central Data Processor Unit (CDPU) which provides for flexible instrument operations in both burst and survey telemetry modes that can be optimized to address the specific physics of the many radiation belt processes. The EMFISIS multi-institution team comprises a group of knowledgeable space physics investigators, both experimental and theoretical, with the requisite capability, desire, and experience to accomplish the goals of the RBSP mission to further our nation's space weather capability. In combination with the selected double probe electric field and particle investigations on RBSP, EMFISIS will provide the essential measurements necessary to open the frontier of predictive capability for the Earth's highly variable radiation belts.