#include "fpsp-namespace.h" // // // bindec.sa 3.4 1/3/91 // // bindec // // Description: // Converts an input in extended precision format // to bcd format. // // Input: // a0 points to the input extended precision value // value in memory; d0 contains the k-factor sign-extended // to 32-bits. The input may be either normalized, // unnormalized, or denormalized. // // Output: result in the FP_SCR1 space on the stack. // // Saves and Modifies: D2-D7,A2,FP2 // // Algorithm: // // A1. Set RM and size ext; Set SIGMA = sign of input. // The k-factor is saved for use in d7. Clear the // BINDEC_FLG for separating normalized/denormalized // input. If input is unnormalized or denormalized, // normalize it. // // A2. Set X = abs(input). // // A3. Compute ILOG. // ILOG is the log base 10 of the input value. It is // approximated by adding e + 0.f when the original // value is viewed as 2^^e * 1.f in extended precision. // This value is stored in d6. // // A4. Clr INEX bit. // The operation in A3 above may have set INEX2. // // A5. Set ICTR = 0; // ICTR is a flag used in A13. It must be set before the // loop entry A6. // // A6. Calculate LEN. // LEN is the number of digits to be displayed. The // k-factor can dictate either the total number of digits, // if it is a positive number, or the number of digits // after the decimal point which are to be included as // significant. See the 68882 manual for examples. // If LEN is computed to be greater than 17, set OPERR in // USER_FPSR. LEN is stored in d4. // // A7. Calculate SCALE. // SCALE is equal to 10^ISCALE, where ISCALE is the number // of decimal places needed to insure LEN integer digits // in the output before conversion to bcd. LAMBDA is the // sign of ISCALE, used in A9. Fp1 contains // 10^^(abs(ISCALE)) using a rounding mode which is a // function of the original rounding mode and the signs // of ISCALE and X. A table is given in the code. // // A8. Clr INEX; Force RZ. // The operation in A3 above may have set INEX2. // RZ mode is forced for the scaling operation to insure // only one rounding error. The grs bits are collected in // the INEX flag for use in A10. // // A9. Scale X -> Y. // The mantissa is scaled to the desired number of // significant digits. The excess digits are collected // in INEX2. // // A10. Or in INEX. // If INEX is set, round error occurred. This is // compensated for by 'or-ing' in the INEX2 flag to // the lsb of Y. // // A11. Restore original FPCR; set size ext. // Perform FINT operation in the user's rounding mode. // Keep the size to extended. // // A12. Calculate YINT = FINT(Y) according to user's rounding // mode. The FPSP routine sintd0 is used. The output // is in fp0. // // A13. Check for LEN digits. // If the int operation results in more than LEN digits, // or less than LEN -1 digits, adjust ILOG and repeat from // A6. This test occurs only on the first pass. If the // result is exactly 10^LEN, decrement ILOG and divide // the mantissa by 10. // // A14. Convert the mantissa to bcd. // The binstr routine is used to convert the LEN digit // mantissa to bcd in memory. The input to binstr is // to be a fraction; i.e. (mantissa)/10^LEN and adjusted // such that the decimal point is to the left of bit 63. // The bcd digits are stored in the correct position in // the final string area in memory. // // A15. Convert the exponent to bcd. // As in A14 above, the exp is converted to bcd and the // digits are stored in the final string. // Test the length of the final exponent string. If the // length is 4, set operr. // // A16. Write sign bits to final string. // // Implementation Notes: // // The registers are used as follows: // // d0: scratch; LEN input to binstr // d1: scratch // d2: upper 32-bits of mantissa for binstr // d3: scratch;lower 32-bits of mantissa for binstr // d4: LEN // d5: LAMBDA/ICTR // d6: ILOG // d7: k-factor // a0: ptr for original operand/final result // a1: scratch pointer // a2: pointer to FP_X; abs(original value) in ext // fp0: scratch // fp1: scratch // fp2: scratch // F_SCR1: // F_SCR2: // L_SCR1: // L_SCR2: // Copyright (C) Motorola, Inc. 1990 // All Rights Reserved // // THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA // The copyright notice above does not evidence any // actual or intended publication of such source code. //BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package #include "fpsp.defs" |section 8 // Constants in extended precision LOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 LOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 // Constants in single precision FONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 FTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 FTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 F4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 RBDTBL: .byte 0,0,0,0 .byte 3,3,2,2 .byte 3,2,2,3 .byte 2,3,3,2 |xref binstr |xref sintdo |xref ptenrn,ptenrm,ptenrp .global bindec .global sc_mul bindec: moveml %d2-%d7/%a2,-(%a7) fmovemx %fp0-%fp2,-(%a7) // A1. Set RM and size ext. Set SIGMA = sign input; // The k-factor is saved for use in d7. Clear BINDEC_FLG for // separating normalized/denormalized input. If the input // is a denormalized number, set the BINDEC_FLG memory word // to signal denorm. If the input is unnormalized, normalize // the input and test for denormalized result. // fmovel #rm_mode,%FPCR //set RM and ext movel (%a0),L_SCR2(%a6) //save exponent for sign check movel %d0,%d7 //move k-factor to d7 clrb BINDEC_FLG(%a6) //clr norm/denorm flag movew STAG(%a6),%d0 //get stag andiw #0xe000,%d0 //isolate stag bits beq A2_str //if zero, input is norm // // Normalize the denorm // un_de_norm: movew (%a0),%d0 andiw #0x7fff,%d0 //strip sign of normalized exp movel 4(%a0),%d1 movel 8(%a0),%d2 norm_loop: subw #1,%d0 lsll #1,%d2 roxll #1,%d1 tstl %d1 bges norm_loop // // Test if the normalized input is denormalized // tstw %d0 bgts pos_exp //if greater than zero, it is a norm st BINDEC_FLG(%a6) //set flag for denorm pos_exp: andiw #0x7fff,%d0 //strip sign of normalized exp movew %d0,(%a0) movel %d1,4(%a0) movel %d2,8(%a0) // A2. Set X = abs(input). // A2_str: movel (%a0),FP_SCR2(%a6) // move input to work space movel 4(%a0),FP_SCR2+4(%a6) // move input to work space movel 8(%a0),FP_SCR2+8(%a6) // move input to work space andil #0x7fffffff,FP_SCR2(%a6) //create abs(X) // A3. Compute ILOG. // ILOG is the log base 10 of the input value. It is approx- // imated by adding e + 0.f when the original value is viewed // as 2^^e * 1.f in extended precision. This value is stored // in d6. // // Register usage: // Input/Output // d0: k-factor/exponent // d2: x/x // d3: x/x // d4: x/x // d5: x/x // d6: x/ILOG // d7: k-factor/Unchanged // a0: ptr for original operand/final result // a1: x/x // a2: x/x // fp0: x/float(ILOG) // fp1: x/x // fp2: x/x // F_SCR1:x/x // F_SCR2:Abs(X)/Abs(X) with $3fff exponent // L_SCR1:x/x // L_SCR2:first word of X packed/Unchanged tstb BINDEC_FLG(%a6) //check for denorm beqs A3_cont //if clr, continue with norm movel #-4933,%d6 //force ILOG = -4933 bras A4_str A3_cont: movew FP_SCR2(%a6),%d0 //move exp to d0 movew #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff fmovex FP_SCR2(%a6),%fp0 //now fp0 has 1.f subw #0x3fff,%d0 //strip off bias faddw %d0,%fp0 //add in exp fsubs FONE,%fp0 //subtract off 1.0 fbge pos_res //if pos, branch fmulx LOG2UP1,%fp0 //if neg, mul by LOG2UP1 fmovel %fp0,%d6 //put ILOG in d6 as a lword bras A4_str //go move out ILOG pos_res: fmulx LOG2,%fp0 //if pos, mul by LOG2 fmovel %fp0,%d6 //put ILOG in d6 as a lword // A4. Clr INEX bit. // The operation in A3 above may have set INEX2. A4_str: fmovel #0,%FPSR //zero all of fpsr - nothing needed // A5. Set ICTR = 0; // ICTR is a flag used in A13. It must be set before the // loop entry A6. The lower word of d5 is used for ICTR. clrw %d5 //clear ICTR // A6. Calculate LEN. // LEN is the number of digits to be displayed. The k-factor // can dictate either the total number of digits, if it is // a positive number, or the number of digits after the // original decimal point which are to be included as // significant. See the 68882 manual for examples. // If LEN is computed to be greater than 17, set OPERR in // USER_FPSR. LEN is stored in d4. // // Register usage: // Input/Output // d0: exponent/Unchanged // d2: x/x/scratch // d3: x/x // d4: exc picture/LEN // d5: ICTR/Unchanged // d6: ILOG/Unchanged // d7: k-factor/Unchanged // a0: ptr for original operand/final result // a1: x/x // a2: x/x // fp0: float(ILOG)/Unchanged // fp1: x/x // fp2: x/x // F_SCR1:x/x // F_SCR2:Abs(X) with $3fff exponent/Unchanged // L_SCR1:x/x // L_SCR2:first word of X packed/Unchanged A6_str: tstl %d7 //branch on sign of k bles k_neg //if k <= 0, LEN = ILOG + 1 - k movel %d7,%d4 //if k > 0, LEN = k bras len_ck //skip to LEN check k_neg: movel %d6,%d4 //first load ILOG to d4 subl %d7,%d4 //subtract off k addql #1,%d4 //add in the 1 len_ck: tstl %d4 //LEN check: branch on sign of LEN bles LEN_ng //if neg, set LEN = 1 cmpl #17,%d4 //test if LEN > 17 bles A7_str //if not, forget it movel #17,%d4 //set max LEN = 17 tstl %d7 //if negative, never set OPERR bles A7_str //if positive, continue orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR bras A7_str //finished here LEN_ng: moveql #1,%d4 //min LEN is 1 // A7. Calculate SCALE. // SCALE is equal to 10^ISCALE, where ISCALE is the number // of decimal places needed to insure LEN integer digits // in the output before conversion to bcd. LAMBDA is the sign // of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using // the rounding mode as given in the following table (see // Coonen, p. 7.23 as ref.; however, the SCALE variable is // of opposite sign in bindec.sa from Coonen). // // Initial USE // FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] // ---------------------------------------------- // RN 00 0 0 00/0 RN // RN 00 0 1 00/0 RN // RN 00 1 0 00/0 RN // RN 00 1 1 00/0 RN // RZ 01 0 0 11/3 RP // RZ 01 0 1 11/3 RP // RZ 01 1 0 10/2 RM // RZ 01 1 1 10/2 RM // RM 10 0 0 11/3 RP // RM 10 0 1 10/2 RM // RM 10 1 0 10/2 RM // RM 10 1 1 11/3 RP // RP 11 0 0 10/2 RM // RP 11 0 1 11/3 RP // RP 11 1 0 11/3 RP // RP 11 1 1 10/2 RM // // Register usage: // Input/Output // d0: exponent/scratch - final is 0 // d2: x/0 or 24 for A9 // d3: x/scratch - offset ptr into PTENRM array // d4: LEN/Unchanged // d5: 0/ICTR:LAMBDA // d6: ILOG/ILOG or k if ((k<=0)&(ILOG 0, skip this cmpl %d6,%d7 //test k - ILOG blts k_pos //if ILOG >= k, skip this movel %d7,%d6 //if ((k<0) & (ILOG < k)) ILOG = k k_pos: movel %d6,%d0 //calc ILOG + 1 - LEN in d0 addql #1,%d0 //add the 1 subl %d4,%d0 //sub off LEN swap %d5 //use upper word of d5 for LAMBDA clrw %d5 //set it zero initially clrw %d2 //set up d2 for very small case tstl %d0 //test sign of ISCALE bges iscale //if pos, skip next inst addqw #1,%d5 //if neg, set LAMBDA true cmpl #0xffffecd4,%d0 //test iscale <= -4908 bgts no_inf //if false, skip rest addil #24,%d0 //add in 24 to iscale movel #24,%d2 //put 24 in d2 for A9 no_inf: negl %d0 //and take abs of ISCALE iscale: fmoves FONE,%fp1 //init fp1 to 1 bfextu USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits lslw #1,%d1 //put them in bits 2:1 addw %d5,%d1 //add in LAMBDA lslw #1,%d1 //put them in bits 3:1 tstl L_SCR2(%a6) //test sign of original x bges x_pos //if pos, don't set bit 0 addql #1,%d1 //if neg, set bit 0 x_pos: leal RBDTBL,%a2 //load rbdtbl base moveb (%a2,%d1),%d3 //load d3 with new rmode lsll #4,%d3 //put bits in proper position fmovel %d3,%fpcr //load bits into fpu lsrl #4,%d3 //put bits in proper position tstb %d3 //decode new rmode for pten table bnes not_rn //if zero, it is RN leal PTENRN,%a1 //load a1 with RN table base bras rmode //exit decode not_rn: lsrb #1,%d3 //get lsb in carry bccs not_rp //if carry clear, it is RM leal PTENRP,%a1 //load a1 with RP table base bras rmode //exit decode not_rp: leal PTENRM,%a1 //load a1 with RM table base rmode: clrl %d3 //clr table index e_loop: lsrl #1,%d0 //shift next bit into carry bccs e_next //if zero, skip the mul fmulx (%a1,%d3),%fp1 //mul by 10**(d3_bit_no) e_next: addl #12,%d3 //inc d3 to next pwrten table entry tstl %d0 //test if ISCALE is zero bnes e_loop //if not, loop // A8. Clr INEX; Force RZ. // The operation in A3 above may have set INEX2. // RZ mode is forced for the scaling operation to insure // only one rounding error. The grs bits are collected in // the INEX flag for use in A10. // // Register usage: // Input/Output fmovel #0,%FPSR //clr INEX fmovel #rz_mode,%FPCR //set RZ rounding mode // A9. Scale X -> Y. // The mantissa is scaled to the desired number of significant // digits. The excess digits are collected in INEX2. If mul, // Check d2 for excess 10 exponential value. If not zero, // the iscale value would have caused the pwrten calculation // to overflow. Only a negative iscale can cause this, so // multiply by 10^(d2), which is now only allowed to be 24, // with a multiply by 10^8 and 10^16, which is exact since // 10^24 is exact. If the input was denormalized, we must // create a busy stack frame with the mul command and the // two operands, and allow the fpu to complete the multiply. // // Register usage: // Input/Output // d0: FPCR with RZ mode/Unchanged // d2: 0 or 24/unchanged // d3: x/x // d4: LEN/Unchanged // d5: ICTR:LAMBDA // d6: ILOG/Unchanged // d7: k-factor/Unchanged // a0: ptr for original operand/final result // a1: ptr to PTENRM array/Unchanged // a2: x/x // fp0: float(ILOG)/X adjusted for SCALE (Y) // fp1: 10^ISCALE/Unchanged // fp2: x/x // F_SCR1:x/x // F_SCR2:Abs(X) with $3fff exponent/Unchanged // L_SCR1:x/x // L_SCR2:first word of X packed/Unchanged A9_str: fmovex (%a0),%fp0 //load X from memory fabsx %fp0 //use abs(X) tstw %d5 //LAMBDA is in lower word of d5 bne sc_mul //if neg (LAMBDA = 1), scale by mul fdivx %fp1,%fp0 //calculate X / SCALE -> Y to fp0 bras A10_st //branch to A10 sc_mul: tstb BINDEC_FLG(%a6) //check for denorm beqs A9_norm //if norm, continue with mul fmovemx %fp1-%fp1,-(%a7) //load ETEMP with 10^ISCALE movel 8(%a0),-(%a7) //load FPTEMP with input arg movel 4(%a0),-(%a7) movel (%a0),-(%a7) movel #18,%d3 //load count for busy stack A9_loop: clrl -(%a7) //clear lword on stack dbf %d3,A9_loop moveb VER_TMP(%a6),(%a7) //write current version number moveb #BUSY_SIZE-4,1(%a7) //write current busy size moveb #0x10,0x44(%a7) //set fcefpte[15] bit movew #0x0023,0x40(%a7) //load cmdreg1b with mul command moveb #0xfe,0x8(%a7) //load all 1s to cu savepc frestore (%a7)+ //restore frame to fpu for completion fmulx 36(%a1),%fp0 //multiply fp0 by 10^8 fmulx 48(%a1),%fp0 //multiply fp0 by 10^16 bras A10_st A9_norm: tstw %d2 //test for small exp case beqs A9_con //if zero, continue as normal fmulx 36(%a1),%fp0 //multiply fp0 by 10^8 fmulx 48(%a1),%fp0 //multiply fp0 by 10^16 A9_con: fmulx %fp1,%fp0 //calculate X * SCALE -> Y to fp0 // A10. Or in INEX. // If INEX is set, round error occurred. This is compensated // for by 'or-ing' in the INEX2 flag to the lsb of Y. // // Register usage: // Input/Output // d0: FPCR with RZ mode/FPSR with INEX2 isolated // d2: x/x // d3: x/x // d4: LEN/Unchanged // d5: ICTR:LAMBDA // d6: ILOG/Unchanged // d7: k-factor/Unchanged // a0: ptr for original operand/final result // a1: ptr to PTENxx array/Unchanged // a2: x/ptr to FP_SCR2(a6) // fp0: Y/Y with lsb adjusted // fp1: 10^ISCALE/Unchanged // fp2: x/x A10_st: fmovel %FPSR,%d0 //get FPSR fmovex %fp0,FP_SCR2(%a6) //move Y to memory leal FP_SCR2(%a6),%a2 //load a2 with ptr to FP_SCR2 btstl #9,%d0 //check if INEX2 set beqs A11_st //if clear, skip rest oril #1,8(%a2) //or in 1 to lsb of mantissa fmovex FP_SCR2(%a6),%fp0 //write adjusted Y back to fpu // A11. Restore original FPCR; set size ext. // Perform FINT operation in the user's rounding mode. Keep // the size to extended. The sintdo entry point in the sint // routine expects the FPCR value to be in USER_FPCR for // mode and precision. The original FPCR is saved in L_SCR1. A11_st: movel USER_FPCR(%a6),L_SCR1(%a6) //save it for later andil #0x00000030,USER_FPCR(%a6) //set size to ext, // ;block exceptions // A12. Calculate YINT = FINT(Y) according to user's rounding mode. // The FPSP routine sintd0 is used. The output is in fp0. // // Register usage: // Input/Output // d0: FPSR with AINEX cleared/FPCR with size set to ext // d2: x/x/scratch // d3: x/x // d4: LEN/Unchanged // d5: ICTR:LAMBDA/Unchanged // d6: ILOG/Unchanged // d7: k-factor/Unchanged // a0: ptr for original operand/src ptr for sintdo // a1: ptr to PTENxx array/Unchanged // a2: ptr to FP_SCR2(a6)/Unchanged // a6: temp pointer to FP_SCR2(a6) - orig value saved and restored // fp0: Y/YINT // fp1: 10^ISCALE/Unchanged // fp2: x/x // F_SCR1:x/x // F_SCR2:Y adjusted for inex/Y with original exponent // L_SCR1:x/original USER_FPCR // L_SCR2:first word of X packed/Unchanged A12_st: moveml %d0-%d1/%a0-%a1,-(%a7) //save regs used by sintd0 movel L_SCR1(%a6),-(%a7) movel L_SCR2(%a6),-(%a7) leal FP_SCR2(%a6),%a0 //a0 is ptr to F_SCR2(a6) fmovex %fp0,(%a0) //move Y to memory at FP_SCR2(a6) tstl L_SCR2(%a6) //test sign of original operand bges do_fint //if pos, use Y orl #0x80000000,(%a0) //if neg, use -Y do_fint: movel USER_FPSR(%a6),-(%a7) bsr sintdo //sint routine returns int in fp0 moveb (%a7),USER_FPSR(%a6) addl #4,%a7 movel (%a7)+,L_SCR2(%a6) movel (%a7)+,L_SCR1(%a6) moveml (%a7)+,%d0-%d1/%a0-%a1 //restore regs used by sint movel L_SCR2(%a6),FP_SCR2(%a6) //restore original exponent movel L_SCR1(%a6),USER_FPCR(%a6) //restore user's FPCR // A13. Check for LEN digits. // If the int operation results in more than LEN digits, // or less than LEN -1 digits, adjust ILOG and repeat from // A6. This test occurs only on the first pass. If the // result is exactly 10^LEN, decrement ILOG and divide // the mantissa by 10. The calculation of 10^LEN cannot // be inexact, since all powers of ten upto 10^27 are exact // in extended precision, so the use of a previous power-of-ten // table will introduce no error. // // // Register usage: // Input/Output // d0: FPCR with size set to ext/scratch final = 0 // d2: x/x // d3: x/scratch final = x // d4: LEN/LEN adjusted // d5: ICTR:LAMBDA/LAMBDA:ICTR // d6: ILOG/ILOG adjusted // d7: k-factor/Unchanged // a0: pointer into memory for packed bcd string formation // a1: ptr to PTENxx array/Unchanged // a2: ptr to FP_SCR2(a6)/Unchanged // fp0: int portion of Y/abs(YINT) adjusted // fp1: 10^ISCALE/Unchanged // fp2: x/10^LEN // F_SCR1:x/x // F_SCR2:Y with original exponent/Unchanged // L_SCR1:original USER_FPCR/Unchanged // L_SCR2:first word of X packed/Unchanged A13_st: swap %d5 //put ICTR in lower word of d5 tstw %d5 //check if ICTR = 0 bne not_zr //if non-zero, go to second test // // Compute 10^(LEN-1) // fmoves FONE,%fp2 //init fp2 to 1.0 movel %d4,%d0 //put LEN in d0 subql #1,%d0 //d0 = LEN -1 clrl %d3 //clr table index l_loop: lsrl #1,%d0 //shift next bit into carry bccs l_next //if zero, skip the mul fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no) l_next: addl #12,%d3 //inc d3 to next pwrten table entry tstl %d0 //test if LEN is zero bnes l_loop //if not, loop // // 10^LEN-1 is computed for this test and A14. If the input was // denormalized, check only the case in which YINT > 10^LEN. // tstb BINDEC_FLG(%a6) //check if input was norm beqs A13_con //if norm, continue with checking fabsx %fp0 //take abs of YINT bra test_2 // // Compare abs(YINT) to 10^(LEN-1) and 10^LEN // A13_con: fabsx %fp0 //take abs of YINT fcmpx %fp2,%fp0 //compare abs(YINT) with 10^(LEN-1) fbge test_2 //if greater, do next test subql #1,%d6 //subtract 1 from ILOG movew #1,%d5 //set ICTR fmovel #rm_mode,%FPCR //set rmode to RM fmuls FTEN,%fp2 //compute 10^LEN bra A6_str //return to A6 and recompute YINT test_2: fmuls FTEN,%fp2 //compute 10^LEN fcmpx %fp2,%fp0 //compare abs(YINT) with 10^LEN fblt A14_st //if less, all is ok, go to A14 fbgt fix_ex //if greater, fix and redo fdivs FTEN,%fp0 //if equal, divide by 10 addql #1,%d6 // and inc ILOG bras A14_st // and continue elsewhere fix_ex: addql #1,%d6 //increment ILOG by 1 movew #1,%d5 //set ICTR fmovel #rm_mode,%FPCR //set rmode to RM bra A6_str //return to A6 and recompute YINT // // Since ICTR <> 0, we have already been through one adjustment, // and shouldn't have another; this is to check if abs(YINT) = 10^LEN // 10^LEN is again computed using whatever table is in a1 since the // value calculated cannot be inexact. // not_zr: fmoves FONE,%fp2 //init fp2 to 1.0 movel %d4,%d0 //put LEN in d0 clrl %d3 //clr table index z_loop: lsrl #1,%d0 //shift next bit into carry bccs z_next //if zero, skip the mul fmulx (%a1,%d3),%fp2 //mul by 10**(d3_bit_no) z_next: addl #12,%d3 //inc d3 to next pwrten table entry tstl %d0 //test if LEN is zero bnes z_loop //if not, loop fabsx %fp0 //get abs(YINT) fcmpx %fp2,%fp0 //check if abs(YINT) = 10^LEN fbne A14_st //if not, skip this fdivs FTEN,%fp0 //divide abs(YINT) by 10 addql #1,%d6 //and inc ILOG by 1 addql #1,%d4 // and inc LEN fmuls FTEN,%fp2 // if LEN++, the get 10^^LEN // A14. Convert the mantissa to bcd. // The binstr routine is used to convert the LEN digit // mantissa to bcd in memory. The input to binstr is // to be a fraction; i.e. (mantissa)/10^LEN and adjusted // such that the decimal point is to the left of bit 63. // The bcd digits are stored in the correct position in // the final string area in memory. // // // Register usage: // Input/Output // d0: x/LEN call to binstr - final is 0 // d1: x/0 // d2: x/ms 32-bits of mant of abs(YINT) // d3: x/ls 32-bits of mant of abs(YINT) // d4: LEN/Unchanged // d5: ICTR:LAMBDA/LAMBDA:ICTR // d6: ILOG // d7: k-factor/Unchanged // a0: pointer into memory for packed bcd string formation // /ptr to first mantissa byte in result string // a1: ptr to PTENxx array/Unchanged // a2: ptr to FP_SCR2(a6)/Unchanged // fp0: int portion of Y/abs(YINT) adjusted // fp1: 10^ISCALE/Unchanged // fp2: 10^LEN/Unchanged // F_SCR1:x/Work area for final result // F_SCR2:Y with original exponent/Unchanged // L_SCR1:original USER_FPCR/Unchanged // L_SCR2:first word of X packed/Unchanged A14_st: fmovel #rz_mode,%FPCR //force rz for conversion fdivx %fp2,%fp0 //divide abs(YINT) by 10^LEN leal FP_SCR1(%a6),%a0 fmovex %fp0,(%a0) //move abs(YINT)/10^LEN to memory movel 4(%a0),%d2 //move 2nd word of FP_RES to d2 movel 8(%a0),%d3 //move 3rd word of FP_RES to d3 clrl 4(%a0) //zero word 2 of FP_RES clrl 8(%a0) //zero word 3 of FP_RES movel (%a0),%d0 //move exponent to d0 swap %d0 //put exponent in lower word beqs no_sft //if zero, don't shift subil #0x3ffd,%d0 //sub bias less 2 to make fract tstl %d0 //check if > 1 bgts no_sft //if so, don't shift negl %d0 //make exp positive m_loop: lsrl #1,%d2 //shift d2:d3 right, add 0s roxrl #1,%d3 //the number of places dbf %d0,m_loop //given in d0 no_sft: tstl %d2 //check for mantissa of zero bnes no_zr //if not, go on tstl %d3 //continue zero check beqs zer_m //if zero, go directly to binstr no_zr: clrl %d1 //put zero in d1 for addx addil #0x00000080,%d3 //inc at bit 7 addxl %d1,%d2 //continue inc andil #0xffffff80,%d3 //strip off lsb not used by 882 zer_m: movel %d4,%d0 //put LEN in d0 for binstr call addql #3,%a0 //a0 points to M16 byte in result bsr binstr //call binstr to convert mant // A15. Convert the exponent to bcd. // As in A14 above, the exp is converted to bcd and the // digits are stored in the final string. // // Digits are stored in L_SCR1(a6) on return from BINDEC as: // // 32 16 15 0 // ----------------------------------------- // | 0 | e3 | e2 | e1 | e4 | X | X | X | // ----------------------------------------- // // And are moved into their proper places in FP_SCR1. If digit e4 // is non-zero, OPERR is signaled. In all cases, all 4 digits are // written as specified in the 881/882 manual for packed decimal. // // Register usage: // Input/Output // d0: x/LEN call to binstr - final is 0 // d1: x/scratch (0);shift count for final exponent packing // d2: x/ms 32-bits of exp fraction/scratch // d3: x/ls 32-bits of exp fraction // d4: LEN/Unchanged // d5: ICTR:LAMBDA/LAMBDA:ICTR // d6: ILOG // d7: k-factor/Unchanged // a0: ptr to result string/ptr to L_SCR1(a6) // a1: ptr to PTENxx array/Unchanged // a2: ptr to FP_SCR2(a6)/Unchanged // fp0: abs(YINT) adjusted/float(ILOG) // fp1: 10^ISCALE/Unchanged // fp2: 10^LEN/Unchanged // F_SCR1:Work area for final result/BCD result // F_SCR2:Y with original exponent/ILOG/10^4 // L_SCR1:original USER_FPCR/Exponent digits on return from binstr // L_SCR2:first word of X packed/Unchanged A15_st: tstb BINDEC_FLG(%a6) //check for denorm beqs not_denorm ftstx %fp0 //test for zero fbeq den_zero //if zero, use k-factor or 4933 fmovel %d6,%fp0 //float ILOG fabsx %fp0 //get abs of ILOG bras convrt den_zero: tstl %d7 //check sign of the k-factor blts use_ilog //if negative, use ILOG fmoves F4933,%fp0 //force exponent to 4933 bras convrt //do it use_ilog: fmovel %d6,%fp0 //float ILOG fabsx %fp0 //get abs of ILOG bras convrt not_denorm: ftstx %fp0 //test for zero fbne not_zero //if zero, force exponent fmoves FONE,%fp0 //force exponent to 1 bras convrt //do it not_zero: fmovel %d6,%fp0 //float ILOG fabsx %fp0 //get abs of ILOG convrt: fdivx 24(%a1),%fp0 //compute ILOG/10^4 fmovex %fp0,FP_SCR2(%a6) //store fp0 in memory movel 4(%a2),%d2 //move word 2 to d2 movel 8(%a2),%d3 //move word 3 to d3 movew (%a2),%d0 //move exp to d0 beqs x_loop_fin //if zero, skip the shift subiw #0x3ffd,%d0 //subtract off bias negw %d0 //make exp positive x_loop: lsrl #1,%d2 //shift d2:d3 right roxrl #1,%d3 //the number of places dbf %d0,x_loop //given in d0 x_loop_fin: clrl %d1 //put zero in d1 for addx addil #0x00000080,%d3 //inc at bit 6 addxl %d1,%d2 //continue inc andil #0xffffff80,%d3 //strip off lsb not used by 882 movel #4,%d0 //put 4 in d0 for binstr call leal L_SCR1(%a6),%a0 //a0 is ptr to L_SCR1 for exp digits bsr binstr //call binstr to convert exp movel L_SCR1(%a6),%d0 //load L_SCR1 lword to d0 movel #12,%d1 //use d1 for shift count lsrl %d1,%d0 //shift d0 right by 12 bfins %d0,FP_SCR1(%a6){#4:#12} //put e3:e2:e1 in FP_SCR1 lsrl %d1,%d0 //shift d0 right by 12 bfins %d0,FP_SCR1(%a6){#16:#4} //put e4 in FP_SCR1 tstb %d0 //check if e4 is zero beqs A16_st //if zero, skip rest orl #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR // A16. Write sign bits to final string. // Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). // // Register usage: // Input/Output // d0: x/scratch - final is x // d2: x/x // d3: x/x // d4: LEN/Unchanged // d5: ICTR:LAMBDA/LAMBDA:ICTR // d6: ILOG/ILOG adjusted // d7: k-factor/Unchanged // a0: ptr to L_SCR1(a6)/Unchanged // a1: ptr to PTENxx array/Unchanged // a2: ptr to FP_SCR2(a6)/Unchanged // fp0: float(ILOG)/Unchanged // fp1: 10^ISCALE/Unchanged // fp2: 10^LEN/Unchanged // F_SCR1:BCD result with correct signs // F_SCR2:ILOG/10^4 // L_SCR1:Exponent digits on return from binstr // L_SCR2:first word of X packed/Unchanged A16_st: clrl %d0 //clr d0 for collection of signs andib #0x0f,FP_SCR1(%a6) //clear first nibble of FP_SCR1 tstl L_SCR2(%a6) //check sign of original mantissa bges mant_p //if pos, don't set SM moveql #2,%d0 //move 2 in to d0 for SM mant_p: tstl %d6 //check sign of ILOG bges wr_sgn //if pos, don't set SE addql #1,%d0 //set bit 0 in d0 for SE wr_sgn: bfins %d0,FP_SCR1(%a6){#0:#2} //insert SM and SE into FP_SCR1 // Clean up and restore all registers used. fmovel #0,%FPSR //clear possible inex2/ainex bits fmovemx (%a7)+,%fp0-%fp2 moveml (%a7)+,%d2-%d7/%a2 rts |end