#include "fpsp-namespace.h" // // // slog2.sa 3.1 12/10/90 // // The entry point slog10 computes the base-10 // logarithm of an input argument X. // slog10d does the same except the input value is a // denormalized number. // sLog2 and sLog2d are the base-2 analogues. // // INPUT: Double-extended value in memory location pointed to // by address register a0. // // OUTPUT: log_10(X) or log_2(X) returned in floating-point // register fp0. // // ACCURACY and MONOTONICITY: The returned result is within 1.7 // ulps in 64 significant bit, i.e. within 0.5003 ulp // to 53 bits if the result is subsequently rounded // to double precision. The result is provably monotonic // in double precision. // // SPEED: Two timings are measured, both in the copy-back mode. // The first one is measured when the function is invoked // the first time (so the instructions and data are not // in cache), and the second one is measured when the // function is reinvoked at the same input argument. // // ALGORITHM and IMPLEMENTATION NOTES: // // slog10d: // // Step 0. If X < 0, create a NaN and raise the invalid operation // flag. Otherwise, save FPCR in D1; set FpCR to default. // Notes: Default means round-to-nearest mode, no floating-point // traps, and precision control = double extended. // // Step 1. Call slognd to obtain Y = log(X), the natural log of X. // Notes: Even if X is denormalized, log(X) is always normalized. // // Step 2. Compute log_10(X) = log(X) * (1/log(10)). // 2.1 Restore the user FPCR // 2.2 Return ans := Y * INV_L10. // // // slog10: // // Step 0. If X < 0, create a NaN and raise the invalid operation // flag. Otherwise, save FPCR in D1; set FpCR to default. // Notes: Default means round-to-nearest mode, no floating-point // traps, and precision control = double extended. // // Step 1. Call sLogN to obtain Y = log(X), the natural log of X. // // Step 2. Compute log_10(X) = log(X) * (1/log(10)). // 2.1 Restore the user FPCR // 2.2 Return ans := Y * INV_L10. // // // sLog2d: // // Step 0. If X < 0, create a NaN and raise the invalid operation // flag. Otherwise, save FPCR in D1; set FpCR to default. // Notes: Default means round-to-nearest mode, no floating-point // traps, and precision control = double extended. // // Step 1. Call slognd to obtain Y = log(X), the natural log of X. // Notes: Even if X is denormalized, log(X) is always normalized. // // Step 2. Compute log_10(X) = log(X) * (1/log(2)). // 2.1 Restore the user FPCR // 2.2 Return ans := Y * INV_L2. // // // sLog2: // // Step 0. If X < 0, create a NaN and raise the invalid operation // flag. Otherwise, save FPCR in D1; set FpCR to default. // Notes: Default means round-to-nearest mode, no floating-point // traps, and precision control = double extended. // // Step 1. If X is not an integer power of two, i.e., X != 2^k, // go to Step 3. // // Step 2. Return k. // 2.1 Get integer k, X = 2^k. // 2.2 Restore the user FPCR. // 2.3 Return ans := convert-to-double-extended(k). // // Step 3. Call sLogN to obtain Y = log(X), the natural log of X. // // Step 4. Compute log_2(X) = log(X) * (1/log(2)). // 4.1 Restore the user FPCR // 4.2 Return ans := Y * INV_L2. // // Copyright (C) Motorola, Inc. 1990 // All Rights Reserved // // THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA // The copyright notice above does not evidence any // actual or intended publication of such source code. //SLOG2 idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 |xref t_frcinx |xref t_operr |xref slogn |xref slognd INV_L10: .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000 INV_L2: .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000 .global slog10d slog10d: //--entry point for Log10(X), X is denormalized movel (%a0),%d0 blt invalid movel %d1,-(%sp) clrl %d1 bsr slognd // ...log(X), X denorm. fmovel (%sp)+,%fpcr fmulx INV_L10,%fp0 bra t_frcinx .global slog10 slog10: //--entry point for Log10(X), X is normalized movel (%a0),%d0 blt invalid movel %d1,-(%sp) clrl %d1 bsr slogn // ...log(X), X normal. fmovel (%sp)+,%fpcr fmulx INV_L10,%fp0 bra t_frcinx .global slog2d slog2d: //--entry point for Log2(X), X is denormalized movel (%a0),%d0 blt invalid movel %d1,-(%sp) clrl %d1 bsr slognd // ...log(X), X denorm. fmovel (%sp)+,%fpcr fmulx INV_L2,%fp0 bra t_frcinx .global slog2 slog2: //--entry point for Log2(X), X is normalized movel (%a0),%d0 blt invalid movel 8(%a0),%d0 bnes continue // ...X is not 2^k movel 4(%a0),%d0 andl #0x7FFFFFFF,%d0 tstl %d0 bnes continue //--X = 2^k. movew (%a0),%d0 andl #0x00007FFF,%d0 subl #0x3FFF,%d0 fmovel %d1,%fpcr fmovel %d0,%fp0 bra t_frcinx continue: movel %d1,-(%sp) clrl %d1 bsr slogn // ...log(X), X normal. fmovel (%sp)+,%fpcr fmulx INV_L2,%fp0 bra t_frcinx invalid: bra t_operr |end