#include "fpsp-namespace.h" // // // round.sa 3.4 7/29/91 // // handle rounding and normalization tasks // // // // Copyright (C) Motorola, Inc. 1990 // All Rights Reserved // // THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA // The copyright notice above does not evidence any // actual or intended publication of such source code. //ROUND idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 #include "fpsp.defs" // // round --- round result according to precision/mode // // a0 points to the input operand in the internal extended format // d1(high word) contains rounding precision: // ext = $0000xxxx // sgl = $0001xxxx // dbl = $0002xxxx // d1(low word) contains rounding mode: // RN = $xxxx0000 // RZ = $xxxx0001 // RM = $xxxx0010 // RP = $xxxx0011 // d0{31:29} contains the g,r,s bits (extended) // // On return the value pointed to by a0 is correctly rounded, // a0 is preserved and the g-r-s bits in d0 are cleared. // The result is not typed - the tag field is invalid. The // result is still in the internal extended format. // // The INEX bit of USER_FPSR will be set if the rounded result was // inexact (i.e. if any of the g-r-s bits were set). // .global round round: // If g=r=s=0 then result is exact and round is done, else set // the inex flag in status reg and continue. // bsrs ext_grs //this subroutine looks at the // :rounding precision and sets // ;the appropriate g-r-s bits. tstl %d0 //if grs are zero, go force bne rnd_cont //lower bits to zero for size swap %d1 //set up d1.w for round prec. bra truncate rnd_cont: // // Use rounding mode as an index into a jump table for these modes. // orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex lea mode_tab,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) // // Jump table indexed by rounding mode in d1.w. All following assumes // grs != 0. // mode_tab: .long rnd_near .long rnd_zero .long rnd_mnus .long rnd_plus // // ROUND PLUS INFINITY // // If sign of fp number = 0 (positive), then add 1 to l. // rnd_plus: swap %d1 //set up d1 for round prec. tstb LOCAL_SGN(%a0) //check for sign bmi truncate //if positive then truncate movel #0xffffffff,%d0 //force g,r,s to be all f's lea add_to_l,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) // // ROUND MINUS INFINITY // // If sign of fp number = 1 (negative), then add 1 to l. // rnd_mnus: swap %d1 //set up d1 for round prec. tstb LOCAL_SGN(%a0) //check for sign bpl truncate //if negative then truncate movel #0xffffffff,%d0 //force g,r,s to be all f's lea add_to_l,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) // // ROUND ZERO // // Always truncate. rnd_zero: swap %d1 //set up d1 for round prec. bra truncate // // // ROUND NEAREST // // If (g=1), then add 1 to l and if (r=s=0), then clear l // Note that this will round to even in case of a tie. // rnd_near: swap %d1 //set up d1 for round prec. asll #1,%d0 //shift g-bit to c-bit bcc truncate //if (g=1) then lea add_to_l,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) // // ext_grs --- extract guard, round and sticky bits // // Input: d1 = PREC:ROUND // Output: d0{31:29}= guard, round, sticky // // The ext_grs extract the guard/round/sticky bits according to the // selected rounding precision. It is called by the round subroutine // only. All registers except d0 are kept intact. d0 becomes an // updated guard,round,sticky in d0{31:29} // // Notes: the ext_grs uses the round PREC, and therefore has to swap d1 // prior to usage, and needs to restore d1 to original. // ext_grs: swap %d1 //have d1.w point to round precision cmpiw #0,%d1 bnes sgl_or_dbl bras end_ext_grs sgl_or_dbl: moveml %d2/%d3,-(%a7) //make some temp registers cmpiw #1,%d1 bnes grs_dbl grs_sgl: bfextu LOCAL_HI(%a0){#24:#2},%d3 //sgl prec. g-r are 2 bits right movel #30,%d2 //of the sgl prec. limits lsll %d2,%d3 //shift g-r bits to MSB of d3 movel LOCAL_HI(%a0),%d2 //get word 2 for s-bit test andil #0x0000003f,%d2 //s bit is the or of all other bnes st_stky //bits to the right of g-r tstl LOCAL_LO(%a0) //test lower mantissa bnes st_stky //if any are set, set sticky tstl %d0 //test original g,r,s bnes st_stky //if any are set, set sticky bras end_sd //if words 3 and 4 are clr, exit grs_dbl: bfextu LOCAL_LO(%a0){#21:#2},%d3 //dbl-prec. g-r are 2 bits right movel #30,%d2 //of the dbl prec. limits lsll %d2,%d3 //shift g-r bits to the MSB of d3 movel LOCAL_LO(%a0),%d2 //get lower mantissa for s-bit test andil #0x000001ff,%d2 //s bit is the or-ing of all bnes st_stky //other bits to the right of g-r tstl %d0 //test word original g,r,s bnes st_stky //if any are set, set sticky bras end_sd //if clear, exit st_stky: bset #rnd_stky_bit,%d3 end_sd: movel %d3,%d0 //return grs to d0 moveml (%a7)+,%d2/%d3 //restore scratch registers end_ext_grs: swap %d1 //restore d1 to original rts //******************* Local Equates .set ad_1_sgl,0x00000100 // constant to add 1 to l-bit in sgl prec .set ad_1_dbl,0x00000800 // constant to add 1 to l-bit in dbl prec //Jump table for adding 1 to the l-bit indexed by rnd prec add_to_l: .long add_ext .long add_sgl .long add_dbl .long add_dbl // // ADD SINGLE // add_sgl: addl #ad_1_sgl,LOCAL_HI(%a0) bccs scc_clr //no mantissa overflow roxrw LOCAL_HI(%a0) //shift v-bit back in roxrw LOCAL_HI+2(%a0) //shift v-bit back in addw #0x1,LOCAL_EX(%a0) //and incr exponent scc_clr: tstl %d0 //test for rs = 0 bnes sgl_done andiw #0xfe00,LOCAL_HI+2(%a0) //clear the l-bit sgl_done: andil #0xffffff00,LOCAL_HI(%a0) //truncate bits beyond sgl limit clrl LOCAL_LO(%a0) //clear d2 rts // // ADD EXTENDED // add_ext: addql #1,LOCAL_LO(%a0) //add 1 to l-bit bccs xcc_clr //test for carry out addql #1,LOCAL_HI(%a0) //propagate carry bccs xcc_clr roxrw LOCAL_HI(%a0) //mant is 0 so restore v-bit roxrw LOCAL_HI+2(%a0) //mant is 0 so restore v-bit roxrw LOCAL_LO(%a0) roxrw LOCAL_LO+2(%a0) addw #0x1,LOCAL_EX(%a0) //and inc exp xcc_clr: tstl %d0 //test rs = 0 bnes add_ext_done andib #0xfe,LOCAL_LO+3(%a0) //clear the l bit add_ext_done: rts // // ADD DOUBLE // add_dbl: addl #ad_1_dbl,LOCAL_LO(%a0) bccs dcc_clr addql #1,LOCAL_HI(%a0) //propagate carry bccs dcc_clr roxrw LOCAL_HI(%a0) //mant is 0 so restore v-bit roxrw LOCAL_HI+2(%a0) //mant is 0 so restore v-bit roxrw LOCAL_LO(%a0) roxrw LOCAL_LO+2(%a0) addw #0x1,LOCAL_EX(%a0) //incr exponent dcc_clr: tstl %d0 //test for rs = 0 bnes dbl_done andiw #0xf000,LOCAL_LO+2(%a0) //clear the l-bit dbl_done: andil #0xfffff800,LOCAL_LO(%a0) //truncate bits beyond dbl limit rts error: rts // // Truncate all other bits // trunct: .long end_rnd .long sgl_done .long dbl_done .long dbl_done truncate: lea trunct,%a1 movel (%a1,%d1.w*4),%a1 jmp (%a1) end_rnd: rts // // NORMALIZE // // These routines (nrm_zero & nrm_set) normalize the unnorm. This // is done by shifting the mantissa left while decrementing the // exponent. // // NRM_SET shifts and decrements until there is a 1 set in the integer // bit of the mantissa (msb in d1). // // NRM_ZERO shifts and decrements until there is a 1 set in the integer // bit of the mantissa (msb in d1) unless this would mean the exponent // would go less than 0. In that case the number becomes a denorm - the // exponent (d0) is set to 0 and the mantissa (d1 & d2) is not // normalized. // // Note that both routines have been optimized (for the worst case) and // therefore do not have the easy to follow decrement/shift loop. // // NRM_ZERO // // Distance to first 1 bit in mantissa = X // Distance to 0 from exponent = Y // If X < Y // Then // nrm_set // Else // shift mantissa by Y // set exponent = 0 // //input: // FP_SCR1 = exponent, ms mantissa part, ls mantissa part //output: // L_SCR1{4} = fpte15 or ete15 bit // .global nrm_zero nrm_zero: movew LOCAL_EX(%a0),%d0 cmpw #64,%d0 //see if exp > 64 bmis d0_less bsr nrm_set //exp > 64 so exp won't exceed 0 rts d0_less: moveml %d2/%d3/%d5/%d6,-(%a7) movel LOCAL_HI(%a0),%d1 movel LOCAL_LO(%a0),%d2 bfffo %d1{#0:#32},%d3 //get the distance to the first 1 // ;in ms mant beqs ms_clr //branch if no bits were set cmpw %d3,%d0 //of X>Y bmis greater //then exp will go past 0 (neg) if // ;it is just shifted bsr nrm_set //else exp won't go past 0 moveml (%a7)+,%d2/%d3/%d5/%d6 rts greater: movel %d2,%d6 //save ls mant in d6 lsll %d0,%d2 //shift ls mant by count lsll %d0,%d1 //shift ms mant by count movel #32,%d5 subl %d0,%d5 //make op a denorm by shifting bits lsrl %d5,%d6 //by the number in the exp, then // ;set exp = 0. orl %d6,%d1 //shift the ls mant bits into the ms mant movel #0,%d0 //same as if decremented exp to 0 // ;while shifting movew %d0,LOCAL_EX(%a0) movel %d1,LOCAL_HI(%a0) movel %d2,LOCAL_LO(%a0) moveml (%a7)+,%d2/%d3/%d5/%d6 rts ms_clr: bfffo %d2{#0:#32},%d3 //check if any bits set in ls mant beqs all_clr //branch if none set addw #32,%d3 cmpw %d3,%d0 //if X>Y bmis greater //then branch bsr nrm_set //else exp won't go past 0 moveml (%a7)+,%d2/%d3/%d5/%d6 rts all_clr: movew #0,LOCAL_EX(%a0) //no mantissa bits set. Set exp = 0. moveml (%a7)+,%d2/%d3/%d5/%d6 rts // // NRM_SET // .global nrm_set nrm_set: movel %d7,-(%a7) bfffo LOCAL_HI(%a0){#0:#32},%d7 //find first 1 in ms mant to d7) beqs lower //branch if ms mant is all 0's movel %d6,-(%a7) subw %d7,LOCAL_EX(%a0) //sub exponent by count movel LOCAL_HI(%a0),%d0 //d0 has ms mant movel LOCAL_LO(%a0),%d1 //d1 has ls mant lsll %d7,%d0 //shift first 1 to j bit position movel %d1,%d6 //copy ls mant into d6 lsll %d7,%d6 //shift ls mant by count movel %d6,LOCAL_LO(%a0) //store ls mant into memory moveql #32,%d6 subl %d7,%d6 //continue shift lsrl %d6,%d1 //shift off all bits but those that will // ;be shifted into ms mant orl %d1,%d0 //shift the ls mant bits into the ms mant movel %d0,LOCAL_HI(%a0) //store ms mant into memory moveml (%a7)+,%d7/%d6 //restore registers rts // // We get here if ms mant was = 0, and we assume ls mant has bits // set (otherwise this would have been tagged a zero not a denorm). // lower: movew LOCAL_EX(%a0),%d0 //d0 has exponent movel LOCAL_LO(%a0),%d1 //d1 has ls mant subw #32,%d0 //account for ms mant being all zeros bfffo %d1{#0:#32},%d7 //find first 1 in ls mant to d7) subw %d7,%d0 //subtract shift count from exp lsll %d7,%d1 //shift first 1 to integer bit in ms mant movew %d0,LOCAL_EX(%a0) //store ms mant movel %d1,LOCAL_HI(%a0) //store exp clrl LOCAL_LO(%a0) //clear ls mant movel (%a7)+,%d7 rts // // denorm --- denormalize an intermediate result // // Used by underflow. // // Input: // a0 points to the operand to be denormalized // (in the internal extended format) // // d0: rounding precision // Output: // a0 points to the denormalized result // (in the internal extended format) // // d0 is guard,round,sticky // // d0 comes into this routine with the rounding precision. It // is then loaded with the denormalized exponent threshold for the // rounding precision. // .global denorm denorm: btstb #6,LOCAL_EX(%a0) //check for exponents between $7fff-$4000 beqs no_sgn_ext bsetb #7,LOCAL_EX(%a0) //sign extend if it is so no_sgn_ext: cmpib #0,%d0 //if 0 then extended precision bnes not_ext //else branch clrl %d1 //load d1 with ext threshold clrl %d0 //clear the sticky flag bsr dnrm_lp //denormalize the number tstb %d1 //check for inex beq no_inex //if clr, no inex bras dnrm_inex //if set, set inex not_ext: cmpil #1,%d0 //if 1 then single precision beqs load_sgl //else must be 2, double prec load_dbl: movew #dbl_thresh,%d1 //put copy of threshold in d1 movel %d1,%d0 //copy d1 into d0 subw LOCAL_EX(%a0),%d0 //diff = threshold - exp cmpw #67,%d0 //if diff > 67 (mant + grs bits) bpls chk_stky //then branch (all bits would be // ; shifted off in denorm routine) clrl %d0 //else clear the sticky flag bsr dnrm_lp //denormalize the number tstb %d1 //check flag beqs no_inex //if clr, no inex bras dnrm_inex //if set, set inex load_sgl: movew #sgl_thresh,%d1 //put copy of threshold in d1 movel %d1,%d0 //copy d1 into d0 subw LOCAL_EX(%a0),%d0 //diff = threshold - exp cmpw #67,%d0 //if diff > 67 (mant + grs bits) bpls chk_stky //then branch (all bits would be // ; shifted off in denorm routine) clrl %d0 //else clear the sticky flag bsr dnrm_lp //denormalize the number tstb %d1 //check flag beqs no_inex //if clr, no inex bras dnrm_inex //if set, set inex chk_stky: tstl LOCAL_HI(%a0) //check for any bits set bnes set_stky tstl LOCAL_LO(%a0) //check for any bits set bnes set_stky bras clr_mant set_stky: orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex movel #0x20000000,%d0 //set sticky bit in return value clr_mant: movew %d1,LOCAL_EX(%a0) //load exp with threshold movel #0,LOCAL_HI(%a0) //set d1 = 0 (ms mantissa) movel #0,LOCAL_LO(%a0) //set d2 = 0 (ms mantissa) rts dnrm_inex: orl #inx2a_mask,USER_FPSR(%a6) //set inex2/ainex no_inex: rts // // dnrm_lp --- normalize exponent/mantissa to specified threshold // // Input: // a0 points to the operand to be denormalized // d0{31:29} initial guard,round,sticky // d1{15:0} denormalization threshold // Output: // a0 points to the denormalized operand // d0{31:29} final guard,round,sticky // d1.b inexact flag: all ones means inexact result // // The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2 // so that bfext can be used to extract the new low part of the mantissa. // Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there // is no LOCAL_GRS scratch word following it on the fsave frame. // .global dnrm_lp dnrm_lp: movel %d2,-(%sp) //save d2 for temp use btstb #E3,E_BYTE(%a6) //test for type E3 exception beqs not_E3 //not type E3 exception bfextu WBTEMP_GRS(%a6){#6:#3},%d2 //extract guard,round, sticky bit movel #29,%d0 lsll %d0,%d2 //shift g,r,s to their positions movel %d2,%d0 not_E3: movel (%sp)+,%d2 //restore d2 movel LOCAL_LO(%a0),FP_SCR2+LOCAL_LO(%a6) movel %d0,FP_SCR2+LOCAL_GRS(%a6) movel %d1,%d0 //copy the denorm threshold subw LOCAL_EX(%a0),%d1 //d1 = threshold - uns exponent bles no_lp //d1 <= 0 cmpw #32,%d1 blts case_1 //0 = d1 < 32 cmpw #64,%d1 blts case_2 //32 <= d1 < 64 bra case_3 //d1 >= 64 // // No normalization necessary // no_lp: clrb %d1 //set no inex2 reported movel FP_SCR2+LOCAL_GRS(%a6),%d0 //restore original g,r,s rts // // case (0= 64 Force the exponent to be the denorm threshold with the // correct sign. // case_3: movew %d0,LOCAL_EX(%a0) tstw LOCAL_SGN(%a0) bges c3con c3neg: orl #0x80000000,LOCAL_EX(%a0) c3con: cmpw #64,%d1 beqs sixty_four cmpw #65,%d1 beqs sixty_five // // Shift value is out of range. Set d1 for inex2 flag and // return a zero with the given threshold. // clrl LOCAL_HI(%a0) clrl LOCAL_LO(%a0) movel #0x20000000,%d0 st %d1 rts sixty_four: movel LOCAL_HI(%a0),%d0 bfextu %d0{#2:#30},%d1 andil #0xc0000000,%d0 bras c3com sixty_five: movel LOCAL_HI(%a0),%d0 bfextu %d0{#1:#31},%d1 andil #0x80000000,%d0 lsrl #1,%d0 //shift high bit into R bit c3com: tstl %d1 bnes c3ssticky tstl LOCAL_LO(%a0) bnes c3ssticky tstb FP_SCR2+LOCAL_GRS(%a6) bnes c3ssticky clrb %d1 bras c3end c3ssticky: bsetl #rnd_stky_bit,%d0 st %d1 c3end: clrl LOCAL_HI(%a0) clrl LOCAL_LO(%a0) rts |end