OUTPUT_FORMAT("elf32-powerpc", "elf32-powerpc", "elf32-powerpc") OUTPUT_ARCH(powerpc) ENTRY(_start) /* Do we need any of these for elf? __DYNAMIC = 0; */ PROVIDE (__stack = 0); MEMORY { BOTTOM : ORIGIN = 0, LENGTH = 0x100 VECTORS : ORIGIN = 0x100 , LENGTH = 0x3000-0x100 CODE : ORIGIN = 0x3000 , LENGTH = 0x400000 } SECTIONS { /* discard the 'shared/vector.S' entry point section */ /DISCARD/ : { *(.entry_point_section) } .vectors : { /* should be the first thing... */ *(.mvme5500_preloader_section) /* * This section is used only if NO_DYNAMIC_EXCEPTION_VECTOR_INSTALL * is defined in vectors/vectors.S * *(.vectors) * We actually RELY on dynamic vector installation since we need * this space for the preloader... */ } > VECTORS /* START OF THE LOADED IMAGE (parts moved by the preloader) */ .image_start : { __rtems_start = ABSOLUTE(.); } > CODE /* Read-only sections, merged into text segment: */ .interp : { *(.interp) } > CODE .hash : { *(.hash) } > CODE .dynsym : { *(.dynsym) } > CODE .dynstr : { *(.dynstr) } > CODE .gnu.version : { *(.gnu.version) } > CODE .gnu.version_d : { *(.gnu.version_d) } > CODE .gnu.version_r : { *(.gnu.version_r) } > CODE .rela.text : { *(.rela.text) *(.rela.gnu.linkonce.t*) } > CODE .rela.data : { *(.rela.data) *(.rela.gnu.linkonce.d*) } > CODE .rela.rodata : { *(.rela.rodata) *(.rela.gnu.linkonce.r*) } > CODE .rela.got : { *(.rela.got) } > CODE .rela.got1 : { *(.rela.got1) } > CODE .rela.got2 : { *(.rela.got2) } > CODE .rela.ctors : { *(.rela.ctors) } > CODE .rela.dtors : { *(.rela.dtors) } > CODE .rela.init : { *(.rela.init) } > CODE .rela.fini : { *(.rela.fini) } > CODE .rela.bss : { *(.rela.bss) } > CODE .rela.plt : { *(.rela.plt) } > CODE .rela.sdata : { *(.rela.sdata) } > CODE .rela.sbss : { *(.rela.sbss) } > CODE .rela.sdata2 : { *(.rela.sdata2) } > CODE .rela.sbss2 : { *(.rela.sbss2) } > CODE .init : { *(.init) } >CODE .text : { *(.text) /* * Special FreeBSD sysctl sections. */ . = ALIGN (16); __start_set_sysctl_set = .; *(set_sysctl_*); __stop_set_sysctl_set = ABSOLUTE(.); *(set_domain_*); *(set_pseudo_*); /* .gnu.warning sections are handled specially by elf32.em. */ *(.gnu.warning) *(.gnu.linkonce.t*) } > CODE .fini : { _fini = .; *(.fini) } >CODE .rodata : { *(.rodata*) *(.gnu.linkonce.r*) } > CODE .rodata1 : { *(.rodata1) } > CODE _SDA2_BASE_ = __SDATA2_START__ + 0x8000; .sdata2 : { *(.sdata2) *(.gnu.linkonce.s2.*) } > CODE .sbss2 : { PROVIDE (__sbss2_start = .); *(.sbss2) *(.gnu.linkonce.sb2.*) PROVIDE (__sbss2_end = .); } > CODE .eh_frame : { *.(eh_frame) } >CODE _etext = .; PROVIDE (etext = .); /* Adjust the address for the data segment. We want to adjust up to the same address within the page on the next page up. It would be more correct to do this: . = ALIGN(0x40000) + (ALIGN(8) & (0x40000 - 1)); The current expression does not correctly handle the case of a text segment ending precisely at the end of a page; it causes the data segment to skip a page. The above expression does not have this problem, but it will currently (2/95) cause BFD to allocate a single segment, combining both text and data, for this case. This will prevent the text segment from being shared among multiple executions of the program; I think that is more important than losing a page of the virtual address space (note that no actual memory is lost; the page which is skipped can not be referenced). */ .data ALIGN(0x1000) : { PROVIDE(__DATA_START__ = ABSOLUTE(.) ); *(.data) *(.gnu.linkonce.d*) CONSTRUCTORS } > CODE .data1 : { *(.data1) } > CODE PROVIDE (__EXCEPT_START__ = .); .gcc_except_table : { *(.gcc_except_table) } > CODE PROVIDE (__EXCEPT_END__ = .); .got1 : { *(.got1) } > CODE .dynamic : { *(.dynamic) } > CODE /* Put .ctors and .dtors next to the .got2 section, so that the pointers get relocated with -mrelocatable. Also put in the .fixup pointers. The current compiler no longer needs this, but keep it around for 2.7.2 */ PROVIDE (_GOT2_START_ = .); .got2 : { *(.got2) } > CODE /* PROVIDE (__CTOR_LIST__ = .); .ctors : { *(.ctors) } > CODE PROVIDE (__CTOR_END__ = .); */ .ctors : { KEEP(*crtbegin.o(.ctors)) KEEP(*(EXCLUDE_FILE(*crtend.o) .ctors)) KEEP(*(SORT(.ctors.*))) KEEP(*(.ctors)) } > CODE .dtors : { KEEP(*crtbegin.o(.dtors)) KEEP(*(EXCLUDE_FILE(*crtend.o) .dtors)) KEEP(*(SORT(.dtors.*))) KEEP(*(.dtors)) } > CODE /* PROVIDE (__DTOR_LIST__ = .); .dtors : { *(.dtors) } > CODE PROVIDE (__DTOR_END__ = .); */ PROVIDE (_FIXUP_START_ = .); .fixup : { *(.fixup) } > CODE PROVIDE (_FIXUP_END_ = .); PROVIDE (_GOT2_END_ = .); PROVIDE (_GOT_START_ = .); .got : { *(.got) } > CODE .got.plt : { *(.got.plt) } > CODE PROVIDE (_GOT_END_ = .); .jcr : { KEEP (*(.jcr)) } > CODE /* We want the small data sections together, so single-instruction offsets can access them all, and initialized data all before uninitialized, so we can shorten the on-disk segment size. */ _SDA_BASE_ = __SDATA_START__ + 0x8000; .sdata : { *(.sdata) *(.gnu.linkonce.s.*) } > CODE _edata = .; PROVIDE (edata = .); /* END OF THE LOADED IMAGE (parts moved by the preloader) */ /* BELOW THIS POINT, NO LOADABLE ITEMS MUST APPEAR */ .sbss : { PROVIDE (__sbss_start = ABSOLUTE(.)); *(.sbss) *(.scommon) *(.dynsbss) PROVIDE (__sbss_end = ABSOLUTE(.)); } > CODE .plt : { *(.plt) } > CODE .bss : { PROVIDE (__bss_start = ABSOLUTE(.)); *(.dynbss) *(.bss) *(COMMON) . = ALIGN(16); } > CODE /* proper alignment for SYSV stack * (init stack is allocated just after __rtems_end */ . = ALIGN(16); _end = . ; __rtems_end = . ; PROVIDE (end = .); /DISCARD/ : { *(.comment) } /* Stabs debugging sections. */ .stab 0 : { *(.stab) } .stabstr 0 : { *(.stabstr) } .stab.excl 0 : { *(.stab.excl) } .stab.exclstr 0 : { *(.stab.exclstr) } .stab.index 0 : { *(.stab.index) } .stab.indexstr 0 : { *(.stab.indexstr) } .comment 0 : { *(.comment) } /* DWARF debug sections. Symbols in the DWARF debugging sections are relative to the beginning of the section so we begin them at 0. */ /* DWARF 1 */ .debug 0 : { *(.debug) } .line 0 : { *(.line) } /* GNU DWARF 1 extensions */ .debug_srcinfo 0 : { *(.debug_srcinfo) } .debug_sfnames 0 : { *(.debug_sfnames) } /* DWARF 1.1 and DWARF 2 */ .debug_aranges 0 : { *(.debug_aranges) } .debug_pubnames 0 : { *(.debug_pubnames) } /* DWARF 2 */ .debug_info 0 : { *(.debug_info) } .debug_abbrev 0 : { *(.debug_abbrev) } .debug_line 0 : { *(.debug_line) } .debug_frame 0 : { *(.debug_frame) } .debug_str 0 : { *(.debug_str) } .debug_loc 0 : { *(.debug_loc) } .debug_macinfo 0 : { *(.debug_macinfo) } /* SGI/MIPS DWARF 2 extensions */ .debug_weaknames 0 : { *(.debug_weaknames) } .debug_funcnames 0 : { *(.debug_funcnames) } .debug_typenames 0 : { *(.debug_typenames) } .debug_varnames 0 : { *(.debug_varnames) } /* These must appear regardless of . */ } /* "Conditional linking" is not supported, unfortunately. * This BSP supports getting a network configuration * from NVRAM settings. Hence, the startup code must * access the 'rtems_bsdnet_config' structure. * However, that symbol (and a couple of other networking * related symbols) should only be referenced if the application * actually does networking - otherwise a lot of * code would pulled in from the libnetworking.a under * all circumstances. * * bspstart.c uses these alias names and determines * at runtime if they are void or valid (by comparing * against the NULL address). * * Unfortunately, it is not possible to conditionally * declare a symbol 'EXTERN' - hence we must rely on * other code (probably cross-references within * libnetworking itself) causing a reference to the * 'real' symbols... */ __BSP_wrap_rtems_bsdnet_bootp_boot_file_name = DEFINED(rtems_bsdnet_bootp_boot_file_name) ? rtems_bsdnet_bootp_boot_file_name : 0 ; __BSP_wrap_rtems_bsdnet_bootp_cmdline = DEFINED(rtems_bsdnet_bootp_cmdline) ? rtems_bsdnet_bootp_cmdline : 0 ; __BSP_wrap_rtems_bsdnet_bootp_server_address = DEFINED(rtems_bsdnet_bootp_server_address) ? rtems_bsdnet_bootp_server_address : 0 ; __BSP_wrap_rtems_bsdnet_config = DEFINED(rtems_bsdnet_config) ? rtems_bsdnet_config : 0 ; __BSP_wrap_rtems_bsdnet_do_bootp = DEFINED(rtems_bsdnet_do_bootp) ? rtems_bsdnet_do_bootp : 0 ; __BSP_wrap_inet_pton = DEFINED(inet_pton) ? inet_pton : 0 ; __BSP_wrap_rtems_bsdnet_loopattach = DEFINED(rtems_bsdnet_loopattach) ? rtems_bsdnet_loopattach : 0 ;