source: umon/main/zlib/inftrees.c @ 87db514

Last change on this file since 87db514 was 87db514, checked in by Amar Takhar <amar@…>, on 04/16/15 at 19:26:21

Initial commit of the umon repository.

Prior to this three changes were made:

  • Remove umon_ prefix from parent directories.
  • Collapse main/target/ into main/
  • Remove ports/template/flashtest.scr.ucon script.
  • Property mode set to 100644
File size: 15.8 KB
Line 
1/* inftrees.c -- generate Huffman trees for efficient decoding
2 * Copyright (C) 1995-1998 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6#include "zutil.h"
7#include "inftrees.h"
8
9#if !defined(BUILDFIXED) && !defined(STDC)
10#  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
11#endif
12
13const char inflate_copyright[] =
14   " inflate 1.1.3 Copyright 1995-1998 Mark Adler ";
15/*
16  If you use the zlib library in a product, an acknowledgment is welcome
17  in the documentation of your product. If for some reason you cannot
18  include such an acknowledgment, I would appreciate that you keep this
19  copyright string in the executable of your product.
20 */
21struct internal_state  {int dummy;}; /* for buggy compilers */
22
23/* simplify the use of the inflate_huft type with some defines */
24#define exop word.what.Exop
25#define bits word.what.Bits
26
27
28local int huft_build OF((
29    uIntf *,            /* code lengths in bits */
30    uInt,               /* number of codes */
31    uInt,               /* number of "simple" codes */
32    const uIntf *,      /* list of base values for non-simple codes */
33    const uIntf *,      /* list of extra bits for non-simple codes */
34    inflate_huft * FAR*,/* result: starting table */
35    uIntf *,            /* maximum lookup bits (returns actual) */
36    inflate_huft *,     /* space for trees */
37    uInt *,             /* hufts used in space */
38    uIntf * ));         /* space for values */
39
40/* Tables for deflate from PKZIP's appnote.txt. */
41local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
42        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
43        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
44        /* see note #13 above about 258 */
45local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
46        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
47        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
48local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
49        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
50        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
51        8193, 12289, 16385, 24577};
52local const uInt cpdext[30] = { /* Extra bits for distance codes */
53        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
54        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
55        12, 12, 13, 13};
56
57/*
58   Huffman code decoding is performed using a multi-level table lookup.
59   The fastest way to decode is to simply build a lookup table whose
60   size is determined by the longest code.  However, the time it takes
61   to build this table can also be a factor if the data being decoded
62   is not very long.  The most common codes are necessarily the
63   shortest codes, so those codes dominate the decoding time, and hence
64   the speed.  The idea is you can have a shorter table that decodes the
65   shorter, more probable codes, and then point to subsidiary tables for
66   the longer codes.  The time it costs to decode the longer codes is
67   then traded against the time it takes to make longer tables.
68
69   This results of this trade are in the variables lbits and dbits
70   below.  lbits is the number of bits the first level table for literal/
71   length codes can decode in one step, and dbits is the same thing for
72   the distance codes.  Subsequent tables are also less than or equal to
73   those sizes.  These values may be adjusted either when all of the
74   codes are shorter than that, in which case the longest code length in
75   bits is used, or when the shortest code is *longer* than the requested
76   table size, in which case the length of the shortest code in bits is
77   used.
78
79   There are two different values for the two tables, since they code a
80   different number of possibilities each.  The literal/length table
81   codes 286 possible values, or in a flat code, a little over eight
82   bits.  The distance table codes 30 possible values, or a little less
83   than five bits, flat.  The optimum values for speed end up being
84   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
85   The optimum values may differ though from machine to machine, and
86   possibly even between compilers.  Your mileage may vary.
87 */
88
89
90/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
91#define BMAX 15         /* maximum bit length of any code */
92
93local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
94uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
95uInt n;                 /* number of codes (assumed <= 288) */
96uInt s;                 /* number of simple-valued codes (0..s-1) */
97const uIntf *d;         /* list of base values for non-simple codes */
98const uIntf *e;         /* list of extra bits for non-simple codes */
99inflate_huft * FAR *t;  /* result: starting table */
100uIntf *m;               /* maximum lookup bits, returns actual */
101inflate_huft *hp;       /* space for trees */
102uInt *hn;               /* hufts used in space */
103uIntf *v;               /* working area: values in order of bit length */
104/* Given a list of code lengths and a maximum table size, make a set of
105   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
106   if the given code set is incomplete (the tables are still built in this
107   case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
108   lengths), or Z_MEM_ERROR if not enough memory. */
109{
110
111  uInt a;                       /* counter for codes of length k */
112  uInt c[BMAX+1];               /* bit length count table */
113  uInt f;                       /* i repeats in table every f entries */
114  int g;                        /* maximum code length */
115  int h;                        /* table level */
116  register uInt i;              /* counter, current code */
117  register uInt j;              /* counter */
118  register int k;               /* number of bits in current code */
119  int l;                        /* bits per table (returned in m) */
120  uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
121  register uIntf *p;            /* pointer into c[], b[], or v[] */
122  inflate_huft *q;              /* points to current table */
123  struct inflate_huft_s r;      /* table entry for structure assignment */
124  inflate_huft *u[BMAX];        /* table stack */
125  register int w;               /* bits before this table == (l * h) */
126  uInt x[BMAX+1];               /* bit offsets, then code stack */
127  uIntf *xp;                    /* pointer into x */
128  int y;                        /* number of dummy codes added */
129  uInt z;                       /* number of entries in current table */
130
131
132  r.base = 0;                                   /* Suppress use-before-init warning */
133
134  /* Generate counts for each bit length */
135  p = c;
136#define C0 *p++ = 0;
137#define C2 C0 C0 C0 C0
138#define C4 C2 C2 C2 C2
139  C4                            /* clear c[]--assume BMAX+1 is 16 */
140  p = b;  i = n;
141  do {
142    c[*p++]++;                  /* assume all entries <= BMAX */
143  } while (--i);
144  if (c[0] == n)                /* null input--all zero length codes */
145  {
146    *t = (inflate_huft *)Z_NULL;
147    *m = 0;
148    return Z_OK;
149  }
150
151
152  /* Find minimum and maximum length, bound *m by those */
153  l = *m;
154  for (j = 1; j <= BMAX; j++)
155    if (c[j])
156      break;
157  k = j;                        /* minimum code length */
158  if ((uInt)l < j)
159    l = j;
160  for (i = BMAX; i; i--)
161    if (c[i])
162      break;
163  g = i;                        /* maximum code length */
164  if ((uInt)l > i)
165    l = i;
166  *m = l;
167
168
169  /* Adjust last length count to fill out codes, if needed */
170  for (y = 1 << j; j < i; j++, y <<= 1)
171    if ((y -= c[j]) < 0)
172      return Z_DATA_ERROR;
173  if ((y -= c[i]) < 0)
174    return Z_DATA_ERROR;
175  c[i] += y;
176
177
178  /* Generate starting offsets into the value table for each length */
179  x[1] = j = 0;
180  p = c + 1;  xp = x + 2;
181  while (--i) {                 /* note that i == g from above */
182    *xp++ = (j += *p++);
183  }
184
185
186  /* Make a table of values in order of bit lengths */
187  p = b;  i = 0;
188  do {
189    if ((j = *p++) != 0)
190      v[x[j]++] = i;
191  } while (++i < n);
192  n = x[g];                     /* set n to length of v */
193
194
195  /* Generate the Huffman codes and for each, make the table entries */
196  x[0] = i = 0;                 /* first Huffman code is zero */
197  p = v;                        /* grab values in bit order */
198  h = -1;                       /* no tables yet--level -1 */
199  w = -l;                       /* bits decoded == (l * h) */
200  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
201  q = (inflate_huft *)Z_NULL;   /* ditto */
202  z = 0;                        /* ditto */
203
204  /* go through the bit lengths (k already is bits in shortest code) */
205  for (; k <= g; k++)
206  {
207    a = c[k];
208    while (a--)
209    {
210      /* here i is the Huffman code of length k bits for value *p */
211      /* make tables up to required level */
212      while (k > w + l)
213      {
214        h++;
215        w += l;                 /* previous table always l bits */
216
217        /* compute minimum size table less than or equal to l bits */
218        z = g - w;
219        z = z > (uInt)l ? l : z;        /* table size upper limit */
220        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
221        {                       /* too few codes for k-w bit table */
222          f -= a + 1;           /* deduct codes from patterns left */
223          xp = c + k;
224          if (j < z)
225            while (++j < z)     /* try smaller tables up to z bits */
226            {
227              if ((f <<= 1) <= *++xp)
228                break;          /* enough codes to use up j bits */
229              f -= *xp;         /* else deduct codes from patterns */
230            }
231        }
232        z = 1 << j;             /* table entries for j-bit table */
233
234        /* allocate new table */
235        if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
236          return Z_MEM_ERROR;   /* not enough memory */
237        u[h] = q = hp + *hn;
238        *hn += z;
239
240        /* connect to last table, if there is one */
241        if (h)
242        {
243          x[h] = i;             /* save pattern for backing up */
244          r.bits = (Byte)l;     /* bits to dump before this table */
245          r.exop = (Byte)j;     /* bits in this table */
246          j = i >> (w - l);
247          r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
248          u[h-1][j] = r;        /* connect to last table */
249        }
250        else
251          *t = q;               /* first table is returned result */
252      }
253
254      /* set up table entry in r */
255      r.bits = (Byte)(k - w);
256      if (p >= v + n)
257        r.exop = 128 + 64;      /* out of values--invalid code */
258      else if (*p < s)
259      {
260        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
261        r.base = *p++;          /* simple code is just the value */
262      }
263      else
264      {
265        r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
266        r.base = d[*p++ - s];
267      }
268
269      /* fill code-like entries with r */
270      f = 1 << (k - w);
271      for (j = i >> w; j < z; j += f)
272        q[j] = r;
273
274      /* backwards increment the k-bit code i */
275      for (j = 1 << (k - 1); i & j; j >>= 1)
276        i ^= j;
277      i ^= j;
278
279      /* backup over finished tables */
280      mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
281      while ((i & mask) != x[h])
282      {
283        h--;                    /* don't need to update q */
284        w -= l;
285        mask = (1 << w) - 1;
286      }
287    }
288  }
289
290
291  /* Return Z_BUF_ERROR if we were given an incomplete table */
292  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
293}
294
295
296int inflate_trees_bits(c, bb, tb, hp, z)
297uIntf *c;               /* 19 code lengths */
298uIntf *bb;              /* bits tree desired/actual depth */
299inflate_huft * FAR *tb; /* bits tree result */
300inflate_huft *hp;       /* space for trees */
301z_streamp z;            /* for messages */
302{
303  int r;
304  uInt hn = 0;          /* hufts used in space */
305  uIntf *v;             /* work area for huft_build */
306
307  if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
308    return Z_MEM_ERROR;
309  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
310                 tb, bb, hp, &hn, v);
311  if (r == Z_DATA_ERROR)
312    z->msg = (char*)"oversubscribed dynamic bit lengths tree";
313  else if (r == Z_BUF_ERROR || *bb == 0)
314  {
315    z->msg = (char*)"incomplete dynamic bit lengths tree";
316    r = Z_DATA_ERROR;
317  }
318  ZFREE(z, v);
319  return r;
320}
321
322
323int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
324uInt nl;                /* number of literal/length codes */
325uInt nd;                /* number of distance codes */
326uIntf *c;               /* that many (total) code lengths */
327uIntf *bl;              /* literal desired/actual bit depth */
328uIntf *bd;              /* distance desired/actual bit depth */
329inflate_huft * FAR *tl; /* literal/length tree result */
330inflate_huft * FAR *td; /* distance tree result */
331inflate_huft *hp;       /* space for trees */
332z_streamp z;            /* for messages */
333{
334  int r;
335  uInt hn = 0;          /* hufts used in space */
336  uIntf *v;             /* work area for huft_build */
337
338  /* allocate work area */
339  if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
340    return Z_MEM_ERROR;
341
342  /* build literal/length tree */
343  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
344  if (r != Z_OK || *bl == 0)
345  {
346    if (r == Z_DATA_ERROR)
347      z->msg = (char*)"oversubscribed literal/length tree";
348    else if (r != Z_MEM_ERROR)
349    {
350      z->msg = (char*)"incomplete literal/length tree";
351      r = Z_DATA_ERROR;
352    }
353    ZFREE(z, v);
354    return r;
355  }
356
357  /* build distance tree */
358  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
359  if (r != Z_OK || (*bd == 0 && nl > 257))
360  {
361    if (r == Z_DATA_ERROR)
362      z->msg = (char*)"oversubscribed distance tree";
363    else if (r == Z_BUF_ERROR) {
364#ifdef PKZIP_BUG_WORKAROUND
365      r = Z_OK;
366    }
367#else
368      z->msg = (char*)"incomplete distance tree";
369      r = Z_DATA_ERROR;
370    }
371    else if (r != Z_MEM_ERROR)
372    {
373      z->msg = (char*)"empty distance tree with lengths";
374      r = Z_DATA_ERROR;
375    }
376    ZFREE(z, v);
377    return r;
378#endif
379  }
380
381  /* done */
382  ZFREE(z, v);
383  return Z_OK;
384}
385
386
387/* build fixed tables only once--keep them here */
388#ifdef BUILDFIXED
389local int fixed_built = 0;
390#define FIXEDH 544      /* number of hufts used by fixed tables */
391local inflate_huft fixed_mem[FIXEDH];
392local uInt fixed_bl;
393local uInt fixed_bd;
394local inflate_huft *fixed_tl;
395local inflate_huft *fixed_td;
396#else
397#include "inffixed.h"
398#endif
399
400
401int inflate_trees_fixed(bl, bd, tl, td, z)
402uIntf *bl;               /* literal desired/actual bit depth */
403uIntf *bd;               /* distance desired/actual bit depth */
404inflate_huft * FAR *tl;  /* literal/length tree result */
405inflate_huft * FAR *td;  /* distance tree result */
406z_streamp z;             /* for memory allocation */
407{
408#ifdef BUILDFIXED
409  /* build fixed tables if not already */
410  if (!fixed_built)
411  {
412    int k;              /* temporary variable */
413    uInt f = 0;         /* number of hufts used in fixed_mem */
414    uIntf *c;           /* length list for huft_build */
415    uIntf *v;           /* work area for huft_build */
416
417    /* allocate memory */
418    if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
419      return Z_MEM_ERROR;
420    if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
421    {
422      ZFREE(z, c);
423      return Z_MEM_ERROR;
424    }
425
426    /* literal table */
427    for (k = 0; k < 144; k++)
428      c[k] = 8;
429    for (; k < 256; k++)
430      c[k] = 9;
431    for (; k < 280; k++)
432      c[k] = 7;
433    for (; k < 288; k++)
434      c[k] = 8;
435    fixed_bl = 9;
436    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
437               fixed_mem, &f, v);
438
439    /* distance table */
440    for (k = 0; k < 30; k++)
441      c[k] = 5;
442    fixed_bd = 5;
443    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
444               fixed_mem, &f, v);
445
446    /* done */
447    ZFREE(z, v);
448    ZFREE(z, c);
449    fixed_built = 1;
450  }
451#endif
452  *bl = fixed_bl;
453  *bd = fixed_bd;
454  *tl = fixed_tl;
455  *td = fixed_td;
456  return Z_OK;
457}
Note: See TracBrowser for help on using the repository browser.