source: rtems/doc/rgdb_specs/gdbinternals.t @ 9ec462aa

4.104.114.84.95
Last change on this file since 9ec462aa was 9ec462aa, checked in by Joel Sherrill <joel.sherrill@…>, on 10/25/99 at 18:02:33

Fixing many lines that are too long to format cleanly.

  • Property mode set to 100644
File size: 10.7 KB
Line 
1@c
2@c  RTEMS Remote Debugger Server Specifications
3@c
4@c  Written by: Eric Valette <valette@crf.canon.fr>
5@c              Emmanuel Raguet <raguet@crf.canon.fr>
6@c
7@c
8@c  $Id$
9@c
10
11@chapter A Rapid Tour of GDB Internals
12
13To help the reader to understand what needs to be implemented, we
14will present briefly how GDB works regardless if the target is local or remote.
15A debugger is a tool which enables control of the execution of software on a
16target system. In most of cases, the debugger connects to a target system, attaches
17a process, inserts breakpoints and resumes execution. Then the normal execution
18is completely events driven (process execution stopped due to a breakpoint,
19process fault, single-step,...) coming from the debuggee. It can also directly
20access some parts of the target processor context (registers, data memory, code
21memory,...) and change their content. Native GDB debugger can just be seen as
22special cases where the host and the target are on the same machine and GDB
23can directly access the target system debug API.
24
25
26In our case, the host and the target are not on the same machine and
27an Ethernet link is used to communicate between the different machines. Because
28GDB needs to be able to support various targets (including Unix core file, ...),
29each action that needs to be performed on the debuggee is materialized by a
30field of the following @emph{targets_op}s structure :
31
32@example
33struct target_ops
34@{
35  char         *to_shortname;   /* Name this target type */
36  char         *to_longname;    /* Name for printing */
37  char         *to_doc;    /* Documentation.  Does not include trailing
38                              newline, and starts with a one-line
39                              description (probably similar to
40                              to_longname). */
41  void        (*to_open) PARAMS ((char *, int));
42  void        (*to_close) PARAMS ((int));
43  void        (*to_attach) PARAMS ((char *, int));
44  void        (*to_detach) PARAMS ((char *, int));
45  void        (*to_resume) PARAMS ((int, int, enum target_signal));
46  int         (*to_wait) PARAMS ((int, struct target_waitstatus *));
47  void        (*to_fetch_registers) PARAMS ((int));
48  void        (*to_store_registers) PARAMS ((int));
49  void        (*to_prepare_to_store) PARAMS ((void));
50
51  /* Transfer LEN bytes of memory between GDB address MYADDR and
52     target address MEMADDR.  If WRITE, transfer them to the target,
53     else transfer them from the target.  TARGET is the target from
54     which we get this function.
55
56     Return value, N, is one of the following:
57
58     0 means that we can't handle this.  If errno has been set,
59     it is the error which prevented us from doing it (FIXME:
60     What about bfd_error?).
61
62     positive (call it N) means that we have transferred N bytes
63     starting at MEMADDR.  We might be able to handle more bytes
64     beyond this length, but no promises.
65 
66     negative (call its absolute value N) means that we cannot
67     transfer right at MEMADDR, but we could transfer at least
68     something at MEMADDR + N.  */
69
70  int         (*to_xfer_memory)
71                 PARAMS ((CORE_ADDR memaddr, char *myaddr,
72                          int len, int write,
73                          struct target_ops * target));
74
75  void        (*to_files_info) PARAMS ((struct target_ops *));
76  int         (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
77  int         (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
78  void        (*to_terminal_init) PARAMS ((void));
79  void        (*to_terminal_inferior) PARAMS ((void));
80  void        (*to_terminal_ours_for_output) PARAMS ((void));
81  void        (*to_terminal_ours) PARAMS ((void));
82  void        (*to_terminal_info) PARAMS ((char *, int));
83  void        (*to_kill) PARAMS ((void));
84  void        (*to_load) PARAMS ((char *, int));
85  int         (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
86  void        (*to_create_inferior) PARAMS ((char *, char *, char **));
87  void        (*to_mourn_inferior) PARAMS ((void));
88  int         (*to_can_run) PARAMS ((void));
89  void        (*to_notice_signals) PARAMS ((int pid));
90  int         (*to_thread_alive) PARAMS ((int pid));
91  void        (*to_stop) PARAMS ((void));
92  enum strata   to_stratum;
93  struct target_ops
94                *DONT_USE;      /* formerly to_next */
95  int           to_has_all_memory;
96  int           to_has_memory;
97  int           to_has_stack;
98  int           to_has_registers;
99  int           to_has_execution;
100  struct section_table
101               *to_sections;
102  struct section_table
103               *to_sections_end;
104  int           to_magic;
105  /* Need sub-structure for target machine related rather than comm related? */
106@};
107@end example
108
109This structure contains pointers to functions (in C++, this would
110be called a virtual class). Each different target supported by GDB has its own
111structure with the relevant implementation of the functions (some functions
112may be not implemented). When a user connects GDB to a target via the ``target''
113command, GDB points to the structure corresponding to this target. Then the
114user can attache GDB to a specific task via the ``attach'' command. We have
115therefore identified two steps to begin a remote debug session :
116
117@enumerate
118@item the choice of the target type (in our case RTEMS),
119@item the choice of what to debug (entire system, specific task,...),
120@end enumerate
121Note that in the case of natives debugger, the choice of the target is implicitly
122performed by commands like @b{run}, @b{attach}, @b{detach}. Several
123figures will now be described showing the main steps of a debug session.
124
125@c XXX figure reference
126Figure @b{Debug session initialization} explains how the debugger connects to the target
127:
128
129@enumerate
130@item  The debugger opens a connection to the target. The word ``connection''
131doesn't only mean Ethernet or serial link connection but all the ways by which
132a process can communicate with another one (direct function call, messages mailbox,
133...),
134@item  The targets checks if it can accept or reject this connection,
135@item  If the connection is accepted, the host ``attaches'' the process,
136@item  the target stops the process, notifies a child's stop to the host
137and waits for command,
138@item  the host can ask information about the debugged process (name, registers,...)
139or perform some action like setting breakpoints, ...
140@end enumerate
141
142@c XXX figure reference
143Figure @b{Breakpoint and process execution} explains how the debugger manages the
144breakpoints and controls the execution of a process :
145
146@enumerate
147@item  The host asks the debuggee what is the opcode at the concerned address
148in order for GDB to memorize this instruction,
149@item  the host sends a CONTINUE command : it asks the target to write the
150``DEBUG'' opcode (for example, the INTEL ``DEBUG'' opcode is INT3 which
151generate a breakpoint trap) instead of the debugged opcode.
152@item  then the host waits for events,
153@item  after the change of instruction, the target resumes the execution
154of the debuggee,
155@item  when the ``DEBUG'' opcode is executed, the breakpoint exception
156handler is executed and it notifies the host that the process is stopped. Then
157it waits for commands (if no command is sent after a certain amount of time,
158the connection will be closed by the target).
159@item  the host asks the target to re-write the right opcode instead of the
160''DEBUG'' opcode and then can ask information
161@end enumerate
162
163@c XXX figure reference
164Figure @b{Breakpoint and process execution} also shows the case of other ``CONTINUE''
165commands (remember that the ``DEBUG'' opcode has been replaced by the right
166instruction):
167
168@enumerate
169@item  Host sends first a ``single step'' command to execute the debugged
170instruction,
171@item  It then waits for ``single step`` exception event,
172@item  the target, once the single step executed, calls the debug exception
173handler. It notifies the host that execution is suspended and wait for commands.
174@item  the host asks the target to re-write the ``DEBUG'' opcode (breakpoint
175trap) instead of the debugged one.
176@item  then the host sends a ``CONTINUE'' command in order the target to
177resume the process execution to the next breakpoint.
178@end enumerate
179
180@c XXX figure reference
181Figure @b{Detach a process and close a connection} explains how the debugger disconnects from
182a target :
183
184@enumerate
185@item  the host sends a detach command to the target.
186@item  the target detaches the concerned process, notifies the detachment
187and resumes the process execution.
188@item  once notified, the host sends a close connection command.
189@item  the target closes the connection.
190@end enumerate
191These 3 examples show that the mains actions that are performed by
192the host debugger on the target are only simple actions which look like :
193
194@itemize @bullet
195@item read/write code,
196@item read/write data,
197@item read/write registers,
198@item manage exceptions,
199@item send/receive messages to/from the host.
200@end itemize
201
202
203@c
204@c Debug session initialization Figure
205@c
206
207@ifset use-ascii
208@example
209@group
210XXXXX reference it in the previous paragraph
211XXXXX insert seqinit.eps
212XXXXX Caption Debug session initialization
213@end group
214@end example
215@end ifset
216
217@ifset use-tex
218@example
219@group
220@c XXXXX reference it in the previous paragraph
221@c XXXXX insert seqinit.eps
222@c XXXXX Caption Debug session initialization
223@end group
224@end example
225@page
226@image{seqinit}
227@end ifset
228
229
230@ifset use-html
231@c <IMG SRC="seqinit.jpg" WIDTH=500 HEIGHT=600 ALT="Debug session initialization">
232@html
233<IMG SRC="seqinit.jpg" ALT="Debug session initialization">
234@end html
235@end ifset
236
237
238@c
239@c Breakpoint and process execution Figure
240@c
241
242@ifset use-ascii
243@example
244@group
245XXXXX reference it in the previous paragraph
246XXXXX insert seqbreak.eps
247XXXXX Caption Breakpoint and process execution
248@end group
249@end example
250@end ifset
251
252@ifset use-tex
253@example
254@group
255@c XXXXX reference it in the previous paragraph
256@c XXXXX insert seqbreak.eps
257@c XXXXX Caption Breakpoint and process execution
258@end group
259@end example
260@page
261@sp 5
262@image{seqbreak,,9in}
263@end ifset
264
265@ifset use-html
266@c <IMG SRC="seqbreak.jpg" WIDTH=500 HEIGHT=600 ALT="Breakpoint and process execution">
267@html
268<IMG SRC="seqbreak.jpg" ALT="Breakpoint and process execution">
269@end html
270@end ifset
271
272
273
274@c
275@c Detach a process and close a connection Figure
276@c
277
278@ifset use-ascii
279@example
280@group
281XXXXX reference it in the previous paragraph
282XXXXX insert seqdetach.eps
283XXXXX Caption Detach a process and close a connection
284@end group
285@end example
286@end ifset
287
288@ifset use-tex
289@example
290@group
291@c XXXXX reference it in the previous paragraph
292@c XXXXX insert seqdetach.eps
293@c XXXXX Caption Detach a process and close a connection
294@end group
295@end example
296@sp 10
297@image{seqdetach}
298@end ifset
299
300@ifset use-html
301@c <IMG SRC="seqdetach.jpg" WIDTH=500 HEIGHT=600 ALT="Detach a process and close a connection">
302@html
303<IMG SRC="seqdetach.jpg" ALT="Detach a process and close a connection">
304@end html
305@end ifset
306
307
308
309
Note: See TracBrowser for help on using the repository browser.