source: rtems/cpukit/zlib/trees.c @ 94a2ecc

4.115
Last change on this file since 94a2ecc was 5a7aa10, checked in by Ralf Corsepius <ralf.corsepius@…>, on 03/18/11 at 10:11:21

Import from zlib-1.2.4

  • Property mode set to 100644
File size: 44.1 KB
Line 
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2009 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* @(#) $Id$ */
34
35/* #define GEN_TREES_H */
36
37#include "deflate.h"
38
39#ifdef DEBUG
40#  include <ctype.h>
41#endif
42
43/* ===========================================================================
44 * Constants
45 */
46
47#define MAX_BL_BITS 7
48/* Bit length codes must not exceed MAX_BL_BITS bits */
49
50#define END_BLOCK 256
51/* end of block literal code */
52
53#define REP_3_6      16
54/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
56#define REPZ_3_10    17
57/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
59#define REPZ_11_138  18
60/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
62local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
65local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
68local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
71local const uch bl_order[BL_CODES]
72   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73/* The lengths of the bit length codes are sent in order of decreasing
74 * probability, to avoid transmitting the lengths for unused bit length codes.
75 */
76
77#define Buf_size (8 * 2*sizeof(char))
78/* Number of bits used within bi_buf. (bi_buf might be implemented on
79 * more than 16 bits on some systems.)
80 */
81
82/* ===========================================================================
83 * Local data. These are initialized only once.
84 */
85
86#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
87
88#if defined(GEN_TREES_H) || !defined(STDC)
89/* non ANSI compilers may not accept trees.h */
90
91local ct_data static_ltree[L_CODES+2];
92/* The static literal tree. Since the bit lengths are imposed, there is no
93 * need for the L_CODES extra codes used during heap construction. However
94 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
95 * below).
96 */
97
98local ct_data static_dtree[D_CODES];
99/* The static distance tree. (Actually a trivial tree since all codes use
100 * 5 bits.)
101 */
102
103uch _dist_code[DIST_CODE_LEN];
104/* Distance codes. The first 256 values correspond to the distances
105 * 3 .. 258, the last 256 values correspond to the top 8 bits of
106 * the 15 bit distances.
107 */
108
109uch _length_code[MAX_MATCH-MIN_MATCH+1];
110/* length code for each normalized match length (0 == MIN_MATCH) */
111
112local int base_length[LENGTH_CODES];
113/* First normalized length for each code (0 = MIN_MATCH) */
114
115local int base_dist[D_CODES];
116/* First normalized distance for each code (0 = distance of 1) */
117
118#else
119#  include "trees.h"
120#endif /* GEN_TREES_H */
121
122struct static_tree_desc_s {
123    const ct_data *static_tree;  /* static tree or NULL */
124    const intf *extra_bits;      /* extra bits for each code or NULL */
125    int     extra_base;          /* base index for extra_bits */
126    int     elems;               /* max number of elements in the tree */
127    int     max_length;          /* max bit length for the codes */
128};
129
130local static_tree_desc  static_l_desc =
131{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
132
133local static_tree_desc  static_d_desc =
134{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
135
136local static_tree_desc  static_bl_desc =
137{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
138
139/* ===========================================================================
140 * Local (static) routines in this file.
141 */
142
143local void tr_static_init OF((void));
144local void init_block     OF((deflate_state *s));
145local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
146local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
147local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
148local void build_tree     OF((deflate_state *s, tree_desc *desc));
149local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
150local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
151local int  build_bl_tree  OF((deflate_state *s));
152local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
153                              int blcodes));
154local void compress_block OF((deflate_state *s, ct_data *ltree,
155                              ct_data *dtree));
156local int  detect_data_type OF((deflate_state *s));
157local unsigned bi_reverse OF((unsigned value, int length));
158local void bi_windup      OF((deflate_state *s));
159local void bi_flush       OF((deflate_state *s));
160local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
161                              int header));
162
163#ifdef GEN_TREES_H
164local void gen_trees_header OF((void));
165#endif
166
167#ifndef DEBUG
168#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
169   /* Send a code of the given tree. c and tree must not have side effects */
170
171#else /* DEBUG */
172#  define send_code(s, c, tree) \
173     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
174       send_bits(s, tree[c].Code, tree[c].Len); }
175#endif
176
177/* ===========================================================================
178 * Output a short LSB first on the stream.
179 * IN assertion: there is enough room in pendingBuf.
180 */
181#define put_short(s, w) { \
182    put_byte(s, (uch)((w) & 0xff)); \
183    put_byte(s, (uch)((ush)(w) >> 8)); \
184}
185
186/* ===========================================================================
187 * Send a value on a given number of bits.
188 * IN assertion: length <= 16 and value fits in length bits.
189 */
190#ifdef DEBUG
191local void send_bits      OF((deflate_state *s, int value, int length));
192
193local void send_bits(s, value, length)
194    deflate_state *s;
195    int value;  /* value to send */
196    int length; /* number of bits */
197{
198    Tracevv((stderr," l %2d v %4x ", length, value));
199    Assert(length > 0 && length <= 15, "invalid length");
200    s->bits_sent += (ulg)length;
201
202    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
203     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
204     * unused bits in value.
205     */
206    if (s->bi_valid > (int)Buf_size - length) {
207        s->bi_buf |= (ush)value << s->bi_valid;
208        put_short(s, s->bi_buf);
209        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
210        s->bi_valid += length - Buf_size;
211    } else {
212        s->bi_buf |= (ush)value << s->bi_valid;
213        s->bi_valid += length;
214    }
215}
216#else /* !DEBUG */
217
218#define send_bits(s, value, length) \
219{ int len = length;\
220  if (s->bi_valid > (int)Buf_size - len) {\
221    int val = value;\
222    s->bi_buf |= (ush)val << s->bi_valid;\
223    put_short(s, s->bi_buf);\
224    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
225    s->bi_valid += len - Buf_size;\
226  } else {\
227    s->bi_buf |= (ush)(value) << s->bi_valid;\
228    s->bi_valid += len;\
229  }\
230}
231#endif /* DEBUG */
232
233
234/* the arguments must not have side effects */
235
236/* ===========================================================================
237 * Initialize the various 'constant' tables.
238 */
239local void tr_static_init()
240{
241#if defined(GEN_TREES_H) || !defined(STDC)
242    static int static_init_done = 0;
243    int n;        /* iterates over tree elements */
244    int bits;     /* bit counter */
245    int length;   /* length value */
246    int code;     /* code value */
247    int dist;     /* distance index */
248    ush bl_count[MAX_BITS+1];
249    /* number of codes at each bit length for an optimal tree */
250
251    if (static_init_done) return;
252
253    /* For some embedded targets, global variables are not initialized: */
254#ifdef NO_INIT_GLOBAL_POINTERS
255    static_l_desc.static_tree = static_ltree;
256    static_l_desc.extra_bits = extra_lbits;
257    static_d_desc.static_tree = static_dtree;
258    static_d_desc.extra_bits = extra_dbits;
259    static_bl_desc.extra_bits = extra_blbits;
260#endif
261
262    /* Initialize the mapping length (0..255) -> length code (0..28) */
263    length = 0;
264    for (code = 0; code < LENGTH_CODES-1; code++) {
265        base_length[code] = length;
266        for (n = 0; n < (1<<extra_lbits[code]); n++) {
267            _length_code[length++] = (uch)code;
268        }
269    }
270    Assert (length == 256, "tr_static_init: length != 256");
271    /* Note that the length 255 (match length 258) can be represented
272     * in two different ways: code 284 + 5 bits or code 285, so we
273     * overwrite length_code[255] to use the best encoding:
274     */
275    _length_code[length-1] = (uch)code;
276
277    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
278    dist = 0;
279    for (code = 0 ; code < 16; code++) {
280        base_dist[code] = dist;
281        for (n = 0; n < (1<<extra_dbits[code]); n++) {
282            _dist_code[dist++] = (uch)code;
283        }
284    }
285    Assert (dist == 256, "tr_static_init: dist != 256");
286    dist >>= 7; /* from now on, all distances are divided by 128 */
287    for ( ; code < D_CODES; code++) {
288        base_dist[code] = dist << 7;
289        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
290            _dist_code[256 + dist++] = (uch)code;
291        }
292    }
293    Assert (dist == 256, "tr_static_init: 256+dist != 512");
294
295    /* Construct the codes of the static literal tree */
296    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
297    n = 0;
298    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
299    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
300    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
301    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
302    /* Codes 286 and 287 do not exist, but we must include them in the
303     * tree construction to get a canonical Huffman tree (longest code
304     * all ones)
305     */
306    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
307
308    /* The static distance tree is trivial: */
309    for (n = 0; n < D_CODES; n++) {
310        static_dtree[n].Len = 5;
311        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
312    }
313    static_init_done = 1;
314
315#  ifdef GEN_TREES_H
316    gen_trees_header();
317#  endif
318#endif /* defined(GEN_TREES_H) || !defined(STDC) */
319}
320
321/* ===========================================================================
322 * Genererate the file trees.h describing the static trees.
323 */
324#ifdef GEN_TREES_H
325#  ifndef DEBUG
326#    include <stdio.h>
327#  endif
328
329#  define SEPARATOR(i, last, width) \
330      ((i) == (last)? "\n};\n\n" :    \
331       ((i) % (width) == (width)-1 ? ",\n" : ", "))
332
333void gen_trees_header()
334{
335    FILE *header = fopen("trees.h", "w");
336    int i;
337
338    Assert (header != NULL, "Can't open trees.h");
339    fprintf(header,
340            "/* header created automatically with -DGEN_TREES_H */\n\n");
341
342    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
343    for (i = 0; i < L_CODES+2; i++) {
344        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
345                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
346    }
347
348    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
349    for (i = 0; i < D_CODES; i++) {
350        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
351                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
352    }
353
354    fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
355    for (i = 0; i < DIST_CODE_LEN; i++) {
356        fprintf(header, "%2u%s", _dist_code[i],
357                SEPARATOR(i, DIST_CODE_LEN-1, 20));
358    }
359
360    fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
361    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
362        fprintf(header, "%2u%s", _length_code[i],
363                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
364    }
365
366    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
367    for (i = 0; i < LENGTH_CODES; i++) {
368        fprintf(header, "%1u%s", base_length[i],
369                SEPARATOR(i, LENGTH_CODES-1, 20));
370    }
371
372    fprintf(header, "local const int base_dist[D_CODES] = {\n");
373    for (i = 0; i < D_CODES; i++) {
374        fprintf(header, "%5u%s", base_dist[i],
375                SEPARATOR(i, D_CODES-1, 10));
376    }
377
378    fclose(header);
379}
380#endif /* GEN_TREES_H */
381
382/* ===========================================================================
383 * Initialize the tree data structures for a new zlib stream.
384 */
385void _tr_init(s)
386    deflate_state *s;
387{
388    tr_static_init();
389
390    s->l_desc.dyn_tree = s->dyn_ltree;
391    s->l_desc.stat_desc = &static_l_desc;
392
393    s->d_desc.dyn_tree = s->dyn_dtree;
394    s->d_desc.stat_desc = &static_d_desc;
395
396    s->bl_desc.dyn_tree = s->bl_tree;
397    s->bl_desc.stat_desc = &static_bl_desc;
398
399    s->bi_buf = 0;
400    s->bi_valid = 0;
401    s->last_eob_len = 8; /* enough lookahead for inflate */
402#ifdef DEBUG
403    s->compressed_len = 0L;
404    s->bits_sent = 0L;
405#endif
406
407    /* Initialize the first block of the first file: */
408    init_block(s);
409}
410
411/* ===========================================================================
412 * Initialize a new block.
413 */
414local void init_block(s)
415    deflate_state *s;
416{
417    int n; /* iterates over tree elements */
418
419    /* Initialize the trees. */
420    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
421    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
422    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
423
424    s->dyn_ltree[END_BLOCK].Freq = 1;
425    s->opt_len = s->static_len = 0L;
426    s->last_lit = s->matches = 0;
427}
428
429#define SMALLEST 1
430/* Index within the heap array of least frequent node in the Huffman tree */
431
432
433/* ===========================================================================
434 * Remove the smallest element from the heap and recreate the heap with
435 * one less element. Updates heap and heap_len.
436 */
437#define pqremove(s, tree, top) \
438{\
439    top = s->heap[SMALLEST]; \
440    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
441    pqdownheap(s, tree, SMALLEST); \
442}
443
444/* ===========================================================================
445 * Compares to subtrees, using the tree depth as tie breaker when
446 * the subtrees have equal frequency. This minimizes the worst case length.
447 */
448#define smaller(tree, n, m, depth) \
449   (tree[n].Freq < tree[m].Freq || \
450   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
451
452/* ===========================================================================
453 * Restore the heap property by moving down the tree starting at node k,
454 * exchanging a node with the smallest of its two sons if necessary, stopping
455 * when the heap property is re-established (each father smaller than its
456 * two sons).
457 */
458local void pqdownheap(s, tree, k)
459    deflate_state *s;
460    ct_data *tree;  /* the tree to restore */
461    int k;               /* node to move down */
462{
463    int v = s->heap[k];
464    int j = k << 1;  /* left son of k */
465    while (j <= s->heap_len) {
466        /* Set j to the smallest of the two sons: */
467        if (j < s->heap_len &&
468            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
469            j++;
470        }
471        /* Exit if v is smaller than both sons */
472        if (smaller(tree, v, s->heap[j], s->depth)) break;
473
474        /* Exchange v with the smallest son */
475        s->heap[k] = s->heap[j];  k = j;
476
477        /* And continue down the tree, setting j to the left son of k */
478        j <<= 1;
479    }
480    s->heap[k] = v;
481}
482
483/* ===========================================================================
484 * Compute the optimal bit lengths for a tree and update the total bit length
485 * for the current block.
486 * IN assertion: the fields freq and dad are set, heap[heap_max] and
487 *    above are the tree nodes sorted by increasing frequency.
488 * OUT assertions: the field len is set to the optimal bit length, the
489 *     array bl_count contains the frequencies for each bit length.
490 *     The length opt_len is updated; static_len is also updated if stree is
491 *     not null.
492 */
493local void gen_bitlen(s, desc)
494    deflate_state *s;
495    tree_desc *desc;    /* the tree descriptor */
496{
497    ct_data *tree        = desc->dyn_tree;
498    int max_code         = desc->max_code;
499    const ct_data *stree = desc->stat_desc->static_tree;
500    const intf *extra    = desc->stat_desc->extra_bits;
501    int base             = desc->stat_desc->extra_base;
502    int max_length       = desc->stat_desc->max_length;
503    int h;              /* heap index */
504    int n, m;           /* iterate over the tree elements */
505    int bits;           /* bit length */
506    int xbits;          /* extra bits */
507    ush f;              /* frequency */
508    int overflow = 0;   /* number of elements with bit length too large */
509
510    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
511
512    /* In a first pass, compute the optimal bit lengths (which may
513     * overflow in the case of the bit length tree).
514     */
515    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
516
517    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
518        n = s->heap[h];
519        bits = tree[tree[n].Dad].Len + 1;
520        if (bits > max_length) bits = max_length, overflow++;
521        tree[n].Len = (ush)bits;
522        /* We overwrite tree[n].Dad which is no longer needed */
523
524        if (n > max_code) continue; /* not a leaf node */
525
526        s->bl_count[bits]++;
527        xbits = 0;
528        if (n >= base) xbits = extra[n-base];
529        f = tree[n].Freq;
530        s->opt_len += (ulg)f * (bits + xbits);
531        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
532    }
533    if (overflow == 0) return;
534
535    Trace((stderr,"\nbit length overflow\n"));
536    /* This happens for example on obj2 and pic of the Calgary corpus */
537
538    /* Find the first bit length which could increase: */
539    do {
540        bits = max_length-1;
541        while (s->bl_count[bits] == 0) bits--;
542        s->bl_count[bits]--;      /* move one leaf down the tree */
543        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
544        s->bl_count[max_length]--;
545        /* The brother of the overflow item also moves one step up,
546         * but this does not affect bl_count[max_length]
547         */
548        overflow -= 2;
549    } while (overflow > 0);
550
551    /* Now recompute all bit lengths, scanning in increasing frequency.
552     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
553     * lengths instead of fixing only the wrong ones. This idea is taken
554     * from 'ar' written by Haruhiko Okumura.)
555     */
556    for (bits = max_length; bits != 0; bits--) {
557        n = s->bl_count[bits];
558        while (n != 0) {
559            m = s->heap[--h];
560            if (m > max_code) continue;
561            if ((unsigned) tree[m].Len != (unsigned) bits) {
562                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
563                s->opt_len += ((long)bits - (long)tree[m].Len)
564                              *(long)tree[m].Freq;
565                tree[m].Len = (ush)bits;
566            }
567            n--;
568        }
569    }
570}
571
572/* ===========================================================================
573 * Generate the codes for a given tree and bit counts (which need not be
574 * optimal).
575 * IN assertion: the array bl_count contains the bit length statistics for
576 * the given tree and the field len is set for all tree elements.
577 * OUT assertion: the field code is set for all tree elements of non
578 *     zero code length.
579 */
580local void gen_codes (tree, max_code, bl_count)
581    ct_data *tree;             /* the tree to decorate */
582    int max_code;              /* largest code with non zero frequency */
583    ushf *bl_count;            /* number of codes at each bit length */
584{
585    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
586    ush code = 0;              /* running code value */
587    int bits;                  /* bit index */
588    int n;                     /* code index */
589
590    /* The distribution counts are first used to generate the code values
591     * without bit reversal.
592     */
593    for (bits = 1; bits <= MAX_BITS; bits++) {
594        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
595    }
596    /* Check that the bit counts in bl_count are consistent. The last code
597     * must be all ones.
598     */
599    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
600            "inconsistent bit counts");
601    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
602
603    for (n = 0;  n <= max_code; n++) {
604        int len = tree[n].Len;
605        if (len == 0) continue;
606        /* Now reverse the bits */
607        tree[n].Code = bi_reverse(next_code[len]++, len);
608
609        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
610             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
611    }
612}
613
614/* ===========================================================================
615 * Construct one Huffman tree and assigns the code bit strings and lengths.
616 * Update the total bit length for the current block.
617 * IN assertion: the field freq is set for all tree elements.
618 * OUT assertions: the fields len and code are set to the optimal bit length
619 *     and corresponding code. The length opt_len is updated; static_len is
620 *     also updated if stree is not null. The field max_code is set.
621 */
622local void build_tree(s, desc)
623    deflate_state *s;
624    tree_desc *desc; /* the tree descriptor */
625{
626    ct_data *tree         = desc->dyn_tree;
627    const ct_data *stree  = desc->stat_desc->static_tree;
628    int elems             = desc->stat_desc->elems;
629    int n, m;          /* iterate over heap elements */
630    int max_code = -1; /* largest code with non zero frequency */
631    int node;          /* new node being created */
632
633    /* Construct the initial heap, with least frequent element in
634     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
635     * heap[0] is not used.
636     */
637    s->heap_len = 0, s->heap_max = HEAP_SIZE;
638
639    for (n = 0; n < elems; n++) {
640        if (tree[n].Freq != 0) {
641            s->heap[++(s->heap_len)] = max_code = n;
642            s->depth[n] = 0;
643        } else {
644            tree[n].Len = 0;
645        }
646    }
647
648    /* The pkzip format requires that at least one distance code exists,
649     * and that at least one bit should be sent even if there is only one
650     * possible code. So to avoid special checks later on we force at least
651     * two codes of non zero frequency.
652     */
653    while (s->heap_len < 2) {
654        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655        tree[node].Freq = 1;
656        s->depth[node] = 0;
657        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658        /* node is 0 or 1 so it does not have extra bits */
659    }
660    desc->max_code = max_code;
661
662    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
663     * establish sub-heaps of increasing lengths:
664     */
665    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666
667    /* Construct the Huffman tree by repeatedly combining the least two
668     * frequent nodes.
669     */
670    node = elems;              /* next internal node of the tree */
671    do {
672        pqremove(s, tree, n);  /* n = node of least frequency */
673        m = s->heap[SMALLEST]; /* m = node of next least frequency */
674
675        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676        s->heap[--(s->heap_max)] = m;
677
678        /* Create a new node father of n and m */
679        tree[node].Freq = tree[n].Freq + tree[m].Freq;
680        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681                                s->depth[n] : s->depth[m]) + 1);
682        tree[n].Dad = tree[m].Dad = (ush)node;
683#ifdef DUMP_BL_TREE
684        if (tree == s->bl_tree) {
685            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687        }
688#endif
689        /* and insert the new node in the heap */
690        s->heap[SMALLEST] = node++;
691        pqdownheap(s, tree, SMALLEST);
692
693    } while (s->heap_len >= 2);
694
695    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696
697    /* At this point, the fields freq and dad are set. We can now
698     * generate the bit lengths.
699     */
700    gen_bitlen(s, (tree_desc *)desc);
701
702    /* The field len is now set, we can generate the bit codes */
703    gen_codes ((ct_data *)tree, max_code, s->bl_count);
704}
705
706/* ===========================================================================
707 * Scan a literal or distance tree to determine the frequencies of the codes
708 * in the bit length tree.
709 */
710local void scan_tree (s, tree, max_code)
711    deflate_state *s;
712    ct_data *tree;   /* the tree to be scanned */
713    int max_code;    /* and its largest code of non zero frequency */
714{
715    int n;                     /* iterates over all tree elements */
716    int prevlen = -1;          /* last emitted length */
717    int curlen;                /* length of current code */
718    int nextlen = tree[0].Len; /* length of next code */
719    int count = 0;             /* repeat count of the current code */
720    int max_count = 7;         /* max repeat count */
721    int min_count = 4;         /* min repeat count */
722
723    if (nextlen == 0) max_count = 138, min_count = 3;
724    tree[max_code+1].Len = (ush)0xffff; /* guard */
725
726    for (n = 0; n <= max_code; n++) {
727        curlen = nextlen; nextlen = tree[n+1].Len;
728        if (++count < max_count && curlen == nextlen) {
729            continue;
730        } else if (count < min_count) {
731            s->bl_tree[curlen].Freq += count;
732        } else if (curlen != 0) {
733            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
734            s->bl_tree[REP_3_6].Freq++;
735        } else if (count <= 10) {
736            s->bl_tree[REPZ_3_10].Freq++;
737        } else {
738            s->bl_tree[REPZ_11_138].Freq++;
739        }
740        count = 0; prevlen = curlen;
741        if (nextlen == 0) {
742            max_count = 138, min_count = 3;
743        } else if (curlen == nextlen) {
744            max_count = 6, min_count = 3;
745        } else {
746            max_count = 7, min_count = 4;
747        }
748    }
749}
750
751/* ===========================================================================
752 * Send a literal or distance tree in compressed form, using the codes in
753 * bl_tree.
754 */
755local void send_tree (s, tree, max_code)
756    deflate_state *s;
757    ct_data *tree; /* the tree to be scanned */
758    int max_code;       /* and its largest code of non zero frequency */
759{
760    int n;                     /* iterates over all tree elements */
761    int prevlen = -1;          /* last emitted length */
762    int curlen;                /* length of current code */
763    int nextlen = tree[0].Len; /* length of next code */
764    int count = 0;             /* repeat count of the current code */
765    int max_count = 7;         /* max repeat count */
766    int min_count = 4;         /* min repeat count */
767
768    /* tree[max_code+1].Len = -1; */  /* guard already set */
769    if (nextlen == 0) max_count = 138, min_count = 3;
770
771    for (n = 0; n <= max_code; n++) {
772        curlen = nextlen; nextlen = tree[n+1].Len;
773        if (++count < max_count && curlen == nextlen) {
774            continue;
775        } else if (count < min_count) {
776            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
777
778        } else if (curlen != 0) {
779            if (curlen != prevlen) {
780                send_code(s, curlen, s->bl_tree); count--;
781            }
782            Assert(count >= 3 && count <= 6, " 3_6?");
783            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
784
785        } else if (count <= 10) {
786            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
787
788        } else {
789            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
790        }
791        count = 0; prevlen = curlen;
792        if (nextlen == 0) {
793            max_count = 138, min_count = 3;
794        } else if (curlen == nextlen) {
795            max_count = 6, min_count = 3;
796        } else {
797            max_count = 7, min_count = 4;
798        }
799    }
800}
801
802/* ===========================================================================
803 * Construct the Huffman tree for the bit lengths and return the index in
804 * bl_order of the last bit length code to send.
805 */
806local int build_bl_tree(s)
807    deflate_state *s;
808{
809    int max_blindex;  /* index of last bit length code of non zero freq */
810
811    /* Determine the bit length frequencies for literal and distance trees */
812    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
813    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
814
815    /* Build the bit length tree: */
816    build_tree(s, (tree_desc *)(&(s->bl_desc)));
817    /* opt_len now includes the length of the tree representations, except
818     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
819     */
820
821    /* Determine the number of bit length codes to send. The pkzip format
822     * requires that at least 4 bit length codes be sent. (appnote.txt says
823     * 3 but the actual value used is 4.)
824     */
825    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
826        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
827    }
828    /* Update opt_len to include the bit length tree and counts */
829    s->opt_len += 3*(max_blindex+1) + 5+5+4;
830    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
831            s->opt_len, s->static_len));
832
833    return max_blindex;
834}
835
836/* ===========================================================================
837 * Send the header for a block using dynamic Huffman trees: the counts, the
838 * lengths of the bit length codes, the literal tree and the distance tree.
839 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
840 */
841local void send_all_trees(s, lcodes, dcodes, blcodes)
842    deflate_state *s;
843    int lcodes, dcodes, blcodes; /* number of codes for each tree */
844{
845    int rank;                    /* index in bl_order */
846
847    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
848    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
849            "too many codes");
850    Tracev((stderr, "\nbl counts: "));
851    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
852    send_bits(s, dcodes-1,   5);
853    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
854    for (rank = 0; rank < blcodes; rank++) {
855        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
856        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
857    }
858    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
859
860    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
861    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
862
863    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
864    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
865}
866
867/* ===========================================================================
868 * Send a stored block
869 */
870void _tr_stored_block(s, buf, stored_len, last)
871    deflate_state *s;
872    charf *buf;       /* input block */
873    ulg stored_len;   /* length of input block */
874    int last;         /* one if this is the last block for a file */
875{
876    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
877#ifdef DEBUG
878    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
879    s->compressed_len += (stored_len + 4) << 3;
880#endif
881    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
882}
883
884/* ===========================================================================
885 * Send one empty static block to give enough lookahead for inflate.
886 * This takes 10 bits, of which 7 may remain in the bit buffer.
887 * The current inflate code requires 9 bits of lookahead. If the
888 * last two codes for the previous block (real code plus EOB) were coded
889 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
890 * the last real code. In this case we send two empty static blocks instead
891 * of one. (There are no problems if the previous block is stored or fixed.)
892 * To simplify the code, we assume the worst case of last real code encoded
893 * on one bit only.
894 */
895void _tr_align(s)
896    deflate_state *s;
897{
898    send_bits(s, STATIC_TREES<<1, 3);
899    send_code(s, END_BLOCK, static_ltree);
900#ifdef DEBUG
901    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
902#endif
903    bi_flush(s);
904    /* Of the 10 bits for the empty block, we have already sent
905     * (10 - bi_valid) bits. The lookahead for the last real code (before
906     * the EOB of the previous block) was thus at least one plus the length
907     * of the EOB plus what we have just sent of the empty static block.
908     */
909    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
910        send_bits(s, STATIC_TREES<<1, 3);
911        send_code(s, END_BLOCK, static_ltree);
912#ifdef DEBUG
913        s->compressed_len += 10L;
914#endif
915        bi_flush(s);
916    }
917    s->last_eob_len = 7;
918}
919
920/* ===========================================================================
921 * Determine the best encoding for the current block: dynamic trees, static
922 * trees or store, and output the encoded block to the zip file.
923 */
924void _tr_flush_block(s, buf, stored_len, last)
925    deflate_state *s;
926    charf *buf;       /* input block, or NULL if too old */
927    ulg stored_len;   /* length of input block */
928    int last;         /* one if this is the last block for a file */
929{
930    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
931    int max_blindex = 0;  /* index of last bit length code of non zero freq */
932
933    /* Build the Huffman trees unless a stored block is forced */
934    if (s->level > 0) {
935
936        /* Check if the file is binary or text */
937        if (s->strm->data_type == Z_UNKNOWN)
938            s->strm->data_type = detect_data_type(s);
939
940        /* Construct the literal and distance trees */
941        build_tree(s, (tree_desc *)(&(s->l_desc)));
942        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
943                s->static_len));
944
945        build_tree(s, (tree_desc *)(&(s->d_desc)));
946        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
947                s->static_len));
948        /* At this point, opt_len and static_len are the total bit lengths of
949         * the compressed block data, excluding the tree representations.
950         */
951
952        /* Build the bit length tree for the above two trees, and get the index
953         * in bl_order of the last bit length code to send.
954         */
955        max_blindex = build_bl_tree(s);
956
957        /* Determine the best encoding. Compute the block lengths in bytes. */
958        opt_lenb = (s->opt_len+3+7)>>3;
959        static_lenb = (s->static_len+3+7)>>3;
960
961        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
962                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
963                s->last_lit));
964
965        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
966
967    } else {
968        Assert(buf != (char*)0, "lost buf");
969        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
970    }
971
972#ifdef FORCE_STORED
973    if (buf != (char*)0) { /* force stored block */
974#else
975    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
976                       /* 4: two words for the lengths */
977#endif
978        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
979         * Otherwise we can't have processed more than WSIZE input bytes since
980         * the last block flush, because compression would have been
981         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
982         * transform a block into a stored block.
983         */
984        _tr_stored_block(s, buf, stored_len, last);
985
986#ifdef FORCE_STATIC
987    } else if (static_lenb >= 0) { /* force static trees */
988#else
989    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
990#endif
991        send_bits(s, (STATIC_TREES<<1)+last, 3);
992        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
993#ifdef DEBUG
994        s->compressed_len += 3 + s->static_len;
995#endif
996    } else {
997        send_bits(s, (DYN_TREES<<1)+last, 3);
998        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
999                       max_blindex+1);
1000        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1001#ifdef DEBUG
1002        s->compressed_len += 3 + s->opt_len;
1003#endif
1004    }
1005    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1006    /* The above check is made mod 2^32, for files larger than 512 MB
1007     * and uLong implemented on 32 bits.
1008     */
1009    init_block(s);
1010
1011    if (last) {
1012        bi_windup(s);
1013#ifdef DEBUG
1014        s->compressed_len += 7;  /* align on byte boundary */
1015#endif
1016    }
1017    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1018           s->compressed_len-7*last));
1019}
1020
1021/* ===========================================================================
1022 * Save the match info and tally the frequency counts. Return true if
1023 * the current block must be flushed.
1024 */
1025int _tr_tally (s, dist, lc)
1026    deflate_state *s;
1027    unsigned dist;  /* distance of matched string */
1028    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1029{
1030    s->d_buf[s->last_lit] = (ush)dist;
1031    s->l_buf[s->last_lit++] = (uch)lc;
1032    if (dist == 0) {
1033        /* lc is the unmatched char */
1034        s->dyn_ltree[lc].Freq++;
1035    } else {
1036        s->matches++;
1037        /* Here, lc is the match length - MIN_MATCH */
1038        dist--;             /* dist = match distance - 1 */
1039        Assert((ush)dist < (ush)MAX_DIST(s) &&
1040               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1041               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1042
1043        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1044        s->dyn_dtree[d_code(dist)].Freq++;
1045    }
1046
1047#ifdef TRUNCATE_BLOCK
1048    /* Try to guess if it is profitable to stop the current block here */
1049    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1050        /* Compute an upper bound for the compressed length */
1051        ulg out_length = (ulg)s->last_lit*8L;
1052        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1053        int dcode;
1054        for (dcode = 0; dcode < D_CODES; dcode++) {
1055            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1056                (5L+extra_dbits[dcode]);
1057        }
1058        out_length >>= 3;
1059        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1060               s->last_lit, in_length, out_length,
1061               100L - out_length*100L/in_length));
1062        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1063    }
1064#endif
1065    return (s->last_lit == s->lit_bufsize-1);
1066    /* We avoid equality with lit_bufsize because of wraparound at 64K
1067     * on 16 bit machines and because stored blocks are restricted to
1068     * 64K-1 bytes.
1069     */
1070}
1071
1072/* ===========================================================================
1073 * Send the block data compressed using the given Huffman trees
1074 */
1075local void compress_block(s, ltree, dtree)
1076    deflate_state *s;
1077    ct_data *ltree; /* literal tree */
1078    ct_data *dtree; /* distance tree */
1079{
1080    unsigned dist;      /* distance of matched string */
1081    int lc;             /* match length or unmatched char (if dist == 0) */
1082    unsigned lx = 0;    /* running index in l_buf */
1083    unsigned code;      /* the code to send */
1084    int extra;          /* number of extra bits to send */
1085
1086    if (s->last_lit != 0) do {
1087        dist = s->d_buf[lx];
1088        lc = s->l_buf[lx++];
1089        if (dist == 0) {
1090            send_code(s, lc, ltree); /* send a literal byte */
1091            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1092        } else {
1093            /* Here, lc is the match length - MIN_MATCH */
1094            code = _length_code[lc];
1095            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1096            extra = extra_lbits[code];
1097            if (extra != 0) {
1098                lc -= base_length[code];
1099                send_bits(s, lc, extra);       /* send the extra length bits */
1100            }
1101            dist--; /* dist is now the match distance - 1 */
1102            code = d_code(dist);
1103            Assert (code < D_CODES, "bad d_code");
1104
1105            send_code(s, code, dtree);       /* send the distance code */
1106            extra = extra_dbits[code];
1107            if (extra != 0) {
1108                dist -= base_dist[code];
1109                send_bits(s, dist, extra);   /* send the extra distance bits */
1110            }
1111        } /* literal or match pair ? */
1112
1113        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1114        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1115               "pendingBuf overflow");
1116
1117    } while (lx < s->last_lit);
1118
1119    send_code(s, END_BLOCK, ltree);
1120    s->last_eob_len = ltree[END_BLOCK].Len;
1121}
1122
1123/* ===========================================================================
1124 * Check if the data type is TEXT or BINARY, using the following algorithm:
1125 * - TEXT if the two conditions below are satisfied:
1126 *    a) There are no non-portable control characters belonging to the
1127 *       "black list" (0..6, 14..25, 28..31).
1128 *    b) There is at least one printable character belonging to the
1129 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1130 * - BINARY otherwise.
1131 * - The following partially-portable control characters form a
1132 *   "gray list" that is ignored in this detection algorithm:
1133 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1134 * IN assertion: the fields Freq of dyn_ltree are set.
1135 */
1136local int detect_data_type(s)
1137    deflate_state *s;
1138{
1139    /* black_mask is the bit mask of black-listed bytes
1140     * set bits 0..6, 14..25, and 28..31
1141     * 0xf3ffc07f = binary 11110011111111111100000001111111
1142     */
1143    unsigned long black_mask = 0xf3ffc07fUL;
1144    int n;
1145
1146    /* Check for non-textual ("black-listed") bytes. */
1147    for (n = 0; n <= 31; n++, black_mask >>= 1)
1148        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1149            return Z_BINARY;
1150
1151    /* Check for textual ("white-listed") bytes. */
1152    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1153            || s->dyn_ltree[13].Freq != 0)
1154        return Z_TEXT;
1155    for (n = 32; n < LITERALS; n++)
1156        if (s->dyn_ltree[n].Freq != 0)
1157            return Z_TEXT;
1158
1159    /* There are no "black-listed" or "white-listed" bytes:
1160     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1161     */
1162    return Z_BINARY;
1163}
1164
1165/* ===========================================================================
1166 * Reverse the first len bits of a code, using straightforward code (a faster
1167 * method would use a table)
1168 * IN assertion: 1 <= len <= 15
1169 */
1170local unsigned bi_reverse(code, len)
1171    unsigned code; /* the value to invert */
1172    int len;       /* its bit length */
1173{
1174    register unsigned res = 0;
1175    do {
1176        res |= code & 1;
1177        code >>= 1, res <<= 1;
1178    } while (--len > 0);
1179    return res >> 1;
1180}
1181
1182/* ===========================================================================
1183 * Flush the bit buffer, keeping at most 7 bits in it.
1184 */
1185local void bi_flush(s)
1186    deflate_state *s;
1187{
1188    if (s->bi_valid == 16) {
1189        put_short(s, s->bi_buf);
1190        s->bi_buf = 0;
1191        s->bi_valid = 0;
1192    } else if (s->bi_valid >= 8) {
1193        put_byte(s, (Byte)s->bi_buf);
1194        s->bi_buf >>= 8;
1195        s->bi_valid -= 8;
1196    }
1197}
1198
1199/* ===========================================================================
1200 * Flush the bit buffer and align the output on a byte boundary
1201 */
1202local void bi_windup(s)
1203    deflate_state *s;
1204{
1205    if (s->bi_valid > 8) {
1206        put_short(s, s->bi_buf);
1207    } else if (s->bi_valid > 0) {
1208        put_byte(s, (Byte)s->bi_buf);
1209    }
1210    s->bi_buf = 0;
1211    s->bi_valid = 0;
1212#ifdef DEBUG
1213    s->bits_sent = (s->bits_sent+7) & ~7;
1214#endif
1215}
1216
1217/* ===========================================================================
1218 * Copy a stored block, storing first the length and its
1219 * one's complement if requested.
1220 */
1221local void copy_block(s, buf, len, header)
1222    deflate_state *s;
1223    charf    *buf;    /* the input data */
1224    unsigned len;     /* its length */
1225    int      header;  /* true if block header must be written */
1226{
1227    bi_windup(s);        /* align on byte boundary */
1228    s->last_eob_len = 8; /* enough lookahead for inflate */
1229
1230    if (header) {
1231        put_short(s, (ush)len);
1232        put_short(s, (ush)~len);
1233#ifdef DEBUG
1234        s->bits_sent += 2*16;
1235#endif
1236    }
1237#ifdef DEBUG
1238    s->bits_sent += (ulg)len<<3;
1239#endif
1240    while (len--) {
1241        put_byte(s, *buf++);
1242    }
1243}
Note: See TracBrowser for help on using the repository browser.