source: rtems/cpukit/zlib/trees.c @ 660db8c8

5
Last change on this file since 660db8c8 was 9b4422a2, checked in by Joel Sherrill <joel.sherrill@…>, on 05/03/12 at 15:09:24

Remove All CVS Id Strings Possible Using a Script

Script does what is expected and tries to do it as
smartly as possible.

+ remove occurrences of two blank comment lines

next to each other after Id string line removed.

+ remove entire comment blocks which only exited to

contain CVS Ids

+ If the processing left a blank line at the top of

a file, it was removed.

  • Property mode set to 100644
File size: 44.2 KB
Line 
1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995-2010 Jean-loup Gailly
3 * detect_data_type() function provided freely by Cosmin Truta, 2006
4 * For conditions of distribution and use, see copyright notice in zlib.h
5 */
6
7/*
8 *  ALGORITHM
9 *
10 *      The "deflation" process uses several Huffman trees. The more
11 *      common source values are represented by shorter bit sequences.
12 *
13 *      Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values).  The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
18 *
19 *  REFERENCES
20 *
21 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23 *
24 *      Storer, James A.
25 *          Data Compression:  Methods and Theory, pp. 49-50.
26 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27 *
28 *      Sedgewick, R.
29 *          Algorithms, p290.
30 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31 */
32
33/* #define GEN_TREES_H */
34
35#include "deflate.h"
36
37#ifdef DEBUG
38#  include <ctype.h>
39#endif
40
41/* ===========================================================================
42 * Constants
43 */
44
45#define MAX_BL_BITS 7
46/* Bit length codes must not exceed MAX_BL_BITS bits */
47
48#define END_BLOCK 256
49/* end of block literal code */
50
51#define REP_3_6      16
52/* repeat previous bit length 3-6 times (2 bits of repeat count) */
53
54#define REPZ_3_10    17
55/* repeat a zero length 3-10 times  (3 bits of repeat count) */
56
57#define REPZ_11_138  18
58/* repeat a zero length 11-138 times  (7 bits of repeat count) */
59
60local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
61   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
62
63local const int extra_dbits[D_CODES] /* extra bits for each distance code */
64   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
65
66local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
67   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
68
69local const uch bl_order[BL_CODES]
70   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
71/* The lengths of the bit length codes are sent in order of decreasing
72 * probability, to avoid transmitting the lengths for unused bit length codes.
73 */
74
75#define Buf_size (8 * 2*sizeof(char))
76/* Number of bits used within bi_buf. (bi_buf might be implemented on
77 * more than 16 bits on some systems.)
78 */
79
80/* ===========================================================================
81 * Local data. These are initialized only once.
82 */
83
84#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
85
86#if defined(GEN_TREES_H) || !defined(STDC)
87/* non ANSI compilers may not accept trees.h */
88
89local ct_data static_ltree[L_CODES+2];
90/* The static literal tree. Since the bit lengths are imposed, there is no
91 * need for the L_CODES extra codes used during heap construction. However
92 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
93 * below).
94 */
95
96local ct_data static_dtree[D_CODES];
97/* The static distance tree. (Actually a trivial tree since all codes use
98 * 5 bits.)
99 */
100
101uch _dist_code[DIST_CODE_LEN];
102/* Distance codes. The first 256 values correspond to the distances
103 * 3 .. 258, the last 256 values correspond to the top 8 bits of
104 * the 15 bit distances.
105 */
106
107uch _length_code[MAX_MATCH-MIN_MATCH+1];
108/* length code for each normalized match length (0 == MIN_MATCH) */
109
110local int base_length[LENGTH_CODES];
111/* First normalized length for each code (0 = MIN_MATCH) */
112
113local int base_dist[D_CODES];
114/* First normalized distance for each code (0 = distance of 1) */
115
116#else
117#  include "trees.h"
118#endif /* GEN_TREES_H */
119
120struct static_tree_desc_s {
121    const ct_data *static_tree;  /* static tree or NULL */
122    const intf *extra_bits;      /* extra bits for each code or NULL */
123    int     extra_base;          /* base index for extra_bits */
124    int     elems;               /* max number of elements in the tree */
125    int     max_length;          /* max bit length for the codes */
126};
127
128local static_tree_desc  static_l_desc =
129{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
130
131local static_tree_desc  static_d_desc =
132{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
133
134local static_tree_desc  static_bl_desc =
135{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
136
137/* ===========================================================================
138 * Local (static) routines in this file.
139 */
140
141local void tr_static_init OF((void));
142local void init_block     OF((deflate_state *s));
143local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
144local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
145local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
146local void build_tree     OF((deflate_state *s, tree_desc *desc));
147local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
148local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
149local int  build_bl_tree  OF((deflate_state *s));
150local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
151                              int blcodes));
152local void compress_block OF((deflate_state *s, ct_data *ltree,
153                              ct_data *dtree));
154local int  detect_data_type OF((deflate_state *s));
155local unsigned bi_reverse OF((unsigned value, int length));
156local void bi_windup      OF((deflate_state *s));
157local void bi_flush       OF((deflate_state *s));
158local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
159                              int header));
160
161#ifdef GEN_TREES_H
162local void gen_trees_header OF((void));
163#endif
164
165#ifndef DEBUG
166#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
167   /* Send a code of the given tree. c and tree must not have side effects */
168
169#else /* DEBUG */
170#  define send_code(s, c, tree) \
171     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
172       send_bits(s, tree[c].Code, tree[c].Len); }
173#endif
174
175/* ===========================================================================
176 * Output a short LSB first on the stream.
177 * IN assertion: there is enough room in pendingBuf.
178 */
179#define put_short(s, w) { \
180    put_byte(s, (uch)((w) & 0xff)); \
181    put_byte(s, (uch)((ush)(w) >> 8)); \
182}
183
184/* ===========================================================================
185 * Send a value on a given number of bits.
186 * IN assertion: length <= 16 and value fits in length bits.
187 */
188#ifdef DEBUG
189local void send_bits      OF((deflate_state *s, int value, int length));
190
191local void send_bits(s, value, length)
192    deflate_state *s;
193    int value;  /* value to send */
194    int length; /* number of bits */
195{
196    Tracevv((stderr," l %2d v %4x ", length, value));
197    Assert(length > 0 && length <= 15, "invalid length");
198    s->bits_sent += (ulg)length;
199
200    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
201     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
202     * unused bits in value.
203     */
204    if (s->bi_valid > (int)Buf_size - length) {
205        s->bi_buf |= (ush)value << s->bi_valid;
206        put_short(s, s->bi_buf);
207        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
208        s->bi_valid += length - Buf_size;
209    } else {
210        s->bi_buf |= (ush)value << s->bi_valid;
211        s->bi_valid += length;
212    }
213}
214#else /* !DEBUG */
215
216#define send_bits(s, value, length) \
217{ int len = length;\
218  if (s->bi_valid > (int)Buf_size - len) {\
219    int val = value;\
220    s->bi_buf |= (ush)val << s->bi_valid;\
221    put_short(s, s->bi_buf);\
222    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
223    s->bi_valid += len - Buf_size;\
224  } else {\
225    s->bi_buf |= (ush)(value) << s->bi_valid;\
226    s->bi_valid += len;\
227  }\
228}
229#endif /* DEBUG */
230
231
232/* the arguments must not have side effects */
233
234/* ===========================================================================
235 * Initialize the various 'constant' tables.
236 */
237local void tr_static_init()
238{
239#if defined(GEN_TREES_H) || !defined(STDC)
240    static int static_init_done = 0;
241    int n;        /* iterates over tree elements */
242    int bits;     /* bit counter */
243    int length;   /* length value */
244    int code;     /* code value */
245    int dist;     /* distance index */
246    ush bl_count[MAX_BITS+1];
247    /* number of codes at each bit length for an optimal tree */
248
249    if (static_init_done) return;
250
251    /* For some embedded targets, global variables are not initialized: */
252#ifdef NO_INIT_GLOBAL_POINTERS
253    static_l_desc.static_tree = static_ltree;
254    static_l_desc.extra_bits = extra_lbits;
255    static_d_desc.static_tree = static_dtree;
256    static_d_desc.extra_bits = extra_dbits;
257    static_bl_desc.extra_bits = extra_blbits;
258#endif
259
260    /* Initialize the mapping length (0..255) -> length code (0..28) */
261    length = 0;
262    for (code = 0; code < LENGTH_CODES-1; code++) {
263        base_length[code] = length;
264        for (n = 0; n < (1<<extra_lbits[code]); n++) {
265            _length_code[length++] = (uch)code;
266        }
267    }
268    Assert (length == 256, "tr_static_init: length != 256");
269    /* Note that the length 255 (match length 258) can be represented
270     * in two different ways: code 284 + 5 bits or code 285, so we
271     * overwrite length_code[255] to use the best encoding:
272     */
273    _length_code[length-1] = (uch)code;
274
275    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
276    dist = 0;
277    for (code = 0 ; code < 16; code++) {
278        base_dist[code] = dist;
279        for (n = 0; n < (1<<extra_dbits[code]); n++) {
280            _dist_code[dist++] = (uch)code;
281        }
282    }
283    Assert (dist == 256, "tr_static_init: dist != 256");
284    dist >>= 7; /* from now on, all distances are divided by 128 */
285    for ( ; code < D_CODES; code++) {
286        base_dist[code] = dist << 7;
287        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
288            _dist_code[256 + dist++] = (uch)code;
289        }
290    }
291    Assert (dist == 256, "tr_static_init: 256+dist != 512");
292
293    /* Construct the codes of the static literal tree */
294    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
295    n = 0;
296    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
297    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
298    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
299    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
300    /* Codes 286 and 287 do not exist, but we must include them in the
301     * tree construction to get a canonical Huffman tree (longest code
302     * all ones)
303     */
304    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
305
306    /* The static distance tree is trivial: */
307    for (n = 0; n < D_CODES; n++) {
308        static_dtree[n].Len = 5;
309        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
310    }
311    static_init_done = 1;
312
313#  ifdef GEN_TREES_H
314    gen_trees_header();
315#  endif
316#endif /* defined(GEN_TREES_H) || !defined(STDC) */
317}
318
319/* ===========================================================================
320 * Genererate the file trees.h describing the static trees.
321 */
322#ifdef GEN_TREES_H
323#  ifndef DEBUG
324#    include <stdio.h>
325#  endif
326
327#  define SEPARATOR(i, last, width) \
328      ((i) == (last)? "\n};\n\n" :    \
329       ((i) % (width) == (width)-1 ? ",\n" : ", "))
330
331void gen_trees_header()
332{
333    FILE *header = fopen("trees.h", "w");
334    int i;
335
336    Assert (header != NULL, "Can't open trees.h");
337    fprintf(header,
338            "/* header created automatically with -DGEN_TREES_H */\n\n");
339
340    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
341    for (i = 0; i < L_CODES+2; i++) {
342        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
343                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
344    }
345
346    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
347    for (i = 0; i < D_CODES; i++) {
348        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
349                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
350    }
351
352    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
353    for (i = 0; i < DIST_CODE_LEN; i++) {
354        fprintf(header, "%2u%s", _dist_code[i],
355                SEPARATOR(i, DIST_CODE_LEN-1, 20));
356    }
357
358    fprintf(header,
359        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
360    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
361        fprintf(header, "%2u%s", _length_code[i],
362                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
363    }
364
365    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
366    for (i = 0; i < LENGTH_CODES; i++) {
367        fprintf(header, "%1u%s", base_length[i],
368                SEPARATOR(i, LENGTH_CODES-1, 20));
369    }
370
371    fprintf(header, "local const int base_dist[D_CODES] = {\n");
372    for (i = 0; i < D_CODES; i++) {
373        fprintf(header, "%5u%s", base_dist[i],
374                SEPARATOR(i, D_CODES-1, 10));
375    }
376
377    fclose(header);
378}
379#endif /* GEN_TREES_H */
380
381/* ===========================================================================
382 * Initialize the tree data structures for a new zlib stream.
383 */
384void ZLIB_INTERNAL _tr_init(s)
385    deflate_state *s;
386{
387    tr_static_init();
388
389    s->l_desc.dyn_tree = s->dyn_ltree;
390    s->l_desc.stat_desc = &static_l_desc;
391
392    s->d_desc.dyn_tree = s->dyn_dtree;
393    s->d_desc.stat_desc = &static_d_desc;
394
395    s->bl_desc.dyn_tree = s->bl_tree;
396    s->bl_desc.stat_desc = &static_bl_desc;
397
398    s->bi_buf = 0;
399    s->bi_valid = 0;
400    s->last_eob_len = 8; /* enough lookahead for inflate */
401#ifdef DEBUG
402    s->compressed_len = 0L;
403    s->bits_sent = 0L;
404#endif
405
406    /* Initialize the first block of the first file: */
407    init_block(s);
408}
409
410/* ===========================================================================
411 * Initialize a new block.
412 */
413local void init_block(s)
414    deflate_state *s;
415{
416    int n; /* iterates over tree elements */
417
418    /* Initialize the trees. */
419    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
420    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
421    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
422
423    s->dyn_ltree[END_BLOCK].Freq = 1;
424    s->opt_len = s->static_len = 0L;
425    s->last_lit = s->matches = 0;
426}
427
428#define SMALLEST 1
429/* Index within the heap array of least frequent node in the Huffman tree */
430
431
432/* ===========================================================================
433 * Remove the smallest element from the heap and recreate the heap with
434 * one less element. Updates heap and heap_len.
435 */
436#define pqremove(s, tree, top) \
437{\
438    top = s->heap[SMALLEST]; \
439    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
440    pqdownheap(s, tree, SMALLEST); \
441}
442
443/* ===========================================================================
444 * Compares to subtrees, using the tree depth as tie breaker when
445 * the subtrees have equal frequency. This minimizes the worst case length.
446 */
447#define smaller(tree, n, m, depth) \
448   (tree[n].Freq < tree[m].Freq || \
449   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
450
451/* ===========================================================================
452 * Restore the heap property by moving down the tree starting at node k,
453 * exchanging a node with the smallest of its two sons if necessary, stopping
454 * when the heap property is re-established (each father smaller than its
455 * two sons).
456 */
457local void pqdownheap(s, tree, k)
458    deflate_state *s;
459    ct_data *tree;  /* the tree to restore */
460    int k;               /* node to move down */
461{
462    int v = s->heap[k];
463    int j = k << 1;  /* left son of k */
464    while (j <= s->heap_len) {
465        /* Set j to the smallest of the two sons: */
466        if (j < s->heap_len &&
467            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
468            j++;
469        }
470        /* Exit if v is smaller than both sons */
471        if (smaller(tree, v, s->heap[j], s->depth)) break;
472
473        /* Exchange v with the smallest son */
474        s->heap[k] = s->heap[j];  k = j;
475
476        /* And continue down the tree, setting j to the left son of k */
477        j <<= 1;
478    }
479    s->heap[k] = v;
480}
481
482/* ===========================================================================
483 * Compute the optimal bit lengths for a tree and update the total bit length
484 * for the current block.
485 * IN assertion: the fields freq and dad are set, heap[heap_max] and
486 *    above are the tree nodes sorted by increasing frequency.
487 * OUT assertions: the field len is set to the optimal bit length, the
488 *     array bl_count contains the frequencies for each bit length.
489 *     The length opt_len is updated; static_len is also updated if stree is
490 *     not null.
491 */
492local void gen_bitlen(s, desc)
493    deflate_state *s;
494    tree_desc *desc;    /* the tree descriptor */
495{
496    ct_data *tree        = desc->dyn_tree;
497    int max_code         = desc->max_code;
498    const ct_data *stree = desc->stat_desc->static_tree;
499    const intf *extra    = desc->stat_desc->extra_bits;
500    int base             = desc->stat_desc->extra_base;
501    int max_length       = desc->stat_desc->max_length;
502    int h;              /* heap index */
503    int n, m;           /* iterate over the tree elements */
504    int bits;           /* bit length */
505    int xbits;          /* extra bits */
506    ush f;              /* frequency */
507    int overflow = 0;   /* number of elements with bit length too large */
508
509    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
510
511    /* In a first pass, compute the optimal bit lengths (which may
512     * overflow in the case of the bit length tree).
513     */
514    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
515
516    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
517        n = s->heap[h];
518        bits = tree[tree[n].Dad].Len + 1;
519        if (bits > max_length) bits = max_length, overflow++;
520        tree[n].Len = (ush)bits;
521        /* We overwrite tree[n].Dad which is no longer needed */
522
523        if (n > max_code) continue; /* not a leaf node */
524
525        s->bl_count[bits]++;
526        xbits = 0;
527        if (n >= base) xbits = extra[n-base];
528        f = tree[n].Freq;
529        s->opt_len += (ulg)f * (bits + xbits);
530        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
531    }
532    if (overflow == 0) return;
533
534    Trace((stderr,"\nbit length overflow\n"));
535    /* This happens for example on obj2 and pic of the Calgary corpus */
536
537    /* Find the first bit length which could increase: */
538    do {
539        bits = max_length-1;
540        while (s->bl_count[bits] == 0) bits--;
541        s->bl_count[bits]--;      /* move one leaf down the tree */
542        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
543        s->bl_count[max_length]--;
544        /* The brother of the overflow item also moves one step up,
545         * but this does not affect bl_count[max_length]
546         */
547        overflow -= 2;
548    } while (overflow > 0);
549
550    /* Now recompute all bit lengths, scanning in increasing frequency.
551     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
552     * lengths instead of fixing only the wrong ones. This idea is taken
553     * from 'ar' written by Haruhiko Okumura.)
554     */
555    for (bits = max_length; bits != 0; bits--) {
556        n = s->bl_count[bits];
557        while (n != 0) {
558            m = s->heap[--h];
559            if (m > max_code) continue;
560            if ((unsigned) tree[m].Len != (unsigned) bits) {
561                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
562                s->opt_len += ((long)bits - (long)tree[m].Len)
563                              *(long)tree[m].Freq;
564                tree[m].Len = (ush)bits;
565            }
566            n--;
567        }
568    }
569}
570
571/* ===========================================================================
572 * Generate the codes for a given tree and bit counts (which need not be
573 * optimal).
574 * IN assertion: the array bl_count contains the bit length statistics for
575 * the given tree and the field len is set for all tree elements.
576 * OUT assertion: the field code is set for all tree elements of non
577 *     zero code length.
578 */
579local void gen_codes (tree, max_code, bl_count)
580    ct_data *tree;             /* the tree to decorate */
581    int max_code;              /* largest code with non zero frequency */
582    ushf *bl_count;            /* number of codes at each bit length */
583{
584    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
585    ush code = 0;              /* running code value */
586    int bits;                  /* bit index */
587    int n;                     /* code index */
588
589    /* The distribution counts are first used to generate the code values
590     * without bit reversal.
591     */
592    for (bits = 1; bits <= MAX_BITS; bits++) {
593        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
594    }
595    /* Check that the bit counts in bl_count are consistent. The last code
596     * must be all ones.
597     */
598    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
599            "inconsistent bit counts");
600    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
601
602    for (n = 0;  n <= max_code; n++) {
603        int len = tree[n].Len;
604        if (len == 0) continue;
605        /* Now reverse the bits */
606        tree[n].Code = bi_reverse(next_code[len]++, len);
607
608        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
609             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
610    }
611}
612
613/* ===========================================================================
614 * Construct one Huffman tree and assigns the code bit strings and lengths.
615 * Update the total bit length for the current block.
616 * IN assertion: the field freq is set for all tree elements.
617 * OUT assertions: the fields len and code are set to the optimal bit length
618 *     and corresponding code. The length opt_len is updated; static_len is
619 *     also updated if stree is not null. The field max_code is set.
620 */
621local void build_tree(s, desc)
622    deflate_state *s;
623    tree_desc *desc; /* the tree descriptor */
624{
625    ct_data *tree         = desc->dyn_tree;
626    const ct_data *stree  = desc->stat_desc->static_tree;
627    int elems             = desc->stat_desc->elems;
628    int n, m;          /* iterate over heap elements */
629    int max_code = -1; /* largest code with non zero frequency */
630    int node;          /* new node being created */
631
632    /* Construct the initial heap, with least frequent element in
633     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
634     * heap[0] is not used.
635     */
636    s->heap_len = 0, s->heap_max = HEAP_SIZE;
637
638    for (n = 0; n < elems; n++) {
639        if (tree[n].Freq != 0) {
640            s->heap[++(s->heap_len)] = max_code = n;
641            s->depth[n] = 0;
642        } else {
643            tree[n].Len = 0;
644        }
645    }
646
647    /* The pkzip format requires that at least one distance code exists,
648     * and that at least one bit should be sent even if there is only one
649     * possible code. So to avoid special checks later on we force at least
650     * two codes of non zero frequency.
651     */
652    while (s->heap_len < 2) {
653        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
654        tree[node].Freq = 1;
655        s->depth[node] = 0;
656        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
657        /* node is 0 or 1 so it does not have extra bits */
658    }
659    desc->max_code = max_code;
660
661    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
662     * establish sub-heaps of increasing lengths:
663     */
664    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
665
666    /* Construct the Huffman tree by repeatedly combining the least two
667     * frequent nodes.
668     */
669    node = elems;              /* next internal node of the tree */
670    do {
671        pqremove(s, tree, n);  /* n = node of least frequency */
672        m = s->heap[SMALLEST]; /* m = node of next least frequency */
673
674        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
675        s->heap[--(s->heap_max)] = m;
676
677        /* Create a new node father of n and m */
678        tree[node].Freq = tree[n].Freq + tree[m].Freq;
679        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
680                                s->depth[n] : s->depth[m]) + 1);
681        tree[n].Dad = tree[m].Dad = (ush)node;
682#ifdef DUMP_BL_TREE
683        if (tree == s->bl_tree) {
684            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
685                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
686        }
687#endif
688        /* and insert the new node in the heap */
689        s->heap[SMALLEST] = node++;
690        pqdownheap(s, tree, SMALLEST);
691
692    } while (s->heap_len >= 2);
693
694    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
695
696    /* At this point, the fields freq and dad are set. We can now
697     * generate the bit lengths.
698     */
699    gen_bitlen(s, (tree_desc *)desc);
700
701    /* The field len is now set, we can generate the bit codes */
702    gen_codes ((ct_data *)tree, max_code, s->bl_count);
703}
704
705/* ===========================================================================
706 * Scan a literal or distance tree to determine the frequencies of the codes
707 * in the bit length tree.
708 */
709local void scan_tree (s, tree, max_code)
710    deflate_state *s;
711    ct_data *tree;   /* the tree to be scanned */
712    int max_code;    /* and its largest code of non zero frequency */
713{
714    int n;                     /* iterates over all tree elements */
715    int prevlen = -1;          /* last emitted length */
716    int curlen;                /* length of current code */
717    int nextlen = tree[0].Len; /* length of next code */
718    int count = 0;             /* repeat count of the current code */
719    int max_count = 7;         /* max repeat count */
720    int min_count = 4;         /* min repeat count */
721
722    if (nextlen == 0) max_count = 138, min_count = 3;
723    tree[max_code+1].Len = (ush)0xffff; /* guard */
724
725    for (n = 0; n <= max_code; n++) {
726        curlen = nextlen; nextlen = tree[n+1].Len;
727        if (++count < max_count && curlen == nextlen) {
728            continue;
729        } else if (count < min_count) {
730            s->bl_tree[curlen].Freq += count;
731        } else if (curlen != 0) {
732            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
733            s->bl_tree[REP_3_6].Freq++;
734        } else if (count <= 10) {
735            s->bl_tree[REPZ_3_10].Freq++;
736        } else {
737            s->bl_tree[REPZ_11_138].Freq++;
738        }
739        count = 0; prevlen = curlen;
740        if (nextlen == 0) {
741            max_count = 138, min_count = 3;
742        } else if (curlen == nextlen) {
743            max_count = 6, min_count = 3;
744        } else {
745            max_count = 7, min_count = 4;
746        }
747    }
748}
749
750/* ===========================================================================
751 * Send a literal or distance tree in compressed form, using the codes in
752 * bl_tree.
753 */
754local void send_tree (s, tree, max_code)
755    deflate_state *s;
756    ct_data *tree; /* the tree to be scanned */
757    int max_code;       /* and its largest code of non zero frequency */
758{
759    int n;                     /* iterates over all tree elements */
760    int prevlen = -1;          /* last emitted length */
761    int curlen;                /* length of current code */
762    int nextlen = tree[0].Len; /* length of next code */
763    int count = 0;             /* repeat count of the current code */
764    int max_count = 7;         /* max repeat count */
765    int min_count = 4;         /* min repeat count */
766
767    /* tree[max_code+1].Len = -1; */  /* guard already set */
768    if (nextlen == 0) max_count = 138, min_count = 3;
769
770    for (n = 0; n <= max_code; n++) {
771        curlen = nextlen; nextlen = tree[n+1].Len;
772        if (++count < max_count && curlen == nextlen) {
773            continue;
774        } else if (count < min_count) {
775            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
776
777        } else if (curlen != 0) {
778            if (curlen != prevlen) {
779                send_code(s, curlen, s->bl_tree); count--;
780            }
781            Assert(count >= 3 && count <= 6, " 3_6?");
782            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
783
784        } else if (count <= 10) {
785            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
786
787        } else {
788            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
789        }
790        count = 0; prevlen = curlen;
791        if (nextlen == 0) {
792            max_count = 138, min_count = 3;
793        } else if (curlen == nextlen) {
794            max_count = 6, min_count = 3;
795        } else {
796            max_count = 7, min_count = 4;
797        }
798    }
799}
800
801/* ===========================================================================
802 * Construct the Huffman tree for the bit lengths and return the index in
803 * bl_order of the last bit length code to send.
804 */
805local int build_bl_tree(s)
806    deflate_state *s;
807{
808    int max_blindex;  /* index of last bit length code of non zero freq */
809
810    /* Determine the bit length frequencies for literal and distance trees */
811    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
812    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
813
814    /* Build the bit length tree: */
815    build_tree(s, (tree_desc *)(&(s->bl_desc)));
816    /* opt_len now includes the length of the tree representations, except
817     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
818     */
819
820    /* Determine the number of bit length codes to send. The pkzip format
821     * requires that at least 4 bit length codes be sent. (appnote.txt says
822     * 3 but the actual value used is 4.)
823     */
824    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
825        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
826    }
827    /* Update opt_len to include the bit length tree and counts */
828    s->opt_len += 3*(max_blindex+1) + 5+5+4;
829    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
830            s->opt_len, s->static_len));
831
832    return max_blindex;
833}
834
835/* ===========================================================================
836 * Send the header for a block using dynamic Huffman trees: the counts, the
837 * lengths of the bit length codes, the literal tree and the distance tree.
838 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
839 */
840local void send_all_trees(s, lcodes, dcodes, blcodes)
841    deflate_state *s;
842    int lcodes, dcodes, blcodes; /* number of codes for each tree */
843{
844    int rank;                    /* index in bl_order */
845
846    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
847    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
848            "too many codes");
849    Tracev((stderr, "\nbl counts: "));
850    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
851    send_bits(s, dcodes-1,   5);
852    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
853    for (rank = 0; rank < blcodes; rank++) {
854        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
855        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
856    }
857    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
858
859    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
860    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
861
862    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
863    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
864}
865
866/* ===========================================================================
867 * Send a stored block
868 */
869void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
870    deflate_state *s;
871    charf *buf;       /* input block */
872    ulg stored_len;   /* length of input block */
873    int last;         /* one if this is the last block for a file */
874{
875    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
876#ifdef DEBUG
877    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
878    s->compressed_len += (stored_len + 4) << 3;
879#endif
880    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
881}
882
883/* ===========================================================================
884 * Send one empty static block to give enough lookahead for inflate.
885 * This takes 10 bits, of which 7 may remain in the bit buffer.
886 * The current inflate code requires 9 bits of lookahead. If the
887 * last two codes for the previous block (real code plus EOB) were coded
888 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
889 * the last real code. In this case we send two empty static blocks instead
890 * of one. (There are no problems if the previous block is stored or fixed.)
891 * To simplify the code, we assume the worst case of last real code encoded
892 * on one bit only.
893 */
894void ZLIB_INTERNAL _tr_align(s)
895    deflate_state *s;
896{
897    send_bits(s, STATIC_TREES<<1, 3);
898    send_code(s, END_BLOCK, static_ltree);
899#ifdef DEBUG
900    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
901#endif
902    bi_flush(s);
903    /* Of the 10 bits for the empty block, we have already sent
904     * (10 - bi_valid) bits. The lookahead for the last real code (before
905     * the EOB of the previous block) was thus at least one plus the length
906     * of the EOB plus what we have just sent of the empty static block.
907     */
908    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
909        send_bits(s, STATIC_TREES<<1, 3);
910        send_code(s, END_BLOCK, static_ltree);
911#ifdef DEBUG
912        s->compressed_len += 10L;
913#endif
914        bi_flush(s);
915    }
916    s->last_eob_len = 7;
917}
918
919/* ===========================================================================
920 * Determine the best encoding for the current block: dynamic trees, static
921 * trees or store, and output the encoded block to the zip file.
922 */
923void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
924    deflate_state *s;
925    charf *buf;       /* input block, or NULL if too old */
926    ulg stored_len;   /* length of input block */
927    int last;         /* one if this is the last block for a file */
928{
929    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
930    int max_blindex = 0;  /* index of last bit length code of non zero freq */
931
932    /* Build the Huffman trees unless a stored block is forced */
933    if (s->level > 0) {
934
935        /* Check if the file is binary or text */
936        if (s->strm->data_type == Z_UNKNOWN)
937            s->strm->data_type = detect_data_type(s);
938
939        /* Construct the literal and distance trees */
940        build_tree(s, (tree_desc *)(&(s->l_desc)));
941        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
942                s->static_len));
943
944        build_tree(s, (tree_desc *)(&(s->d_desc)));
945        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
946                s->static_len));
947        /* At this point, opt_len and static_len are the total bit lengths of
948         * the compressed block data, excluding the tree representations.
949         */
950
951        /* Build the bit length tree for the above two trees, and get the index
952         * in bl_order of the last bit length code to send.
953         */
954        max_blindex = build_bl_tree(s);
955
956        /* Determine the best encoding. Compute the block lengths in bytes. */
957        opt_lenb = (s->opt_len+3+7)>>3;
958        static_lenb = (s->static_len+3+7)>>3;
959
960        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
961                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
962                s->last_lit));
963
964        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
965
966    } else {
967        Assert(buf != (char*)0, "lost buf");
968        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
969    }
970
971#ifdef FORCE_STORED
972    if (buf != (char*)0) { /* force stored block */
973#else
974    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
975                       /* 4: two words for the lengths */
976#endif
977        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
978         * Otherwise we can't have processed more than WSIZE input bytes since
979         * the last block flush, because compression would have been
980         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
981         * transform a block into a stored block.
982         */
983        _tr_stored_block(s, buf, stored_len, last);
984
985#ifdef FORCE_STATIC
986    } else if (static_lenb >= 0) { /* force static trees */
987#else
988    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
989#endif
990        send_bits(s, (STATIC_TREES<<1)+last, 3);
991        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
992#ifdef DEBUG
993        s->compressed_len += 3 + s->static_len;
994#endif
995    } else {
996        send_bits(s, (DYN_TREES<<1)+last, 3);
997        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
998                       max_blindex+1);
999        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1000#ifdef DEBUG
1001        s->compressed_len += 3 + s->opt_len;
1002#endif
1003    }
1004    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1005    /* The above check is made mod 2^32, for files larger than 512 MB
1006     * and uLong implemented on 32 bits.
1007     */
1008    init_block(s);
1009
1010    if (last) {
1011        bi_windup(s);
1012#ifdef DEBUG
1013        s->compressed_len += 7;  /* align on byte boundary */
1014#endif
1015    }
1016    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1017           s->compressed_len-7*last));
1018}
1019
1020/* ===========================================================================
1021 * Save the match info and tally the frequency counts. Return true if
1022 * the current block must be flushed.
1023 */
1024int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1025    deflate_state *s;
1026    unsigned dist;  /* distance of matched string */
1027    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1028{
1029    s->d_buf[s->last_lit] = (ush)dist;
1030    s->l_buf[s->last_lit++] = (uch)lc;
1031    if (dist == 0) {
1032        /* lc is the unmatched char */
1033        s->dyn_ltree[lc].Freq++;
1034    } else {
1035        s->matches++;
1036        /* Here, lc is the match length - MIN_MATCH */
1037        dist--;             /* dist = match distance - 1 */
1038        Assert((ush)dist < (ush)MAX_DIST(s) &&
1039               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1040               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1041
1042        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1043        s->dyn_dtree[d_code(dist)].Freq++;
1044    }
1045
1046#ifdef TRUNCATE_BLOCK
1047    /* Try to guess if it is profitable to stop the current block here */
1048    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1049        /* Compute an upper bound for the compressed length */
1050        ulg out_length = (ulg)s->last_lit*8L;
1051        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1052        int dcode;
1053        for (dcode = 0; dcode < D_CODES; dcode++) {
1054            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1055                (5L+extra_dbits[dcode]);
1056        }
1057        out_length >>= 3;
1058        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1059               s->last_lit, in_length, out_length,
1060               100L - out_length*100L/in_length));
1061        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1062    }
1063#endif
1064    return (s->last_lit == s->lit_bufsize-1);
1065    /* We avoid equality with lit_bufsize because of wraparound at 64K
1066     * on 16 bit machines and because stored blocks are restricted to
1067     * 64K-1 bytes.
1068     */
1069}
1070
1071/* ===========================================================================
1072 * Send the block data compressed using the given Huffman trees
1073 */
1074local void compress_block(s, ltree, dtree)
1075    deflate_state *s;
1076    ct_data *ltree; /* literal tree */
1077    ct_data *dtree; /* distance tree */
1078{
1079    unsigned dist;      /* distance of matched string */
1080    int lc;             /* match length or unmatched char (if dist == 0) */
1081    unsigned lx = 0;    /* running index in l_buf */
1082    unsigned code;      /* the code to send */
1083    int extra;          /* number of extra bits to send */
1084
1085    if (s->last_lit != 0) do {
1086        dist = s->d_buf[lx];
1087        lc = s->l_buf[lx++];
1088        if (dist == 0) {
1089            send_code(s, lc, ltree); /* send a literal byte */
1090            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1091        } else {
1092            /* Here, lc is the match length - MIN_MATCH */
1093            code = _length_code[lc];
1094            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1095            extra = extra_lbits[code];
1096            if (extra != 0) {
1097                lc -= base_length[code];
1098                send_bits(s, lc, extra);       /* send the extra length bits */
1099            }
1100            dist--; /* dist is now the match distance - 1 */
1101            code = d_code(dist);
1102            Assert (code < D_CODES, "bad d_code");
1103
1104            send_code(s, code, dtree);       /* send the distance code */
1105            extra = extra_dbits[code];
1106            if (extra != 0) {
1107                dist -= base_dist[code];
1108                send_bits(s, dist, extra);   /* send the extra distance bits */
1109            }
1110        } /* literal or match pair ? */
1111
1112        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1113        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1114               "pendingBuf overflow");
1115
1116    } while (lx < s->last_lit);
1117
1118    send_code(s, END_BLOCK, ltree);
1119    s->last_eob_len = ltree[END_BLOCK].Len;
1120}
1121
1122/* ===========================================================================
1123 * Check if the data type is TEXT or BINARY, using the following algorithm:
1124 * - TEXT if the two conditions below are satisfied:
1125 *    a) There are no non-portable control characters belonging to the
1126 *       "black list" (0..6, 14..25, 28..31).
1127 *    b) There is at least one printable character belonging to the
1128 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1129 * - BINARY otherwise.
1130 * - The following partially-portable control characters form a
1131 *   "gray list" that is ignored in this detection algorithm:
1132 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1133 * IN assertion: the fields Freq of dyn_ltree are set.
1134 */
1135local int detect_data_type(s)
1136    deflate_state *s;
1137{
1138    /* black_mask is the bit mask of black-listed bytes
1139     * set bits 0..6, 14..25, and 28..31
1140     * 0xf3ffc07f = binary 11110011111111111100000001111111
1141     */
1142    unsigned long black_mask = 0xf3ffc07fUL;
1143    int n;
1144
1145    /* Check for non-textual ("black-listed") bytes. */
1146    for (n = 0; n <= 31; n++, black_mask >>= 1)
1147        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1148            return Z_BINARY;
1149
1150    /* Check for textual ("white-listed") bytes. */
1151    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1152            || s->dyn_ltree[13].Freq != 0)
1153        return Z_TEXT;
1154    for (n = 32; n < LITERALS; n++)
1155        if (s->dyn_ltree[n].Freq != 0)
1156            return Z_TEXT;
1157
1158    /* There are no "black-listed" or "white-listed" bytes:
1159     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1160     */
1161    return Z_BINARY;
1162}
1163
1164/* ===========================================================================
1165 * Reverse the first len bits of a code, using straightforward code (a faster
1166 * method would use a table)
1167 * IN assertion: 1 <= len <= 15
1168 */
1169local unsigned bi_reverse(code, len)
1170    unsigned code; /* the value to invert */
1171    int len;       /* its bit length */
1172{
1173    register unsigned res = 0;
1174    do {
1175        res |= code & 1;
1176        code >>= 1, res <<= 1;
1177    } while (--len > 0);
1178    return res >> 1;
1179}
1180
1181/* ===========================================================================
1182 * Flush the bit buffer, keeping at most 7 bits in it.
1183 */
1184local void bi_flush(s)
1185    deflate_state *s;
1186{
1187    if (s->bi_valid == 16) {
1188        put_short(s, s->bi_buf);
1189        s->bi_buf = 0;
1190        s->bi_valid = 0;
1191    } else if (s->bi_valid >= 8) {
1192        put_byte(s, (Byte)s->bi_buf);
1193        s->bi_buf >>= 8;
1194        s->bi_valid -= 8;
1195    }
1196}
1197
1198/* ===========================================================================
1199 * Flush the bit buffer and align the output on a byte boundary
1200 */
1201local void bi_windup(s)
1202    deflate_state *s;
1203{
1204    if (s->bi_valid > 8) {
1205        put_short(s, s->bi_buf);
1206    } else if (s->bi_valid > 0) {
1207        put_byte(s, (Byte)s->bi_buf);
1208    }
1209    s->bi_buf = 0;
1210    s->bi_valid = 0;
1211#ifdef DEBUG
1212    s->bits_sent = (s->bits_sent+7) & ~7;
1213#endif
1214}
1215
1216/* ===========================================================================
1217 * Copy a stored block, storing first the length and its
1218 * one's complement if requested.
1219 */
1220local void copy_block(s, buf, len, header)
1221    deflate_state *s;
1222    charf    *buf;    /* the input data */
1223    unsigned len;     /* its length */
1224    int      header;  /* true if block header must be written */
1225{
1226    bi_windup(s);        /* align on byte boundary */
1227    s->last_eob_len = 8; /* enough lookahead for inflate */
1228
1229    if (header) {
1230        put_short(s, (ush)len);
1231        put_short(s, (ush)~len);
1232#ifdef DEBUG
1233        s->bits_sent += 2*16;
1234#endif
1235    }
1236#ifdef DEBUG
1237    s->bits_sent += (ulg)len<<3;
1238#endif
1239    while (len--) {
1240        put_byte(s, *buf++);
1241    }
1242}
Note: See TracBrowser for help on using the repository browser.