source: rtems/cpukit/zlib/examples/enough.c @ f1c8de9

4.115
Last change on this file since f1c8de9 was 13d404a, checked in by Ralf Corsepius <ralf.corsepius@…>, on 02/18/08 at 02:50:09

Import from zlib-1.2.4

  • Property mode set to 100644
File size: 23.5 KB
Line 
1/* enough.c -- determine the maximum size of inflate's Huffman code tables over
2 * all possible valid and complete Huffman codes, subject to a length limit.
3 * Copyright (C) 2007, 2008 Mark Adler
4 * Version 1.3  17 February 2008  Mark Adler
5 */
6
7/* Version history:
8   1.0   3 Jan 2007  First version (derived from codecount.c version 1.4)
9   1.1   4 Jan 2007  Use faster incremental table usage computation
10                     Prune examine() search on previously visited states
11   1.2   5 Jan 2007  Comments clean up
12                     As inflate does, decrease root for short codes
13                     Refuse cases where inflate would increase root
14   1.3  17 Feb 2008  Add argument for initial root table size
15                     Fix bug for initial root table size == max - 1
16                     Use a macro to compute the history index
17 */
18
19/*
20   Examine all possible Huffman codes for a given number of symbols and a
21   maximum code length in bits to determine the maximum table size for zilb's
22   inflate.  Only complete Huffman codes are counted.
23
24   Two codes are considered distinct if the vectors of the number of codes per
25   length are not identical.  So permutations of the symbol assignments result
26   in the same code for the counting, as do permutations of the assignments of
27   the bit values to the codes (i.e. only canonical codes are counted).
28
29   We build a code from shorter to longer lengths, determining how many symbols
30   are coded at each length.  At each step, we have how many symbols remain to
31   be coded, what the last code length used was, and how many bit patterns of
32   that length remain unused. Then we add one to the code length and double the
33   number of unused patterns to graduate to the next code length.  We then
34   assign all portions of the remaining symbols to that code length that
35   preserve the properties of a correct and eventually complete code.  Those
36   properties are: we cannot use more bit patterns than are available; and when
37   all the symbols are used, there are exactly zero possible bit patterns
38   remaining.
39
40   The inflate Huffman decoding algorithm uses two-level lookup tables for
41   speed.  There is a single first-level table to decode codes up to root bits
42   in length (root == 9 in the current inflate implementation).  The table
43   has 1 << root entries and is indexed by the next root bits of input.  Codes
44   shorter than root bits have replicated table entries, so that the correct
45   entry is pointed to regardless of the bits that follow the short code.  If
46   the code is longer than root bits, then the table entry points to a second-
47   level table.  The size of that table is determined by the longest code with
48   that root-bit prefix.  If that longest code has length len, then the table
49   has size 1 << (len - root), to index the remaining bits in that set of
50   codes.  Each subsequent root-bit prefix then has its own sub-table.  The
51   total number of table entries required by the code is calculated
52   incrementally as the number of codes at each bit length is populated.  When
53   all of the codes are shorter than root bits, then root is reduced to the
54   longest code length, resulting in a single, smaller, one-level table.
55
56   The inflate algorithm also provides for small values of root (relative to
57   the log2 of the number of symbols), where the shortest code has more bits
58   than root.  In that case, root is increased to the length of the shortest
59   code.  This program, by design, does not handle that case, so it is verified
60   that the number of symbols is less than 2^(root + 1).
61
62   In order to speed up the examination (by about ten orders of magnitude for
63   the default arguments), the intermediate states in the build-up of a code
64   are remembered and previously visited branches are pruned.  The memory
65   required for this will increase rapidly with the total number of symbols and
66   the maximum code length in bits.  However this is a very small price to pay
67   for the vast speedup.
68
69   First, all of the possible Huffman codes are counted, and reachable
70   intermediate states are noted by a non-zero count in a saved-results array.
71   Second, the intermediate states that lead to (root + 1) bit or longer codes
72   are used to look at all sub-codes from those junctures for their inflate
73   memory usage.  (The amount of memory used is not affected by the number of
74   codes of root bits or less in length.)  Third, the visited states in the
75   construction of those sub-codes and the associated calculation of the table
76   size is recalled in order to avoid recalculating from the same juncture.
77   Beginning the code examination at (root + 1) bit codes, which is enabled by
78   identifying the reachable nodes, accounts for about six of the orders of
79   magnitude of improvement for the default arguments.  About another four
80   orders of magnitude come from not revisiting previous states.  Out of
81   approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
82   need to be examined to cover all of the possible table memory usage cases
83   for the default arguments of 286 symbols limited to 15-bit codes.
84
85   Note that an unsigned long long type is used for counting.  It is quite easy
86   to exceed the capacity of an eight-byte integer with a large number of
87   symbols and a large maximum code length, so multiple-precision arithmetic
88   would need to replace the unsigned long long arithmetic in that case.  This
89   program will abort if an overflow occurs.  The big_t type identifies where
90   the counting takes place.
91
92   An unsigned long long type is also used for calculating the number of
93   possible codes remaining at the maximum length.  This limits the maximum
94   code length to the number of bits in a long long minus the number of bits
95   needed to represent the symbols in a flat code.  The code_t type identifies
96   where the bit pattern counting takes place.
97 */
98
99#include <stdio.h>
100#include <stdlib.h>
101#include <string.h>
102#include <assert.h>
103
104#define local static
105
106/* special data types */
107typedef unsigned long long big_t;   /* type for code counting */
108typedef unsigned long long code_t;  /* type for bit pattern counting */
109struct tab {                        /* type for been here check */
110    size_t len;         /* length of bit vector in char's */
111    char *vec;          /* allocated bit vector */
112};
113
114/* The array for saving results, num[], is indexed with this triplet:
115
116      syms: number of symbols remaining to code
117      left: number of available bit patterns at length len
118      len: number of bits in the codes currently being assigned
119
120   Those indices are constrained thusly when saving results:
121
122      syms: 3..totsym (totsym == total symbols to code)
123      left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
124      len: 1..max - 1 (max == maximum code length in bits)
125
126   syms == 2 is not saved since that immediately leads to a single code.  left
127   must be even, since it represents the number of available bit patterns at
128   the current length, which is double the number at the previous length.
129   left ends at syms-1 since left == syms immediately results in a single code.
130   (left > sym is not allowed since that would result in an incomplete code.)
131   len is less than max, since the code completes immediately when len == max.
132
133   The offset into the array is calculated for the three indices with the
134   first one (syms) being outermost, and the last one (len) being innermost.
135   We build the array with length max-1 lists for the len index, with syms-3
136   of those for each symbol.  There are totsym-2 of those, with each one
137   varying in length as a function of sym.  See the calculation of index in
138   count() for the index, and the calculation of size in main() for the size
139   of the array.
140
141   For the deflate example of 286 symbols limited to 15-bit codes, the array
142   has 284,284 entries, taking up 2.17 MB for an 8-byte big_t.  More than
143   half of the space allocated for saved results is actually used -- not all
144   possible triplets are reached in the generation of valid Huffman codes.
145 */
146
147/* The array for tracking visited states, done[], is itself indexed identically
148   to the num[] array as described above for the (syms, left, len) triplet.
149   Each element in the array is further indexed by the (mem, rem) doublet,
150   where mem is the amount of inflate table space used so far, and rem is the
151   remaining unused entries in the current inflate sub-table.  Each indexed
152   element is simply one bit indicating whether the state has been visited or
153   not.  Since the ranges for mem and rem are not known a priori, each bit
154   vector is of a variable size, and grows as needed to accommodate the visited
155   states.  mem and rem are used to calculate a single index in a triangular
156   array.  Since the range of mem is expected in the default case to be about
157   ten times larger than the range of rem, the array is skewed to reduce the
158   memory usage, with eight times the range for mem than for rem.  See the
159   calculations for offset and bit in beenhere() for the details.
160
161   For the deflate example of 286 symbols limited to 15-bit codes, the bit
162   vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
163   array itself.
164 */
165
166/* Globals to avoid propagating constants or constant pointers recursively */
167local int max;          /* maximum allowed bit length for the codes */
168local int root;         /* size of base code table in bits */
169local int large;        /* largest code table so far */
170local size_t size;      /* number of elements in num and done */
171local int *code;        /* number of symbols assigned to each bit length */
172local big_t *num;       /* saved results array for code counting */
173local struct tab *done; /* states already evaluated array */
174
175/* Index function for num[] and done[] */
176#define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
177
178/* Free allocated space.  Uses globals code, num, and done. */
179local void cleanup(void)
180{
181    size_t n;
182
183    if (done != NULL) {
184        for (n = 0; n < size; n++)
185            if (done[n].len)
186                free(done[n].vec);
187        free(done);
188    }
189    if (num != NULL)
190        free(num);
191    if (code != NULL)
192        free(code);
193}
194
195/* Return the number of possible Huffman codes using bit patterns of lengths
196   len through max inclusive, coding syms symbols, with left bit patterns of
197   length len unused -- return -1 if there is an overflow in the counting.
198   Keep a record of previous results in num to prevent repeating the same
199   calculation.  Uses the globals max and num. */
200local big_t count(int syms, int len, int left)
201{
202    big_t sum;          /* number of possible codes from this juncture */
203    big_t got;          /* value returned from count() */
204    int least;          /* least number of syms to use at this juncture */
205    int most;           /* most number of syms to use at this juncture */
206    int use;            /* number of bit patterns to use in next call */
207    size_t index;       /* index of this case in *num */
208
209    /* see if only one possible code */
210    if (syms == left)
211        return 1;
212
213    /* note and verify the expected state */
214    assert(syms > left && left > 0 && len < max);
215
216    /* see if we've done this one already */
217    index = INDEX(syms, left, len);
218    got = num[index];
219    if (got)
220        return got;         /* we have -- return the saved result */
221
222    /* we need to use at least this many bit patterns so that the code won't be
223       incomplete at the next length (more bit patterns than symbols) */
224    least = (left << 1) - syms;
225    if (least < 0)
226        least = 0;
227
228    /* we can use at most this many bit patterns, lest there not be enough
229       available for the remaining symbols at the maximum length (if there were
230       no limit to the code length, this would become: most = left - 1) */
231    most = (((code_t)left << (max - len)) - syms) /
232            (((code_t)1 << (max - len)) - 1);
233
234    /* count all possible codes from this juncture and add them up */
235    sum = 0;
236    for (use = least; use <= most; use++) {
237        got = count(syms - use, len + 1, (left - use) << 1);
238        sum += got;
239        if (got == -1 || sum < got)         /* overflow */
240            return -1;
241    }
242
243    /* verify that all recursive calls are productive */
244    assert(sum != 0);
245
246    /* save the result and return it */
247    num[index] = sum;
248    return sum;
249}
250
251/* Return true if we've been here before, set to true if not.  Set a bit in a
252   bit vector to indicate visiting this state.  Each (syms,len,left) state
253   has a variable size bit vector indexed by (mem,rem).  The bit vector is
254   lengthened if needed to allow setting the (mem,rem) bit. */
255local int beenhere(int syms, int len, int left, int mem, int rem)
256{
257    size_t index;       /* index for this state's bit vector */
258    size_t offset;      /* offset in this state's bit vector */
259    int bit;            /* mask for this state's bit */
260    size_t length;      /* length of the bit vector in bytes */
261    char *vector;       /* new or enlarged bit vector */
262
263    /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
264    index = INDEX(syms, left, len);
265    mem -= 1 << root;
266    offset = (mem >> 3) + rem;
267    offset = ((offset * (offset + 1)) >> 1) + rem;
268    bit = 1 << (mem & 7);
269
270    /* see if we've been here */
271    length = done[index].len;
272    if (offset < length && (done[index].vec[offset] & bit) != 0)
273        return 1;       /* done this! */
274
275    /* we haven't been here before -- set the bit to show we have now */
276
277    /* see if we need to lengthen the vector in order to set the bit */
278    if (length <= offset) {
279        /* if we have one already, enlarge it, zero out the appended space */
280        if (length) {
281            do {
282                length <<= 1;
283            } while (length <= offset);
284            vector = realloc(done[index].vec, length);
285            if (vector != NULL)
286                memset(vector + done[index].len, 0, length - done[index].len);
287        }
288
289        /* otherwise we need to make a new vector and zero it out */
290        else {
291            length = 1 << (len - root);
292            while (length <= offset)
293                length <<= 1;
294            vector = calloc(length, sizeof(char));
295        }
296
297        /* in either case, bail if we can't get the memory */
298        if (vector == NULL) {
299            fputs("abort: unable to allocate enough memory\n", stderr);
300            cleanup();
301            exit(1);
302        }
303
304        /* install the new vector */
305        done[index].len = length;
306        done[index].vec = vector;
307    }
308
309    /* set the bit */
310    done[index].vec[offset] |= bit;
311    return 0;
312}
313
314/* Examine all possible codes from the given node (syms, len, left).  Compute
315   the amount of memory required to build inflate's decoding tables, where the
316   number of code structures used so far is mem, and the number remaining in
317   the current sub-table is rem.  Uses the globals max, code, root, large, and
318   done. */
319local void examine(int syms, int len, int left, int mem, int rem)
320{
321    int least;          /* least number of syms to use at this juncture */
322    int most;           /* most number of syms to use at this juncture */
323    int use;            /* number of bit patterns to use in next call */
324
325    /* see if we have a complete code */
326    if (syms == left) {
327        /* set the last code entry */
328        code[len] = left;
329
330        /* complete computation of memory used by this code */
331        while (rem < left) {
332            left -= rem;
333            rem = 1 << (len - root);
334            mem += rem;
335        }
336        assert(rem == left);
337
338        /* if this is a new maximum, show the entries used and the sub-code */
339        if (mem > large) {
340            large = mem;
341            printf("max %d: ", mem);
342            for (use = root + 1; use <= max; use++)
343                if (code[use])
344                    printf("%d[%d] ", code[use], use);
345            putchar('\n');
346            fflush(stdout);
347        }
348
349        /* remove entries as we drop back down in the recursion */
350        code[len] = 0;
351        return;
352    }
353
354    /* prune the tree if we can */
355    if (beenhere(syms, len, left, mem, rem))
356        return;
357
358    /* we need to use at least this many bit patterns so that the code won't be
359       incomplete at the next length (more bit patterns than symbols) */
360    least = (left << 1) - syms;
361    if (least < 0)
362        least = 0;
363
364    /* we can use at most this many bit patterns, lest there not be enough
365       available for the remaining symbols at the maximum length (if there were
366       no limit to the code length, this would become: most = left - 1) */
367    most = (((code_t)left << (max - len)) - syms) /
368            (((code_t)1 << (max - len)) - 1);
369
370    /* occupy least table spaces, creating new sub-tables as needed */
371    use = least;
372    while (rem < use) {
373        use -= rem;
374        rem = 1 << (len - root);
375        mem += rem;
376    }
377    rem -= use;
378
379    /* examine codes from here, updating table space as we go */
380    for (use = least; use <= most; use++) {
381        code[len] = use;
382        examine(syms - use, len + 1, (left - use) << 1,
383                mem + (rem ? 1 << (len - root) : 0), rem << 1);
384        if (rem == 0) {
385            rem = 1 << (len - root);
386            mem += rem;
387        }
388        rem--;
389    }
390
391    /* remove entries as we drop back down in the recursion */
392    code[len] = 0;
393}
394
395/* Look at all sub-codes starting with root + 1 bits.  Look at only the valid
396   intermediate code states (syms, left, len).  For each completed code,
397   calculate the amount of memory required by inflate to build the decoding
398   tables. Find the maximum amount of memory required and show the code that
399   requires that maximum.  Uses the globals max, root, and num. */
400local void enough(int syms)
401{
402    int n;              /* number of remaing symbols for this node */
403    int left;           /* number of unused bit patterns at this length */
404    size_t index;       /* index of this case in *num */
405
406    /* clear code */
407    for (n = 0; n <= max; n++)
408        code[n] = 0;
409
410    /* look at all (root + 1) bit and longer codes */
411    large = 1 << root;              /* base table */
412    if (root < max)                 /* otherwise, there's only a base table */
413        for (n = 3; n <= syms; n++)
414            for (left = 2; left < n; left += 2)
415            {
416                /* look at all reachable (root + 1) bit nodes, and the
417                   resulting codes (complete at root + 2 or more) */
418                index = INDEX(n, left, root + 1);
419                if (root + 1 < max && num[index])       /* reachable node */
420                    examine(n, root + 1, left, 1 << root, 0);
421
422                /* also look at root bit codes with completions at root + 1
423                   bits (not saved in num, since complete), just in case */
424                if (num[index - 1] && n <= left << 1)
425                    examine((n - left) << 1, root + 1, (n - left) << 1,
426                            1 << root, 0);
427            }
428
429    /* done */
430    printf("done: maximum of %d table entries\n", large);
431}
432
433/*
434   Examine and show the total number of possible Huffman codes for a given
435   maximum number of symbols, initial root table size, and maximum code length
436   in bits -- those are the command arguments in that order.  The default
437   values are 286, 9, and 15 respectively, for the deflate literal/length code.
438   The possible codes are counted for each number of coded symbols from two to
439   the maximum.  The counts for each of those and the total number of codes are
440   shown.  The maximum number of inflate table entires is then calculated
441   across all possible codes.  Each new maximum number of table entries and the
442   associated sub-code (starting at root + 1 == 10 bits) is shown.
443
444   To count and examine Huffman codes that are not length-limited, provide a
445   maximum length equal to the number of symbols minus one.
446
447   For the deflate literal/length code, use "enough".  For the deflate distance
448   code, use "enough 30 6".
449
450   This uses the %llu printf format to print big_t numbers, which assumes that
451   big_t is an unsigned long long.  If the big_t type is changed (for example
452   to a multiple precision type), the method of printing will also need to be
453   updated.
454 */
455int main(int argc, char **argv)
456{
457    int syms;           /* total number of symbols to code */
458    int n;              /* number of symbols to code for this run */
459    big_t got;          /* return value of count() */
460    big_t sum;          /* accumulated number of codes over n */
461
462    /* set up globals for cleanup() */
463    code = NULL;
464    num = NULL;
465    done = NULL;
466
467    /* get arguments -- default to the deflate literal/length code */
468    syms = 286;
469        root = 9;
470    max = 15;
471    if (argc > 1) {
472        syms = atoi(argv[1]);
473        if (argc > 2) {
474            root = atoi(argv[2]);
475                        if (argc > 3)
476                                max = atoi(argv[3]);
477                }
478    }
479    if (argc > 4 || syms < 2 || root < 1 || max < 1) {
480        fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
481                          stderr);
482        return 1;
483    }
484
485    /* if not restricting the code length, the longest is syms - 1 */
486    if (max > syms - 1)
487        max = syms - 1;
488
489    /* determine the number of bits in a code_t */
490    n = 0;
491    while (((code_t)1 << n) != 0)
492        n++;
493
494    /* make sure that the calculation of most will not overflow */
495    if (max > n || syms - 2 >= (((code_t)0 - 1) >> (max - 1))) {
496        fputs("abort: code length too long for internal types\n", stderr);
497        return 1;
498    }
499
500    /* reject impossible code requests */
501    if (syms - 1 > ((code_t)1 << max) - 1) {
502        fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
503                syms, max);
504        return 1;
505    }
506
507    /* allocate code vector */
508    code = calloc(max + 1, sizeof(int));
509    if (code == NULL) {
510        fputs("abort: unable to allocate enough memory\n", stderr);
511        return 1;
512    }
513
514    /* determine size of saved results array, checking for overflows,
515       allocate and clear the array (set all to zero with calloc()) */
516    if (syms == 2)              /* iff max == 1 */
517        num = NULL;             /* won't be saving any results */
518    else {
519        size = syms >> 1;
520        if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
521                (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
522                (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
523                (num = calloc(size, sizeof(big_t))) == NULL) {
524            fputs("abort: unable to allocate enough memory\n", stderr);
525            cleanup();
526            return 1;
527        }
528    }
529
530    /* count possible codes for all numbers of symbols, add up counts */
531    sum = 0;
532    for (n = 2; n <= syms; n++) {
533        got = count(n, 1, 2);
534        sum += got;
535        if (got == -1 || sum < got) {       /* overflow */
536            fputs("abort: can't count that high!\n", stderr);
537            cleanup();
538            return 1;
539        }
540        printf("%llu %d-codes\n", got, n);
541    }
542    printf("%llu total codes for 2 to %d symbols", sum, syms);
543    if (max < syms - 1)
544        printf(" (%d-bit length limit)\n", max);
545    else
546        puts(" (no length limit)");
547
548    /* allocate and clear done array for beenhere() */
549    if (syms == 2)
550        done = NULL;
551    else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
552             (done = calloc(size, sizeof(struct tab))) == NULL) {
553        fputs("abort: unable to allocate enough memory\n", stderr);
554        cleanup();
555        return 1;
556    }
557
558    /* find and show maximum inflate table usage */
559        if (root > max)                 /* reduce root to max length */
560                root = max;
561    if (syms < ((code_t)1 << (root + 1)))
562        enough(syms);
563    else
564        puts("cannot handle minimum code lengths > root");
565
566    /* done */
567    cleanup();
568    return 0;
569}
Note: See TracBrowser for help on using the repository browser.