source: rtems/cpukit/score/src/kern_tc.c @ 46ae1d7a

4.115
Last change on this file since 46ae1d7a was 46ae1d7a, checked in by Sebastian Huber <sebastian.huber@…>, on 06/09/15 at 19:31:27

timecounter: No _Timecounter_Tick_simple() for SMP

  • Property mode set to 100644
File size: 56.7 KB
Line 
1/*-
2 * ----------------------------------------------------------------------------
3 * "THE BEER-WARE LICENSE" (Revision 42):
4 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5 * can do whatever you want with this stuff. If we meet some day, and you think
6 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7 * ----------------------------------------------------------------------------
8 *
9 * Copyright (c) 2011 The FreeBSD Foundation
10 * All rights reserved.
11 *
12 * Portions of this software were developed by Julien Ridoux at the University
13 * of Melbourne under sponsorship from the FreeBSD Foundation.
14 */
15
16#ifdef __rtems__
17#define _KERNEL
18#define bintime _Timecounter_Bintime
19#define binuptime _Timecounter_Binuptime
20#define boottimebin _Timecounter_Boottimebin
21#define getbintime _Timecounter_Getbintime
22#define getbinuptime _Timecounter_Getbinuptime
23#define getmicrotime _Timecounter_Getmicrotime
24#define getmicrouptime _Timecounter_Getmicrouptime
25#define getnanotime _Timecounter_Getnanotime
26#define getnanouptime _Timecounter_Getnanouptime
27#define microtime _Timecounter_Microtime
28#define microuptime _Timecounter_Microuptime
29#define nanotime _Timecounter_Nanotime
30#define nanouptime _Timecounter_Nanouptime
31#define tc_init _Timecounter_Install
32#define timecounter _Timecounter
33#define time_second _Timecounter_Time_second
34#define time_uptime _Timecounter_Time_uptime
35#include <rtems/score/timecounterimpl.h>
36#include <rtems/score/watchdogimpl.h>
37#endif /* __rtems__ */
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD r284178 2015-06-09T11:49:56Z$");
40
41#include "opt_compat.h"
42#include "opt_ntp.h"
43#include "opt_ffclock.h"
44
45#include <sys/param.h>
46#ifndef __rtems__
47#include <sys/kernel.h>
48#include <sys/limits.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/sbuf.h>
52#include <sys/sysctl.h>
53#include <sys/syslog.h>
54#include <sys/systm.h>
55#endif /* __rtems__ */
56#include <sys/timeffc.h>
57#include <sys/timepps.h>
58#include <sys/timetc.h>
59#include <sys/timex.h>
60#ifndef __rtems__
61#include <sys/vdso.h>
62#include <machine/atomic.h>
63#endif /* __rtems__ */
64#ifdef __rtems__
65#include <limits.h>
66#include <rtems.h>
67ISR_LOCK_DEFINE(static, _Timecounter_Lock, "Timecounter");
68#define hz rtems_clock_get_ticks_per_second()
69#define printf(...)
70#define log(...)
71static inline int
72fls(int x)
73{
74        return x ? sizeof(x) * 8 - __builtin_clz(x) : 0;
75}
76/* FIXME: https://devel.rtems.org/ticket/2348 */
77#define ntp_update_second(a, b) do { (void) a; (void) b; } while (0)
78#endif /* __rtems__ */
79
80/*
81 * A large step happens on boot.  This constant detects such steps.
82 * It is relatively small so that ntp_update_second gets called enough
83 * in the typical 'missed a couple of seconds' case, but doesn't loop
84 * forever when the time step is large.
85 */
86#define LARGE_STEP      200
87
88/*
89 * Implement a dummy timecounter which we can use until we get a real one
90 * in the air.  This allows the console and other early stuff to use
91 * time services.
92 */
93
94static uint32_t
95dummy_get_timecount(struct timecounter *tc)
96{
97#ifndef __rtems__
98        static uint32_t now;
99
100        return (++now);
101#else /* __rtems__ */
102        return 0;
103#endif /* __rtems__ */
104}
105
106static struct timecounter dummy_timecounter = {
107        dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
108};
109
110struct timehands {
111        /* These fields must be initialized by the driver. */
112        struct timecounter      *th_counter;
113        int64_t                 th_adjustment;
114        uint64_t                th_scale;
115        uint32_t                th_offset_count;
116        struct bintime          th_offset;
117        struct timeval          th_microtime;
118        struct timespec         th_nanotime;
119        /* Fields not to be copied in tc_windup start with th_generation. */
120#ifndef __rtems__
121        u_int                   th_generation;
122#else /* __rtems__ */
123        Atomic_Ulong            th_generation;
124#endif /* __rtems__ */
125        struct timehands        *th_next;
126};
127
128#if defined(RTEMS_SMP)
129static struct timehands th0;
130static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
131static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
132static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
133static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
134static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
135static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
136static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
137static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
138static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
139#endif
140static struct timehands th0 = {
141        &dummy_timecounter,
142        0,
143        (uint64_t)-1 / 1000000,
144        0,
145        {1, 0},
146        {0, 0},
147        {0, 0},
148        1,
149#if defined(RTEMS_SMP)
150        &th1
151#else
152        &th0
153#endif
154};
155
156static struct timehands *volatile timehands = &th0;
157struct timecounter *timecounter = &dummy_timecounter;
158static struct timecounter *timecounters = &dummy_timecounter;
159
160#ifndef __rtems__
161int tc_min_ticktock_freq = 1;
162#endif /* __rtems__ */
163
164volatile time_t time_second = 1;
165volatile time_t time_uptime = 1;
166
167struct bintime boottimebin;
168#ifndef __rtems__
169struct timeval boottime;
170static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
171SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
172    NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
173
174SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
175static SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
176
177static int timestepwarnings;
178SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
179    &timestepwarnings, 0, "Log time steps");
180
181struct bintime bt_timethreshold;
182struct bintime bt_tickthreshold;
183sbintime_t sbt_timethreshold;
184sbintime_t sbt_tickthreshold;
185struct bintime tc_tick_bt;
186sbintime_t tc_tick_sbt;
187int tc_precexp;
188int tc_timepercentage = TC_DEFAULTPERC;
189static int sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS);
190SYSCTL_PROC(_kern_timecounter, OID_AUTO, alloweddeviation,
191    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 0, 0,
192    sysctl_kern_timecounter_adjprecision, "I",
193    "Allowed time interval deviation in percents");
194#endif /* __rtems__ */
195
196static void tc_windup(void);
197#ifndef __rtems__
198static void cpu_tick_calibrate(int);
199#endif /* __rtems__ */
200
201void dtrace_getnanotime(struct timespec *tsp);
202
203#ifndef __rtems__
204static int
205sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
206{
207#ifndef __mips__
208#ifdef SCTL_MASK32
209        int tv[2];
210
211        if (req->flags & SCTL_MASK32) {
212                tv[0] = boottime.tv_sec;
213                tv[1] = boottime.tv_usec;
214                return SYSCTL_OUT(req, tv, sizeof(tv));
215        } else
216#endif
217#endif
218                return SYSCTL_OUT(req, &boottime, sizeof(boottime));
219}
220
221static int
222sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
223{
224        uint32_t ncount;
225        struct timecounter *tc = arg1;
226
227        ncount = tc->tc_get_timecount(tc);
228        return sysctl_handle_int(oidp, &ncount, 0, req);
229}
230
231static int
232sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
233{
234        uint64_t freq;
235        struct timecounter *tc = arg1;
236
237        freq = tc->tc_frequency;
238        return sysctl_handle_64(oidp, &freq, 0, req);
239}
240#endif /* __rtems__ */
241
242/*
243 * Return the difference between the timehands' counter value now and what
244 * was when we copied it to the timehands' offset_count.
245 */
246static __inline uint32_t
247tc_delta(struct timehands *th)
248{
249        struct timecounter *tc;
250
251        tc = th->th_counter;
252        return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
253            tc->tc_counter_mask);
254}
255
256static u_int
257tc_getgen(struct timehands *th)
258{
259
260#ifndef __rtems__
261#ifdef SMP
262        return (atomic_load_acq_int(&th->th_generation));
263#else
264        u_int gen;
265
266        gen = th->th_generation;
267        __compiler_membar();
268        return (gen);
269#endif
270#else /* __rtems__ */
271        return (_Atomic_Load_ulong(&th->th_generation, ATOMIC_ORDER_ACQUIRE));
272#endif /* __rtems__ */
273}
274
275static void
276tc_setgen(struct timehands *th, u_int newgen)
277{
278
279#ifndef __rtems__
280#ifdef SMP
281        atomic_store_rel_int(&th->th_generation, newgen);
282#else
283        __compiler_membar();
284        th->th_generation = newgen;
285#endif
286#else /* __rtems__ */
287        _Atomic_Store_ulong(&th->th_generation, newgen, ATOMIC_ORDER_RELEASE);
288#endif /* __rtems__ */
289}
290
291/*
292 * Functions for reading the time.  We have to loop until we are sure that
293 * the timehands that we operated on was not updated under our feet.  See
294 * the comment in <sys/time.h> for a description of these 12 functions.
295 */
296
297#ifdef FFCLOCK
298void
299fbclock_binuptime(struct bintime *bt)
300{
301        struct timehands *th;
302        unsigned int gen;
303
304        do {
305                th = timehands;
306                gen = tc_getgen(th);
307                *bt = th->th_offset;
308                bintime_addx(bt, th->th_scale * tc_delta(th));
309        } while (gen == 0 || gen != tc_getgen(th));
310}
311
312void
313fbclock_nanouptime(struct timespec *tsp)
314{
315        struct bintime bt;
316
317        fbclock_binuptime(&bt);
318        bintime2timespec(&bt, tsp);
319}
320
321void
322fbclock_microuptime(struct timeval *tvp)
323{
324        struct bintime bt;
325
326        fbclock_binuptime(&bt);
327        bintime2timeval(&bt, tvp);
328}
329
330void
331fbclock_bintime(struct bintime *bt)
332{
333
334        fbclock_binuptime(bt);
335        bintime_add(bt, &boottimebin);
336}
337
338void
339fbclock_nanotime(struct timespec *tsp)
340{
341        struct bintime bt;
342
343        fbclock_bintime(&bt);
344        bintime2timespec(&bt, tsp);
345}
346
347void
348fbclock_microtime(struct timeval *tvp)
349{
350        struct bintime bt;
351
352        fbclock_bintime(&bt);
353        bintime2timeval(&bt, tvp);
354}
355
356void
357fbclock_getbinuptime(struct bintime *bt)
358{
359        struct timehands *th;
360        unsigned int gen;
361
362        do {
363                th = timehands;
364                gen = tc_getgen(th);
365                *bt = th->th_offset;
366        } while (gen == 0 || gen != tc_getgen(th));
367}
368
369void
370fbclock_getnanouptime(struct timespec *tsp)
371{
372        struct timehands *th;
373        unsigned int gen;
374
375        do {
376                th = timehands;
377                gen = tc_getgen(th);
378                bintime2timespec(&th->th_offset, tsp);
379        } while (gen == 0 || gen != tc_getgen(th));
380}
381
382void
383fbclock_getmicrouptime(struct timeval *tvp)
384{
385        struct timehands *th;
386        unsigned int gen;
387
388        do {
389                th = timehands;
390                gen = tc_getgen(th);
391                bintime2timeval(&th->th_offset, tvp);
392        } while (gen == 0 || gen != tc_getgen(th));
393}
394
395void
396fbclock_getbintime(struct bintime *bt)
397{
398        struct timehands *th;
399        unsigned int gen;
400
401        do {
402                th = timehands;
403                gen = tc_getgen(th);
404                *bt = th->th_offset;
405        } while (gen == 0 || gen != tc_getgen(th));
406        bintime_add(bt, &boottimebin);
407}
408
409void
410fbclock_getnanotime(struct timespec *tsp)
411{
412        struct timehands *th;
413        unsigned int gen;
414
415        do {
416                th = timehands;
417                gen = tc_getgen(th);
418                *tsp = th->th_nanotime;
419        } while (gen == 0 || gen != tc_getgen(th));
420}
421
422void
423fbclock_getmicrotime(struct timeval *tvp)
424{
425        struct timehands *th;
426        unsigned int gen;
427
428        do {
429                th = timehands;
430                gen = tc_getgen(th);
431                *tvp = th->th_microtime;
432        } while (gen == 0 || gen != tc_getgen(th));
433}
434#else /* !FFCLOCK */
435void
436binuptime(struct bintime *bt)
437{
438        struct timehands *th;
439        uint32_t gen;
440
441        do {
442                th = timehands;
443                gen = tc_getgen(th);
444                *bt = th->th_offset;
445                bintime_addx(bt, th->th_scale * tc_delta(th));
446        } while (gen == 0 || gen != tc_getgen(th));
447}
448
449void
450nanouptime(struct timespec *tsp)
451{
452        struct bintime bt;
453
454        binuptime(&bt);
455        bintime2timespec(&bt, tsp);
456}
457
458void
459microuptime(struct timeval *tvp)
460{
461        struct bintime bt;
462
463        binuptime(&bt);
464        bintime2timeval(&bt, tvp);
465}
466
467void
468bintime(struct bintime *bt)
469{
470
471        binuptime(bt);
472        bintime_add(bt, &boottimebin);
473}
474
475void
476nanotime(struct timespec *tsp)
477{
478        struct bintime bt;
479
480        bintime(&bt);
481        bintime2timespec(&bt, tsp);
482}
483
484void
485microtime(struct timeval *tvp)
486{
487        struct bintime bt;
488
489        bintime(&bt);
490        bintime2timeval(&bt, tvp);
491}
492
493void
494getbinuptime(struct bintime *bt)
495{
496        struct timehands *th;
497        uint32_t gen;
498
499        do {
500                th = timehands;
501                gen = tc_getgen(th);
502                *bt = th->th_offset;
503        } while (gen == 0 || gen != tc_getgen(th));
504}
505
506void
507getnanouptime(struct timespec *tsp)
508{
509        struct timehands *th;
510        uint32_t gen;
511
512        do {
513                th = timehands;
514                gen = tc_getgen(th);
515                bintime2timespec(&th->th_offset, tsp);
516        } while (gen == 0 || gen != tc_getgen(th));
517}
518
519void
520getmicrouptime(struct timeval *tvp)
521{
522        struct timehands *th;
523        uint32_t gen;
524
525        do {
526                th = timehands;
527                gen = tc_getgen(th);
528                bintime2timeval(&th->th_offset, tvp);
529        } while (gen == 0 || gen != tc_getgen(th));
530}
531
532void
533getbintime(struct bintime *bt)
534{
535        struct timehands *th;
536        uint32_t gen;
537
538        do {
539                th = timehands;
540                gen = tc_getgen(th);
541                *bt = th->th_offset;
542        } while (gen == 0 || gen != tc_getgen(th));
543        bintime_add(bt, &boottimebin);
544}
545
546void
547getnanotime(struct timespec *tsp)
548{
549        struct timehands *th;
550        uint32_t gen;
551
552        do {
553                th = timehands;
554                gen = tc_getgen(th);
555                *tsp = th->th_nanotime;
556        } while (gen == 0 || gen != tc_getgen(th));
557}
558
559void
560getmicrotime(struct timeval *tvp)
561{
562        struct timehands *th;
563        uint32_t gen;
564
565        do {
566                th = timehands;
567                gen = tc_getgen(th);
568                *tvp = th->th_microtime;
569        } while (gen == 0 || gen != tc_getgen(th));
570}
571#endif /* FFCLOCK */
572
573#ifdef FFCLOCK
574/*
575 * Support for feed-forward synchronization algorithms. This is heavily inspired
576 * by the timehands mechanism but kept independent from it. *_windup() functions
577 * have some connection to avoid accessing the timecounter hardware more than
578 * necessary.
579 */
580
581/* Feed-forward clock estimates kept updated by the synchronization daemon. */
582struct ffclock_estimate ffclock_estimate;
583struct bintime ffclock_boottime;        /* Feed-forward boot time estimate. */
584uint32_t ffclock_status;                /* Feed-forward clock status. */
585int8_t ffclock_updated;                 /* New estimates are available. */
586struct mtx ffclock_mtx;                 /* Mutex on ffclock_estimate. */
587
588struct fftimehands {
589        struct ffclock_estimate cest;
590        struct bintime          tick_time;
591        struct bintime          tick_time_lerp;
592        ffcounter               tick_ffcount;
593        uint64_t                period_lerp;
594        volatile uint8_t        gen;
595        struct fftimehands      *next;
596};
597
598#define NUM_ELEMENTS(x) (sizeof(x) / sizeof(*x))
599
600static struct fftimehands ffth[10];
601static struct fftimehands *volatile fftimehands = ffth;
602
603static void
604ffclock_init(void)
605{
606        struct fftimehands *cur;
607        struct fftimehands *last;
608
609        memset(ffth, 0, sizeof(ffth));
610
611        last = ffth + NUM_ELEMENTS(ffth) - 1;
612        for (cur = ffth; cur < last; cur++)
613                cur->next = cur + 1;
614        last->next = ffth;
615
616        ffclock_updated = 0;
617        ffclock_status = FFCLOCK_STA_UNSYNC;
618        mtx_init(&ffclock_mtx, "ffclock lock", NULL, MTX_DEF);
619}
620
621/*
622 * Reset the feed-forward clock estimates. Called from inittodr() to get things
623 * kick started and uses the timecounter nominal frequency as a first period
624 * estimate. Note: this function may be called several time just after boot.
625 * Note: this is the only function that sets the value of boot time for the
626 * monotonic (i.e. uptime) version of the feed-forward clock.
627 */
628void
629ffclock_reset_clock(struct timespec *ts)
630{
631        struct timecounter *tc;
632        struct ffclock_estimate cest;
633
634        tc = timehands->th_counter;
635        memset(&cest, 0, sizeof(struct ffclock_estimate));
636
637        timespec2bintime(ts, &ffclock_boottime);
638        timespec2bintime(ts, &(cest.update_time));
639        ffclock_read_counter(&cest.update_ffcount);
640        cest.leapsec_next = 0;
641        cest.period = ((1ULL << 63) / tc->tc_frequency) << 1;
642        cest.errb_abs = 0;
643        cest.errb_rate = 0;
644        cest.status = FFCLOCK_STA_UNSYNC;
645        cest.leapsec_total = 0;
646        cest.leapsec = 0;
647
648        mtx_lock(&ffclock_mtx);
649        bcopy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
650        ffclock_updated = INT8_MAX;
651        mtx_unlock(&ffclock_mtx);
652
653        printf("ffclock reset: %s (%llu Hz), time = %ld.%09lu\n", tc->tc_name,
654            (unsigned long long)tc->tc_frequency, (long)ts->tv_sec,
655            (unsigned long)ts->tv_nsec);
656}
657
658/*
659 * Sub-routine to convert a time interval measured in RAW counter units to time
660 * in seconds stored in bintime format.
661 * NOTE: bintime_mul requires u_int, but the value of the ffcounter may be
662 * larger than the max value of u_int (on 32 bit architecture). Loop to consume
663 * extra cycles.
664 */
665static void
666ffclock_convert_delta(ffcounter ffdelta, uint64_t period, struct bintime *bt)
667{
668        struct bintime bt2;
669        ffcounter delta, delta_max;
670
671        delta_max = (1ULL << (8 * sizeof(unsigned int))) - 1;
672        bintime_clear(bt);
673        do {
674                if (ffdelta > delta_max)
675                        delta = delta_max;
676                else
677                        delta = ffdelta;
678                bt2.sec = 0;
679                bt2.frac = period;
680                bintime_mul(&bt2, (unsigned int)delta);
681                bintime_add(bt, &bt2);
682                ffdelta -= delta;
683        } while (ffdelta > 0);
684}
685
686/*
687 * Update the fftimehands.
688 * Push the tick ffcount and time(s) forward based on current clock estimate.
689 * The conversion from ffcounter to bintime relies on the difference clock
690 * principle, whose accuracy relies on computing small time intervals. If a new
691 * clock estimate has been passed by the synchronisation daemon, make it
692 * current, and compute the linear interpolation for monotonic time if needed.
693 */
694static void
695ffclock_windup(unsigned int delta)
696{
697        struct ffclock_estimate *cest;
698        struct fftimehands *ffth;
699        struct bintime bt, gap_lerp;
700        ffcounter ffdelta;
701        uint64_t frac;
702        unsigned int polling;
703        uint8_t forward_jump, ogen;
704
705        /*
706         * Pick the next timehand, copy current ffclock estimates and move tick
707         * times and counter forward.
708         */
709        forward_jump = 0;
710        ffth = fftimehands->next;
711        ogen = ffth->gen;
712        ffth->gen = 0;
713        cest = &ffth->cest;
714        bcopy(&fftimehands->cest, cest, sizeof(struct ffclock_estimate));
715        ffdelta = (ffcounter)delta;
716        ffth->period_lerp = fftimehands->period_lerp;
717
718        ffth->tick_time = fftimehands->tick_time;
719        ffclock_convert_delta(ffdelta, cest->period, &bt);
720        bintime_add(&ffth->tick_time, &bt);
721
722        ffth->tick_time_lerp = fftimehands->tick_time_lerp;
723        ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt);
724        bintime_add(&ffth->tick_time_lerp, &bt);
725
726        ffth->tick_ffcount = fftimehands->tick_ffcount + ffdelta;
727
728        /*
729         * Assess the status of the clock, if the last update is too old, it is
730         * likely the synchronisation daemon is dead and the clock is free
731         * running.
732         */
733        if (ffclock_updated == 0) {
734                ffdelta = ffth->tick_ffcount - cest->update_ffcount;
735                ffclock_convert_delta(ffdelta, cest->period, &bt);
736                if (bt.sec > 2 * FFCLOCK_SKM_SCALE)
737                        ffclock_status |= FFCLOCK_STA_UNSYNC;
738        }
739
740        /*
741         * If available, grab updated clock estimates and make them current.
742         * Recompute time at this tick using the updated estimates. The clock
743         * estimates passed the feed-forward synchronisation daemon may result
744         * in time conversion that is not monotonically increasing (just after
745         * the update). time_lerp is a particular linear interpolation over the
746         * synchronisation algo polling period that ensures monotonicity for the
747         * clock ids requesting it.
748         */
749        if (ffclock_updated > 0) {
750                bcopy(&ffclock_estimate, cest, sizeof(struct ffclock_estimate));
751                ffdelta = ffth->tick_ffcount - cest->update_ffcount;
752                ffth->tick_time = cest->update_time;
753                ffclock_convert_delta(ffdelta, cest->period, &bt);
754                bintime_add(&ffth->tick_time, &bt);
755
756                /* ffclock_reset sets ffclock_updated to INT8_MAX */
757                if (ffclock_updated == INT8_MAX)
758                        ffth->tick_time_lerp = ffth->tick_time;
759
760                if (bintime_cmp(&ffth->tick_time, &ffth->tick_time_lerp, >))
761                        forward_jump = 1;
762                else
763                        forward_jump = 0;
764
765                bintime_clear(&gap_lerp);
766                if (forward_jump) {
767                        gap_lerp = ffth->tick_time;
768                        bintime_sub(&gap_lerp, &ffth->tick_time_lerp);
769                } else {
770                        gap_lerp = ffth->tick_time_lerp;
771                        bintime_sub(&gap_lerp, &ffth->tick_time);
772                }
773
774                /*
775                 * The reset from the RTC clock may be far from accurate, and
776                 * reducing the gap between real time and interpolated time
777                 * could take a very long time if the interpolated clock insists
778                 * on strict monotonicity. The clock is reset under very strict
779                 * conditions (kernel time is known to be wrong and
780                 * synchronization daemon has been restarted recently.
781                 * ffclock_boottime absorbs the jump to ensure boot time is
782                 * correct and uptime functions stay consistent.
783                 */
784                if (((ffclock_status & FFCLOCK_STA_UNSYNC) == FFCLOCK_STA_UNSYNC) &&
785                    ((cest->status & FFCLOCK_STA_UNSYNC) == 0) &&
786                    ((cest->status & FFCLOCK_STA_WARMUP) == FFCLOCK_STA_WARMUP)) {
787                        if (forward_jump)
788                                bintime_add(&ffclock_boottime, &gap_lerp);
789                        else
790                                bintime_sub(&ffclock_boottime, &gap_lerp);
791                        ffth->tick_time_lerp = ffth->tick_time;
792                        bintime_clear(&gap_lerp);
793                }
794
795                ffclock_status = cest->status;
796                ffth->period_lerp = cest->period;
797
798                /*
799                 * Compute corrected period used for the linear interpolation of
800                 * time. The rate of linear interpolation is capped to 5000PPM
801                 * (5ms/s).
802                 */
803                if (bintime_isset(&gap_lerp)) {
804                        ffdelta = cest->update_ffcount;
805                        ffdelta -= fftimehands->cest.update_ffcount;
806                        ffclock_convert_delta(ffdelta, cest->period, &bt);
807                        polling = bt.sec;
808                        bt.sec = 0;
809                        bt.frac = 5000000 * (uint64_t)18446744073LL;
810                        bintime_mul(&bt, polling);
811                        if (bintime_cmp(&gap_lerp, &bt, >))
812                                gap_lerp = bt;
813
814                        /* Approximate 1 sec by 1-(1/2^64) to ease arithmetic */
815                        frac = 0;
816                        if (gap_lerp.sec > 0) {
817                                frac -= 1;
818                                frac /= ffdelta / gap_lerp.sec;
819                        }
820                        frac += gap_lerp.frac / ffdelta;
821
822                        if (forward_jump)
823                                ffth->period_lerp += frac;
824                        else
825                                ffth->period_lerp -= frac;
826                }
827
828                ffclock_updated = 0;
829        }
830        if (++ogen == 0)
831                ogen = 1;
832        ffth->gen = ogen;
833        fftimehands = ffth;
834}
835
836/*
837 * Adjust the fftimehands when the timecounter is changed. Stating the obvious,
838 * the old and new hardware counter cannot be read simultaneously. tc_windup()
839 * does read the two counters 'back to back', but a few cycles are effectively
840 * lost, and not accumulated in tick_ffcount. This is a fairly radical
841 * operation for a feed-forward synchronization daemon, and it is its job to not
842 * pushing irrelevant data to the kernel. Because there is no locking here,
843 * simply force to ignore pending or next update to give daemon a chance to
844 * realize the counter has changed.
845 */
846static void
847ffclock_change_tc(struct timehands *th)
848{
849        struct fftimehands *ffth;
850        struct ffclock_estimate *cest;
851        struct timecounter *tc;
852        uint8_t ogen;
853
854        tc = th->th_counter;
855        ffth = fftimehands->next;
856        ogen = ffth->gen;
857        ffth->gen = 0;
858
859        cest = &ffth->cest;
860        bcopy(&(fftimehands->cest), cest, sizeof(struct ffclock_estimate));
861        cest->period = ((1ULL << 63) / tc->tc_frequency ) << 1;
862        cest->errb_abs = 0;
863        cest->errb_rate = 0;
864        cest->status |= FFCLOCK_STA_UNSYNC;
865
866        ffth->tick_ffcount = fftimehands->tick_ffcount;
867        ffth->tick_time_lerp = fftimehands->tick_time_lerp;
868        ffth->tick_time = fftimehands->tick_time;
869        ffth->period_lerp = cest->period;
870
871        /* Do not lock but ignore next update from synchronization daemon. */
872        ffclock_updated--;
873
874        if (++ogen == 0)
875                ogen = 1;
876        ffth->gen = ogen;
877        fftimehands = ffth;
878}
879
880/*
881 * Retrieve feed-forward counter and time of last kernel tick.
882 */
883void
884ffclock_last_tick(ffcounter *ffcount, struct bintime *bt, uint32_t flags)
885{
886        struct fftimehands *ffth;
887        uint8_t gen;
888
889        /*
890         * No locking but check generation has not changed. Also need to make
891         * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
892         */
893        do {
894                ffth = fftimehands;
895                gen = ffth->gen;
896                if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP)
897                        *bt = ffth->tick_time_lerp;
898                else
899                        *bt = ffth->tick_time;
900                *ffcount = ffth->tick_ffcount;
901        } while (gen == 0 || gen != ffth->gen);
902}
903
904/*
905 * Absolute clock conversion. Low level function to convert ffcounter to
906 * bintime. The ffcounter is converted using the current ffclock period estimate
907 * or the "interpolated period" to ensure monotonicity.
908 * NOTE: this conversion may have been deferred, and the clock updated since the
909 * hardware counter has been read.
910 */
911void
912ffclock_convert_abs(ffcounter ffcount, struct bintime *bt, uint32_t flags)
913{
914        struct fftimehands *ffth;
915        struct bintime bt2;
916        ffcounter ffdelta;
917        uint8_t gen;
918
919        /*
920         * No locking but check generation has not changed. Also need to make
921         * sure ffdelta is positive, i.e. ffcount > tick_ffcount.
922         */
923        do {
924                ffth = fftimehands;
925                gen = ffth->gen;
926                if (ffcount > ffth->tick_ffcount)
927                        ffdelta = ffcount - ffth->tick_ffcount;
928                else
929                        ffdelta = ffth->tick_ffcount - ffcount;
930
931                if ((flags & FFCLOCK_LERP) == FFCLOCK_LERP) {
932                        *bt = ffth->tick_time_lerp;
933                        ffclock_convert_delta(ffdelta, ffth->period_lerp, &bt2);
934                } else {
935                        *bt = ffth->tick_time;
936                        ffclock_convert_delta(ffdelta, ffth->cest.period, &bt2);
937                }
938
939                if (ffcount > ffth->tick_ffcount)
940                        bintime_add(bt, &bt2);
941                else
942                        bintime_sub(bt, &bt2);
943        } while (gen == 0 || gen != ffth->gen);
944}
945
946/*
947 * Difference clock conversion.
948 * Low level function to Convert a time interval measured in RAW counter units
949 * into bintime. The difference clock allows measuring small intervals much more
950 * reliably than the absolute clock.
951 */
952void
953ffclock_convert_diff(ffcounter ffdelta, struct bintime *bt)
954{
955        struct fftimehands *ffth;
956        uint8_t gen;
957
958        /* No locking but check generation has not changed. */
959        do {
960                ffth = fftimehands;
961                gen = ffth->gen;
962                ffclock_convert_delta(ffdelta, ffth->cest.period, bt);
963        } while (gen == 0 || gen != ffth->gen);
964}
965
966/*
967 * Access to current ffcounter value.
968 */
969void
970ffclock_read_counter(ffcounter *ffcount)
971{
972        struct timehands *th;
973        struct fftimehands *ffth;
974        unsigned int gen, delta;
975
976        /*
977         * ffclock_windup() called from tc_windup(), safe to rely on
978         * th->th_generation only, for correct delta and ffcounter.
979         */
980        do {
981                th = timehands;
982                gen = tc_getgen(th);
983                ffth = fftimehands;
984                delta = tc_delta(th);
985                *ffcount = ffth->tick_ffcount;
986        } while (gen == 0 || gen != tc_getgen(th));
987
988        *ffcount += delta;
989}
990
991void
992binuptime(struct bintime *bt)
993{
994
995        binuptime_fromclock(bt, sysclock_active);
996}
997
998void
999nanouptime(struct timespec *tsp)
1000{
1001
1002        nanouptime_fromclock(tsp, sysclock_active);
1003}
1004
1005void
1006microuptime(struct timeval *tvp)
1007{
1008
1009        microuptime_fromclock(tvp, sysclock_active);
1010}
1011
1012void
1013bintime(struct bintime *bt)
1014{
1015
1016        bintime_fromclock(bt, sysclock_active);
1017}
1018
1019void
1020nanotime(struct timespec *tsp)
1021{
1022
1023        nanotime_fromclock(tsp, sysclock_active);
1024}
1025
1026void
1027microtime(struct timeval *tvp)
1028{
1029
1030        microtime_fromclock(tvp, sysclock_active);
1031}
1032
1033void
1034getbinuptime(struct bintime *bt)
1035{
1036
1037        getbinuptime_fromclock(bt, sysclock_active);
1038}
1039
1040void
1041getnanouptime(struct timespec *tsp)
1042{
1043
1044        getnanouptime_fromclock(tsp, sysclock_active);
1045}
1046
1047void
1048getmicrouptime(struct timeval *tvp)
1049{
1050
1051        getmicrouptime_fromclock(tvp, sysclock_active);
1052}
1053
1054void
1055getbintime(struct bintime *bt)
1056{
1057
1058        getbintime_fromclock(bt, sysclock_active);
1059}
1060
1061void
1062getnanotime(struct timespec *tsp)
1063{
1064
1065        getnanotime_fromclock(tsp, sysclock_active);
1066}
1067
1068void
1069getmicrotime(struct timeval *tvp)
1070{
1071
1072        getmicrouptime_fromclock(tvp, sysclock_active);
1073}
1074
1075#endif /* FFCLOCK */
1076
1077#ifndef __rtems__
1078/*
1079 * This is a clone of getnanotime and used for walltimestamps.
1080 * The dtrace_ prefix prevents fbt from creating probes for
1081 * it so walltimestamp can be safely used in all fbt probes.
1082 */
1083void
1084dtrace_getnanotime(struct timespec *tsp)
1085{
1086        struct timehands *th;
1087        uint32_t gen;
1088
1089        do {
1090                th = timehands;
1091                gen = tc_getgen(th);
1092                *tsp = th->th_nanotime;
1093        } while (gen == 0 || gen != tc_getgen(th));
1094}
1095#endif /* __rtems__ */
1096
1097#ifdef FFCLOCK
1098/*
1099 * System clock currently providing time to the system. Modifiable via sysctl
1100 * when the FFCLOCK option is defined.
1101 */
1102int sysclock_active = SYSCLOCK_FBCK;
1103#endif
1104
1105/* Internal NTP status and error estimates. */
1106extern int time_status;
1107extern long time_esterror;
1108
1109#ifndef __rtems__
1110/*
1111 * Take a snapshot of sysclock data which can be used to compare system clocks
1112 * and generate timestamps after the fact.
1113 */
1114void
1115sysclock_getsnapshot(struct sysclock_snap *clock_snap, int fast)
1116{
1117        struct fbclock_info *fbi;
1118        struct timehands *th;
1119        struct bintime bt;
1120        unsigned int delta, gen;
1121#ifdef FFCLOCK
1122        ffcounter ffcount;
1123        struct fftimehands *ffth;
1124        struct ffclock_info *ffi;
1125        struct ffclock_estimate cest;
1126
1127        ffi = &clock_snap->ff_info;
1128#endif
1129
1130        fbi = &clock_snap->fb_info;
1131        delta = 0;
1132
1133        do {
1134                th = timehands;
1135                gen = tc_getgen(th);
1136                fbi->th_scale = th->th_scale;
1137                fbi->tick_time = th->th_offset;
1138#ifdef FFCLOCK
1139                ffth = fftimehands;
1140                ffi->tick_time = ffth->tick_time_lerp;
1141                ffi->tick_time_lerp = ffth->tick_time_lerp;
1142                ffi->period = ffth->cest.period;
1143                ffi->period_lerp = ffth->period_lerp;
1144                clock_snap->ffcount = ffth->tick_ffcount;
1145                cest = ffth->cest;
1146#endif
1147                if (!fast)
1148                        delta = tc_delta(th);
1149        } while (gen == 0 || gen != tc_getgen(th));
1150
1151        clock_snap->delta = delta;
1152#ifdef FFCLOCK
1153        clock_snap->sysclock_active = sysclock_active;
1154#endif
1155
1156        /* Record feedback clock status and error. */
1157        clock_snap->fb_info.status = time_status;
1158        /* XXX: Very crude estimate of feedback clock error. */
1159        bt.sec = time_esterror / 1000000;
1160        bt.frac = ((time_esterror - bt.sec) * 1000000) *
1161            (uint64_t)18446744073709ULL;
1162        clock_snap->fb_info.error = bt;
1163
1164#ifdef FFCLOCK
1165        if (!fast)
1166                clock_snap->ffcount += delta;
1167
1168        /* Record feed-forward clock leap second adjustment. */
1169        ffi->leapsec_adjustment = cest.leapsec_total;
1170        if (clock_snap->ffcount > cest.leapsec_next)
1171                ffi->leapsec_adjustment -= cest.leapsec;
1172
1173        /* Record feed-forward clock status and error. */
1174        clock_snap->ff_info.status = cest.status;
1175        ffcount = clock_snap->ffcount - cest.update_ffcount;
1176        ffclock_convert_delta(ffcount, cest.period, &bt);
1177        /* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s]. */
1178        bintime_mul(&bt, cest.errb_rate * (uint64_t)18446744073709ULL);
1179        /* 18446744073 = int(2^64 / 1e9), since err_abs in [ns]. */
1180        bintime_addx(&bt, cest.errb_abs * (uint64_t)18446744073ULL);
1181        clock_snap->ff_info.error = bt;
1182#endif
1183}
1184
1185/*
1186 * Convert a sysclock snapshot into a struct bintime based on the specified
1187 * clock source and flags.
1188 */
1189int
1190sysclock_snap2bintime(struct sysclock_snap *cs, struct bintime *bt,
1191    int whichclock, uint32_t flags)
1192{
1193#ifdef FFCLOCK
1194        struct bintime bt2;
1195        uint64_t period;
1196#endif
1197
1198        switch (whichclock) {
1199        case SYSCLOCK_FBCK:
1200                *bt = cs->fb_info.tick_time;
1201
1202                /* If snapshot was created with !fast, delta will be >0. */
1203                if (cs->delta > 0)
1204                        bintime_addx(bt, cs->fb_info.th_scale * cs->delta);
1205
1206                if ((flags & FBCLOCK_UPTIME) == 0)
1207                        bintime_add(bt, &boottimebin);
1208                break;
1209#ifdef FFCLOCK
1210        case SYSCLOCK_FFWD:
1211                if (flags & FFCLOCK_LERP) {
1212                        *bt = cs->ff_info.tick_time_lerp;
1213                        period = cs->ff_info.period_lerp;
1214                } else {
1215                        *bt = cs->ff_info.tick_time;
1216                        period = cs->ff_info.period;
1217                }
1218
1219                /* If snapshot was created with !fast, delta will be >0. */
1220                if (cs->delta > 0) {
1221                        ffclock_convert_delta(cs->delta, period, &bt2);
1222                        bintime_add(bt, &bt2);
1223                }
1224
1225                /* Leap second adjustment. */
1226                if (flags & FFCLOCK_LEAPSEC)
1227                        bt->sec -= cs->ff_info.leapsec_adjustment;
1228
1229                /* Boot time adjustment, for uptime/monotonic clocks. */
1230                if (flags & FFCLOCK_UPTIME)
1231                        bintime_sub(bt, &ffclock_boottime);
1232                break;
1233#endif
1234        default:
1235                return (EINVAL);
1236                break;
1237        }
1238
1239        return (0);
1240}
1241#endif /* __rtems__ */
1242
1243/*
1244 * Initialize a new timecounter and possibly use it.
1245 */
1246void
1247tc_init(struct timecounter *tc)
1248{
1249#ifndef __rtems__
1250        uint32_t u;
1251        struct sysctl_oid *tc_root;
1252
1253        u = tc->tc_frequency / tc->tc_counter_mask;
1254        /* XXX: We need some margin here, 10% is a guess */
1255        u *= 11;
1256        u /= 10;
1257        if (u > hz && tc->tc_quality >= 0) {
1258                tc->tc_quality = -2000;
1259                if (bootverbose) {
1260                        printf("Timecounter \"%s\" frequency %ju Hz",
1261                            tc->tc_name, (uintmax_t)tc->tc_frequency);
1262                        printf(" -- Insufficient hz, needs at least %u\n", u);
1263                }
1264        } else if (tc->tc_quality >= 0 || bootverbose) {
1265                printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
1266                    tc->tc_name, (uintmax_t)tc->tc_frequency,
1267                    tc->tc_quality);
1268        }
1269#endif /* __rtems__ */
1270
1271        tc->tc_next = timecounters;
1272        timecounters = tc;
1273#ifndef __rtems__
1274        /*
1275         * Set up sysctl tree for this counter.
1276         */
1277        tc_root = SYSCTL_ADD_NODE(NULL,
1278            SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
1279            CTLFLAG_RW, 0, "timecounter description");
1280        SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1281            "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
1282            "mask for implemented bits");
1283        SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1284            "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
1285            sysctl_kern_timecounter_get, "IU", "current timecounter value");
1286        SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1287            "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
1288             sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
1289        SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
1290            "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
1291            "goodness of time counter");
1292        /*
1293         * Never automatically use a timecounter with negative quality.
1294         * Even though we run on the dummy counter, switching here may be
1295         * worse since this timecounter may not be monotonous.
1296         */
1297        if (tc->tc_quality < 0)
1298                return;
1299        if (tc->tc_quality < timecounter->tc_quality)
1300                return;
1301        if (tc->tc_quality == timecounter->tc_quality &&
1302            tc->tc_frequency < timecounter->tc_frequency)
1303                return;
1304#endif /* __rtems__ */
1305        (void)tc->tc_get_timecount(tc);
1306        (void)tc->tc_get_timecount(tc);
1307        timecounter = tc;
1308#ifdef __rtems__
1309        tc_windup();
1310#endif /* __rtems__ */
1311}
1312
1313#ifndef __rtems__
1314/* Report the frequency of the current timecounter. */
1315uint64_t
1316tc_getfrequency(void)
1317{
1318
1319        return (timehands->th_counter->tc_frequency);
1320}
1321#endif /* __rtems__ */
1322
1323/*
1324 * Step our concept of UTC.  This is done by modifying our estimate of
1325 * when we booted.
1326 * XXX: not locked.
1327 */
1328#ifndef __rtems__
1329void
1330tc_setclock(struct timespec *ts)
1331#else /* __rtems__ */
1332void
1333_Timecounter_Set_clock(const struct timespec *ts)
1334#endif /* __rtems__ */
1335{
1336#ifndef __rtems__
1337        struct timespec tbef, taft;
1338#endif /* __rtems__ */
1339        struct bintime bt, bt2;
1340
1341#ifndef __rtems__
1342        cpu_tick_calibrate(1);
1343        nanotime(&tbef);
1344#endif /* __rtems__ */
1345        timespec2bintime(ts, &bt);
1346        binuptime(&bt2);
1347        bintime_sub(&bt, &bt2);
1348        bintime_add(&bt2, &boottimebin);
1349        boottimebin = bt;
1350#ifndef __rtems__
1351        bintime2timeval(&bt, &boottime);
1352#endif /* __rtems__ */
1353
1354        /* XXX fiddle all the little crinkly bits around the fiords... */
1355        tc_windup();
1356#ifndef __rtems__
1357        nanotime(&taft);
1358        if (timestepwarnings) {
1359                log(LOG_INFO,
1360                    "Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
1361                    (intmax_t)tbef.tv_sec, tbef.tv_nsec,
1362                    (intmax_t)taft.tv_sec, taft.tv_nsec,
1363                    (intmax_t)ts->tv_sec, ts->tv_nsec);
1364        }
1365        cpu_tick_calibrate(1);
1366#endif /* __rtems__ */
1367}
1368
1369/*
1370 * Initialize the next struct timehands in the ring and make
1371 * it the active timehands.  Along the way we might switch to a different
1372 * timecounter and/or do seconds processing in NTP.  Slightly magic.
1373 */
1374static void
1375tc_windup(void)
1376{
1377        struct bintime bt;
1378        struct timehands *th, *tho;
1379        uint64_t scale;
1380        uint32_t delta, ncount, ogen;
1381        int i;
1382        time_t t;
1383#ifdef __rtems__
1384        ISR_lock_Context lock_context;
1385
1386        _ISR_lock_ISR_disable_and_acquire(&_Timecounter_Lock, &lock_context);
1387#endif /* __rtems__ */
1388
1389        /*
1390         * Make the next timehands a copy of the current one, but do not
1391         * overwrite the generation or next pointer.  While we update
1392         * the contents, the generation must be zero.
1393         */
1394        tho = timehands;
1395        th = tho->th_next;
1396        ogen = th->th_generation;
1397        tc_setgen(th, 0);
1398        bcopy(tho, th, offsetof(struct timehands, th_generation));
1399
1400        /*
1401         * Capture a timecounter delta on the current timecounter and if
1402         * changing timecounters, a counter value from the new timecounter.
1403         * Update the offset fields accordingly.
1404         */
1405        delta = tc_delta(th);
1406        if (th->th_counter != timecounter)
1407                ncount = timecounter->tc_get_timecount(timecounter);
1408        else
1409                ncount = 0;
1410#ifdef FFCLOCK
1411        ffclock_windup(delta);
1412#endif
1413        th->th_offset_count += delta;
1414        th->th_offset_count &= th->th_counter->tc_counter_mask;
1415        while (delta > th->th_counter->tc_frequency) {
1416                /* Eat complete unadjusted seconds. */
1417                delta -= th->th_counter->tc_frequency;
1418                th->th_offset.sec++;
1419        }
1420        if ((delta > th->th_counter->tc_frequency / 2) &&
1421            (th->th_scale * delta < ((uint64_t)1 << 63))) {
1422                /* The product th_scale * delta just barely overflows. */
1423                th->th_offset.sec++;
1424        }
1425        bintime_addx(&th->th_offset, th->th_scale * delta);
1426
1427        /*
1428         * Hardware latching timecounters may not generate interrupts on
1429         * PPS events, so instead we poll them.  There is a finite risk that
1430         * the hardware might capture a count which is later than the one we
1431         * got above, and therefore possibly in the next NTP second which might
1432         * have a different rate than the current NTP second.  It doesn't
1433         * matter in practice.
1434         */
1435        if (tho->th_counter->tc_poll_pps)
1436                tho->th_counter->tc_poll_pps(tho->th_counter);
1437
1438        /*
1439         * Deal with NTP second processing.  The for loop normally
1440         * iterates at most once, but in extreme situations it might
1441         * keep NTP sane if timeouts are not run for several seconds.
1442         * At boot, the time step can be large when the TOD hardware
1443         * has been read, so on really large steps, we call
1444         * ntp_update_second only twice.  We need to call it twice in
1445         * case we missed a leap second.
1446         */
1447        bt = th->th_offset;
1448        bintime_add(&bt, &boottimebin);
1449        i = bt.sec - tho->th_microtime.tv_sec;
1450        if (i > LARGE_STEP)
1451                i = 2;
1452        for (; i > 0; i--) {
1453                t = bt.sec;
1454                ntp_update_second(&th->th_adjustment, &bt.sec);
1455                if (bt.sec != t)
1456                        boottimebin.sec += bt.sec - t;
1457        }
1458        /* Update the UTC timestamps used by the get*() functions. */
1459        /* XXX shouldn't do this here.  Should force non-`get' versions. */
1460        bintime2timeval(&bt, &th->th_microtime);
1461        bintime2timespec(&bt, &th->th_nanotime);
1462
1463        /* Now is a good time to change timecounters. */
1464        if (th->th_counter != timecounter) {
1465#ifndef __rtems__
1466#ifndef __arm__
1467                if ((timecounter->tc_flags & TC_FLAGS_C2STOP) != 0)
1468                        cpu_disable_c2_sleep++;
1469                if ((th->th_counter->tc_flags & TC_FLAGS_C2STOP) != 0)
1470                        cpu_disable_c2_sleep--;
1471#endif
1472#endif /* __rtems__ */
1473                th->th_counter = timecounter;
1474                th->th_offset_count = ncount;
1475#ifndef __rtems__
1476                tc_min_ticktock_freq = max(1, timecounter->tc_frequency /
1477                    (((uint64_t)timecounter->tc_counter_mask + 1) / 3));
1478#endif /* __rtems__ */
1479#ifdef FFCLOCK
1480                ffclock_change_tc(th);
1481#endif
1482        }
1483
1484        /*-
1485         * Recalculate the scaling factor.  We want the number of 1/2^64
1486         * fractions of a second per period of the hardware counter, taking
1487         * into account the th_adjustment factor which the NTP PLL/adjtime(2)
1488         * processing provides us with.
1489         *
1490         * The th_adjustment is nanoseconds per second with 32 bit binary
1491         * fraction and we want 64 bit binary fraction of second:
1492         *
1493         *       x = a * 2^32 / 10^9 = a * 4.294967296
1494         *
1495         * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
1496         * we can only multiply by about 850 without overflowing, that
1497         * leaves no suitably precise fractions for multiply before divide.
1498         *
1499         * Divide before multiply with a fraction of 2199/512 results in a
1500         * systematic undercompensation of 10PPM of th_adjustment.  On a
1501         * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
1502         *
1503         * We happily sacrifice the lowest of the 64 bits of our result
1504         * to the goddess of code clarity.
1505         *
1506         */
1507        scale = (uint64_t)1 << 63;
1508        scale += (th->th_adjustment / 1024) * 2199;
1509        scale /= th->th_counter->tc_frequency;
1510        th->th_scale = scale * 2;
1511
1512        /*
1513         * Now that the struct timehands is again consistent, set the new
1514         * generation number, making sure to not make it zero.
1515         */
1516        if (++ogen == 0)
1517                ogen = 1;
1518        tc_setgen(th, ogen);
1519
1520        /* Go live with the new struct timehands. */
1521#ifdef FFCLOCK
1522        switch (sysclock_active) {
1523        case SYSCLOCK_FBCK:
1524#endif
1525                time_second = th->th_microtime.tv_sec;
1526                time_uptime = th->th_offset.sec;
1527#ifdef FFCLOCK
1528                break;
1529        case SYSCLOCK_FFWD:
1530                time_second = fftimehands->tick_time_lerp.sec;
1531                time_uptime = fftimehands->tick_time_lerp.sec - ffclock_boottime.sec;
1532                break;
1533        }
1534#endif
1535
1536        timehands = th;
1537#ifndef __rtems__
1538        timekeep_push_vdso();
1539#endif /* __rtems__ */
1540#ifdef __rtems__
1541        _ISR_lock_Release_and_ISR_enable(&_Timecounter_Lock, &lock_context);
1542#endif /* __rtems__ */
1543}
1544
1545#ifndef __rtems__
1546/* Report or change the active timecounter hardware. */
1547static int
1548sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
1549{
1550        char newname[32];
1551        struct timecounter *newtc, *tc;
1552        int error;
1553
1554        tc = timecounter;
1555        strlcpy(newname, tc->tc_name, sizeof(newname));
1556
1557        error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
1558        if (error != 0 || req->newptr == NULL ||
1559            strcmp(newname, tc->tc_name) == 0)
1560                return (error);
1561        for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
1562                if (strcmp(newname, newtc->tc_name) != 0)
1563                        continue;
1564
1565                /* Warm up new timecounter. */
1566                (void)newtc->tc_get_timecount(newtc);
1567                (void)newtc->tc_get_timecount(newtc);
1568
1569                timecounter = newtc;
1570
1571                /*
1572                 * The vdso timehands update is deferred until the next
1573                 * 'tc_windup()'.
1574                 *
1575                 * This is prudent given that 'timekeep_push_vdso()' does not
1576                 * use any locking and that it can be called in hard interrupt
1577                 * context via 'tc_windup()'.
1578                 */
1579                return (0);
1580        }
1581        return (EINVAL);
1582}
1583
1584SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
1585    0, 0, sysctl_kern_timecounter_hardware, "A",
1586    "Timecounter hardware selected");
1587
1588
1589/* Report or change the active timecounter hardware. */
1590static int
1591sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
1592{
1593        struct sbuf sb;
1594        struct timecounter *tc;
1595        int error;
1596
1597        sbuf_new_for_sysctl(&sb, NULL, 0, req);
1598        for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
1599                if (tc != timecounters)
1600                        sbuf_putc(&sb, ' ');
1601                sbuf_printf(&sb, "%s(%d)", tc->tc_name, tc->tc_quality);
1602        }
1603        error = sbuf_finish(&sb);
1604        sbuf_delete(&sb);
1605        return (error);
1606}
1607
1608SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
1609    0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
1610#endif /* __rtems__ */
1611
1612#ifndef __rtems__
1613/*
1614 * RFC 2783 PPS-API implementation.
1615 */
1616
1617/*
1618 *  Return true if the driver is aware of the abi version extensions in the
1619 *  pps_state structure, and it supports at least the given abi version number.
1620 */
1621static inline int
1622abi_aware(struct pps_state *pps, int vers)
1623{
1624
1625        return ((pps->kcmode & KCMODE_ABIFLAG) && pps->driver_abi >= vers);
1626}
1627
1628static int
1629pps_fetch(struct pps_fetch_args *fapi, struct pps_state *pps)
1630{
1631        int err, timo;
1632        pps_seq_t aseq, cseq;
1633        struct timeval tv;
1634
1635        if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1636                return (EINVAL);
1637
1638        /*
1639         * If no timeout is requested, immediately return whatever values were
1640         * most recently captured.  If timeout seconds is -1, that's a request
1641         * to block without a timeout.  WITNESS won't let us sleep forever
1642         * without a lock (we really don't need a lock), so just repeatedly
1643         * sleep a long time.
1644         */
1645        if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) {
1646                if (fapi->timeout.tv_sec == -1)
1647                        timo = 0x7fffffff;
1648                else {
1649                        tv.tv_sec = fapi->timeout.tv_sec;
1650                        tv.tv_usec = fapi->timeout.tv_nsec / 1000;
1651                        timo = tvtohz(&tv);
1652                }
1653                aseq = pps->ppsinfo.assert_sequence;
1654                cseq = pps->ppsinfo.clear_sequence;
1655                while (aseq == pps->ppsinfo.assert_sequence &&
1656                    cseq == pps->ppsinfo.clear_sequence) {
1657                        if (abi_aware(pps, 1) && pps->driver_mtx != NULL) {
1658                                if (pps->flags & PPSFLAG_MTX_SPIN) {
1659                                        err = msleep_spin(pps, pps->driver_mtx,
1660                                            "ppsfch", timo);
1661                                } else {
1662                                        err = msleep(pps, pps->driver_mtx, PCATCH,
1663                                            "ppsfch", timo);
1664                                }
1665                        } else {
1666                                err = tsleep(pps, PCATCH, "ppsfch", timo);
1667                        }
1668                        if (err == EWOULDBLOCK && fapi->timeout.tv_sec == -1) {
1669                                continue;
1670                        } else if (err != 0) {
1671                                return (err);
1672                        }
1673                }
1674        }
1675
1676        pps->ppsinfo.current_mode = pps->ppsparam.mode;
1677        fapi->pps_info_buf = pps->ppsinfo;
1678
1679        return (0);
1680}
1681
1682int
1683pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1684{
1685        pps_params_t *app;
1686        struct pps_fetch_args *fapi;
1687#ifdef FFCLOCK
1688        struct pps_fetch_ffc_args *fapi_ffc;
1689#endif
1690#ifdef PPS_SYNC
1691        struct pps_kcbind_args *kapi;
1692#endif
1693
1694        KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
1695        switch (cmd) {
1696        case PPS_IOC_CREATE:
1697                return (0);
1698        case PPS_IOC_DESTROY:
1699                return (0);
1700        case PPS_IOC_SETPARAMS:
1701                app = (pps_params_t *)data;
1702                if (app->mode & ~pps->ppscap)
1703                        return (EINVAL);
1704#ifdef FFCLOCK
1705                /* Ensure only a single clock is selected for ffc timestamp. */
1706                if ((app->mode & PPS_TSCLK_MASK) == PPS_TSCLK_MASK)
1707                        return (EINVAL);
1708#endif
1709                pps->ppsparam = *app;
1710                return (0);
1711        case PPS_IOC_GETPARAMS:
1712                app = (pps_params_t *)data;
1713                *app = pps->ppsparam;
1714                app->api_version = PPS_API_VERS_1;
1715                return (0);
1716        case PPS_IOC_GETCAP:
1717                *(int*)data = pps->ppscap;
1718                return (0);
1719        case PPS_IOC_FETCH:
1720                fapi = (struct pps_fetch_args *)data;
1721                return (pps_fetch(fapi, pps));
1722#ifdef FFCLOCK
1723        case PPS_IOC_FETCH_FFCOUNTER:
1724                fapi_ffc = (struct pps_fetch_ffc_args *)data;
1725                if (fapi_ffc->tsformat && fapi_ffc->tsformat !=
1726                    PPS_TSFMT_TSPEC)
1727                        return (EINVAL);
1728                if (fapi_ffc->timeout.tv_sec || fapi_ffc->timeout.tv_nsec)
1729                        return (EOPNOTSUPP);
1730                pps->ppsinfo_ffc.current_mode = pps->ppsparam.mode;
1731                fapi_ffc->pps_info_buf_ffc = pps->ppsinfo_ffc;
1732                /* Overwrite timestamps if feedback clock selected. */
1733                switch (pps->ppsparam.mode & PPS_TSCLK_MASK) {
1734                case PPS_TSCLK_FBCK:
1735                        fapi_ffc->pps_info_buf_ffc.assert_timestamp =
1736                            pps->ppsinfo.assert_timestamp;
1737                        fapi_ffc->pps_info_buf_ffc.clear_timestamp =
1738                            pps->ppsinfo.clear_timestamp;
1739                        break;
1740                case PPS_TSCLK_FFWD:
1741                        break;
1742                default:
1743                        break;
1744                }
1745                return (0);
1746#endif /* FFCLOCK */
1747        case PPS_IOC_KCBIND:
1748#ifdef PPS_SYNC
1749                kapi = (struct pps_kcbind_args *)data;
1750                /* XXX Only root should be able to do this */
1751                if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1752                        return (EINVAL);
1753                if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1754                        return (EINVAL);
1755                if (kapi->edge & ~pps->ppscap)
1756                        return (EINVAL);
1757                pps->kcmode = (kapi->edge & KCMODE_EDGEMASK) |
1758                    (pps->kcmode & KCMODE_ABIFLAG);
1759                return (0);
1760#else
1761                return (EOPNOTSUPP);
1762#endif
1763        default:
1764                return (ENOIOCTL);
1765        }
1766}
1767
1768void
1769pps_init(struct pps_state *pps)
1770{
1771        pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT;
1772        if (pps->ppscap & PPS_CAPTUREASSERT)
1773                pps->ppscap |= PPS_OFFSETASSERT;
1774        if (pps->ppscap & PPS_CAPTURECLEAR)
1775                pps->ppscap |= PPS_OFFSETCLEAR;
1776#ifdef FFCLOCK
1777        pps->ppscap |= PPS_TSCLK_MASK;
1778#endif
1779        pps->kcmode &= ~KCMODE_ABIFLAG;
1780}
1781
1782void
1783pps_init_abi(struct pps_state *pps)
1784{
1785
1786        pps_init(pps);
1787        if (pps->driver_abi > 0) {
1788                pps->kcmode |= KCMODE_ABIFLAG;
1789                pps->kernel_abi = PPS_ABI_VERSION;
1790        }
1791}
1792
1793void
1794pps_capture(struct pps_state *pps)
1795{
1796        struct timehands *th;
1797
1798        KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
1799        th = timehands;
1800        pps->capgen = tc_getgen(th);
1801        pps->capth = th;
1802#ifdef FFCLOCK
1803        pps->capffth = fftimehands;
1804#endif
1805        pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
1806        if (pps->capgen != tc_getgen(th))
1807                pps->capgen = 0;
1808}
1809
1810void
1811pps_event(struct pps_state *pps, int event)
1812{
1813        struct bintime bt;
1814        struct timespec ts, *tsp, *osp;
1815        uint32_t tcount, *pcount;
1816        int foff, fhard;
1817        pps_seq_t *pseq;
1818#ifdef FFCLOCK
1819        struct timespec *tsp_ffc;
1820        pps_seq_t *pseq_ffc;
1821        ffcounter *ffcount;
1822#endif
1823
1824        KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
1825        /* If the timecounter was wound up underneath us, bail out. */
1826        if (pps->capgen == 0 || pps->capgen != tc_getgen(pps->capth))
1827                return;
1828
1829        /* Things would be easier with arrays. */
1830        if (event == PPS_CAPTUREASSERT) {
1831                tsp = &pps->ppsinfo.assert_timestamp;
1832                osp = &pps->ppsparam.assert_offset;
1833                foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1834                fhard = pps->kcmode & PPS_CAPTUREASSERT;
1835                pcount = &pps->ppscount[0];
1836                pseq = &pps->ppsinfo.assert_sequence;
1837#ifdef FFCLOCK
1838                ffcount = &pps->ppsinfo_ffc.assert_ffcount;
1839                tsp_ffc = &pps->ppsinfo_ffc.assert_timestamp;
1840                pseq_ffc = &pps->ppsinfo_ffc.assert_sequence;
1841#endif
1842        } else {
1843                tsp = &pps->ppsinfo.clear_timestamp;
1844                osp = &pps->ppsparam.clear_offset;
1845                foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1846                fhard = pps->kcmode & PPS_CAPTURECLEAR;
1847                pcount = &pps->ppscount[1];
1848                pseq = &pps->ppsinfo.clear_sequence;
1849#ifdef FFCLOCK
1850                ffcount = &pps->ppsinfo_ffc.clear_ffcount;
1851                tsp_ffc = &pps->ppsinfo_ffc.clear_timestamp;
1852                pseq_ffc = &pps->ppsinfo_ffc.clear_sequence;
1853#endif
1854        }
1855
1856        /*
1857         * If the timecounter changed, we cannot compare the count values, so
1858         * we have to drop the rest of the PPS-stuff until the next event.
1859         */
1860        if (pps->ppstc != pps->capth->th_counter) {
1861                pps->ppstc = pps->capth->th_counter;
1862                *pcount = pps->capcount;
1863                pps->ppscount[2] = pps->capcount;
1864                return;
1865        }
1866
1867        /* Convert the count to a timespec. */
1868        tcount = pps->capcount - pps->capth->th_offset_count;
1869        tcount &= pps->capth->th_counter->tc_counter_mask;
1870        bt = pps->capth->th_offset;
1871        bintime_addx(&bt, pps->capth->th_scale * tcount);
1872        bintime_add(&bt, &boottimebin);
1873        bintime2timespec(&bt, &ts);
1874
1875        /* If the timecounter was wound up underneath us, bail out. */
1876        if (pps->capgen != tc_getgen(pps->capth))
1877                return;
1878
1879        *pcount = pps->capcount;
1880        (*pseq)++;
1881        *tsp = ts;
1882
1883        if (foff) {
1884                timespecadd(tsp, osp);
1885                if (tsp->tv_nsec < 0) {
1886                        tsp->tv_nsec += 1000000000;
1887                        tsp->tv_sec -= 1;
1888                }
1889        }
1890
1891#ifdef FFCLOCK
1892        *ffcount = pps->capffth->tick_ffcount + tcount;
1893        bt = pps->capffth->tick_time;
1894        ffclock_convert_delta(tcount, pps->capffth->cest.period, &bt);
1895        bintime_add(&bt, &pps->capffth->tick_time);
1896        bintime2timespec(&bt, &ts);
1897        (*pseq_ffc)++;
1898        *tsp_ffc = ts;
1899#endif
1900
1901#ifdef PPS_SYNC
1902        if (fhard) {
1903                uint64_t scale;
1904
1905                /*
1906                 * Feed the NTP PLL/FLL.
1907                 * The FLL wants to know how many (hardware) nanoseconds
1908                 * elapsed since the previous event.
1909                 */
1910                tcount = pps->capcount - pps->ppscount[2];
1911                pps->ppscount[2] = pps->capcount;
1912                tcount &= pps->capth->th_counter->tc_counter_mask;
1913                scale = (uint64_t)1 << 63;
1914                scale /= pps->capth->th_counter->tc_frequency;
1915                scale *= 2;
1916                bt.sec = 0;
1917                bt.frac = 0;
1918                bintime_addx(&bt, scale * tcount);
1919                bintime2timespec(&bt, &ts);
1920                hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
1921        }
1922#endif
1923
1924        /* Wakeup anyone sleeping in pps_fetch().  */
1925        wakeup(pps);
1926}
1927#else /* __rtems__ */
1928/* FIXME: https://devel.rtems.org/ticket/2349 */
1929#endif /* __rtems__ */
1930
1931/*
1932 * Timecounters need to be updated every so often to prevent the hardware
1933 * counter from overflowing.  Updating also recalculates the cached values
1934 * used by the get*() family of functions, so their precision depends on
1935 * the update frequency.
1936 */
1937
1938#ifndef __rtems__
1939static int tc_tick;
1940SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
1941    "Approximate number of hardclock ticks in a millisecond");
1942#endif /* __rtems__ */
1943
1944#ifndef __rtems__
1945void
1946tc_ticktock(int cnt)
1947{
1948        static int count;
1949
1950        count += cnt;
1951        if (count < tc_tick)
1952                return;
1953        count = 0;
1954#else /* __rtems__ */
1955void
1956_Timecounter_Tick(void)
1957{
1958#endif /* __rtems__ */
1959        tc_windup();
1960#ifdef __rtems__
1961        _Watchdog_Tick();
1962#endif /* __rtems__ */
1963}
1964#ifdef __rtems__
1965#ifndef RTEMS_SMP
1966/*
1967 * This function is a hack to support legacy clock drivers and hardware.  It
1968 * makes no sense on SMP configurations since here ten timehands are active.
1969 */
1970void
1971_Timecounter_Tick_simple(uint32_t delta, uint32_t offset)
1972{
1973        struct bintime bt;
1974        struct timehands *th;
1975        uint32_t ogen;
1976        ISR_lock_Context lock_context;
1977
1978        _ISR_lock_ISR_disable_and_acquire(&_Timecounter_Lock, &lock_context);
1979
1980        th = timehands;
1981        ogen = th->th_generation;
1982        th->th_offset_count = offset;
1983        bintime_addx(&th->th_offset, th->th_scale * delta);
1984
1985        bt = th->th_offset;
1986        bintime_add(&bt, &boottimebin);
1987
1988        /* Update the UTC timestamps used by the get*() functions. */
1989        /* XXX shouldn't do this here.  Should force non-`get' versions. */
1990        bintime2timeval(&bt, &th->th_microtime);
1991        bintime2timespec(&bt, &th->th_nanotime);
1992
1993        /*
1994         * Now that the struct timehands is again consistent, set the new
1995         * generation number, making sure to not make it zero.
1996         */
1997        if (++ogen == 0)
1998                ogen = 1;
1999        th->th_generation = ogen;
2000
2001        /* Go live with the new struct timehands. */
2002        time_second = th->th_microtime.tv_sec;
2003        time_uptime = th->th_offset.sec;
2004
2005        _ISR_lock_Release_and_ISR_enable(&_Timecounter_Lock, &lock_context);
2006
2007        _Watchdog_Tick();
2008}
2009#endif /* RTEMS_SMP */
2010#endif /* __rtems__ */
2011
2012#ifndef __rtems__
2013static void __inline
2014tc_adjprecision(void)
2015{
2016        int t;
2017
2018        if (tc_timepercentage > 0) {
2019                t = (99 + tc_timepercentage) / tc_timepercentage;
2020                tc_precexp = fls(t + (t >> 1)) - 1;
2021                FREQ2BT(hz / tc_tick, &bt_timethreshold);
2022                FREQ2BT(hz, &bt_tickthreshold);
2023                bintime_shift(&bt_timethreshold, tc_precexp);
2024                bintime_shift(&bt_tickthreshold, tc_precexp);
2025        } else {
2026                tc_precexp = 31;
2027                bt_timethreshold.sec = INT_MAX;
2028                bt_timethreshold.frac = ~(uint64_t)0;
2029                bt_tickthreshold = bt_timethreshold;
2030        }
2031        sbt_timethreshold = bttosbt(bt_timethreshold);
2032        sbt_tickthreshold = bttosbt(bt_tickthreshold);
2033}
2034#endif /* __rtems__ */
2035
2036#ifndef __rtems__
2037static int
2038sysctl_kern_timecounter_adjprecision(SYSCTL_HANDLER_ARGS)
2039{
2040        int error, val;
2041
2042        val = tc_timepercentage;
2043        error = sysctl_handle_int(oidp, &val, 0, req);
2044        if (error != 0 || req->newptr == NULL)
2045                return (error);
2046        tc_timepercentage = val;
2047        if (cold)
2048                goto done;
2049        tc_adjprecision();
2050done:
2051        return (0);
2052}
2053#endif /* __rtems__ */
2054
2055#ifndef __rtems__
2056static void
2057inittimecounter(void *dummy)
2058#else /* __rtems__ */
2059void
2060_Timecounter_Initialize(void)
2061#endif /* __rtems__ */
2062{
2063#ifndef __rtems__
2064        u_int p;
2065        int tick_rate;
2066
2067        /*
2068         * Set the initial timeout to
2069         * max(1, <approx. number of hardclock ticks in a millisecond>).
2070         * People should probably not use the sysctl to set the timeout
2071         * to smaller than its inital value, since that value is the
2072         * smallest reasonable one.  If they want better timestamps they
2073         * should use the non-"get"* functions.
2074         */
2075        if (hz > 1000)
2076                tc_tick = (hz + 500) / 1000;
2077        else
2078                tc_tick = 1;
2079        tc_adjprecision();
2080        FREQ2BT(hz, &tick_bt);
2081        tick_sbt = bttosbt(tick_bt);
2082        tick_rate = hz / tc_tick;
2083        FREQ2BT(tick_rate, &tc_tick_bt);
2084        tc_tick_sbt = bttosbt(tc_tick_bt);
2085        p = (tc_tick * 1000000) / hz;
2086        printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
2087#endif /* __rtems__ */
2088
2089#ifdef FFCLOCK
2090        ffclock_init();
2091#endif
2092        /* warm up new timecounter (again) and get rolling. */
2093        (void)timecounter->tc_get_timecount(timecounter);
2094        (void)timecounter->tc_get_timecount(timecounter);
2095        tc_windup();
2096}
2097
2098#ifndef __rtems__
2099SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
2100#endif /* __rtems__ */
2101
2102#ifndef __rtems__
2103/* Cpu tick handling -------------------------------------------------*/
2104
2105static int cpu_tick_variable;
2106static uint64_t cpu_tick_frequency;
2107
2108static uint64_t
2109tc_cpu_ticks(void)
2110{
2111        static uint64_t base;
2112        static unsigned last;
2113        unsigned u;
2114        struct timecounter *tc;
2115
2116        tc = timehands->th_counter;
2117        u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
2118        if (u < last)
2119                base += (uint64_t)tc->tc_counter_mask + 1;
2120        last = u;
2121        return (u + base);
2122}
2123
2124void
2125cpu_tick_calibration(void)
2126{
2127        static time_t last_calib;
2128
2129        if (time_uptime != last_calib && !(time_uptime & 0xf)) {
2130                cpu_tick_calibrate(0);
2131                last_calib = time_uptime;
2132        }
2133}
2134
2135/*
2136 * This function gets called every 16 seconds on only one designated
2137 * CPU in the system from hardclock() via cpu_tick_calibration()().
2138 *
2139 * Whenever the real time clock is stepped we get called with reset=1
2140 * to make sure we handle suspend/resume and similar events correctly.
2141 */
2142
2143static void
2144cpu_tick_calibrate(int reset)
2145{
2146        static uint64_t c_last;
2147        uint64_t c_this, c_delta;
2148        static struct bintime  t_last;
2149        struct bintime t_this, t_delta;
2150        uint32_t divi;
2151
2152        if (reset) {
2153                /* The clock was stepped, abort & reset */
2154                t_last.sec = 0;
2155                return;
2156        }
2157
2158        /* we don't calibrate fixed rate cputicks */
2159        if (!cpu_tick_variable)
2160                return;
2161
2162        getbinuptime(&t_this);
2163        c_this = cpu_ticks();
2164        if (t_last.sec != 0) {
2165                c_delta = c_this - c_last;
2166                t_delta = t_this;
2167                bintime_sub(&t_delta, &t_last);
2168                /*
2169                 * Headroom:
2170                 *      2^(64-20) / 16[s] =
2171                 *      2^(44) / 16[s] =
2172                 *      17.592.186.044.416 / 16 =
2173                 *      1.099.511.627.776 [Hz]
2174                 */
2175                divi = t_delta.sec << 20;
2176                divi |= t_delta.frac >> (64 - 20);
2177                c_delta <<= 20;
2178                c_delta /= divi;
2179                if (c_delta > cpu_tick_frequency) {
2180                        if (0 && bootverbose)
2181                                printf("cpu_tick increased to %ju Hz\n",
2182                                    c_delta);
2183                        cpu_tick_frequency = c_delta;
2184                }
2185        }
2186        c_last = c_this;
2187        t_last = t_this;
2188}
2189
2190void
2191set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
2192{
2193
2194        if (func == NULL) {
2195                cpu_ticks = tc_cpu_ticks;
2196        } else {
2197                cpu_tick_frequency = freq;
2198                cpu_tick_variable = var;
2199                cpu_ticks = func;
2200        }
2201}
2202
2203uint64_t
2204cpu_tickrate(void)
2205{
2206
2207        if (cpu_ticks == tc_cpu_ticks)
2208                return (tc_getfrequency());
2209        return (cpu_tick_frequency);
2210}
2211
2212/*
2213 * We need to be slightly careful converting cputicks to microseconds.
2214 * There is plenty of margin in 64 bits of microseconds (half a million
2215 * years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
2216 * before divide conversion (to retain precision) we find that the
2217 * margin shrinks to 1.5 hours (one millionth of 146y).
2218 * With a three prong approach we never lose significant bits, no
2219 * matter what the cputick rate and length of timeinterval is.
2220 */
2221
2222uint64_t
2223cputick2usec(uint64_t tick)
2224{
2225
2226        if (tick > 18446744073709551LL)         /* floor(2^64 / 1000) */
2227                return (tick / (cpu_tickrate() / 1000000LL));
2228        else if (tick > 18446744073709LL)       /* floor(2^64 / 1000000) */
2229                return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
2230        else
2231                return ((tick * 1000000LL) / cpu_tickrate());
2232}
2233
2234cpu_tick_f      *cpu_ticks = tc_cpu_ticks;
2235#endif /* __rtems__ */
2236
2237#ifndef __rtems__
2238static int vdso_th_enable = 1;
2239static int
2240sysctl_fast_gettime(SYSCTL_HANDLER_ARGS)
2241{
2242        int old_vdso_th_enable, error;
2243
2244        old_vdso_th_enable = vdso_th_enable;
2245        error = sysctl_handle_int(oidp, &old_vdso_th_enable, 0, req);
2246        if (error != 0)
2247                return (error);
2248        vdso_th_enable = old_vdso_th_enable;
2249        return (0);
2250}
2251SYSCTL_PROC(_kern_timecounter, OID_AUTO, fast_gettime,
2252    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
2253    NULL, 0, sysctl_fast_gettime, "I", "Enable fast time of day");
2254
2255uint32_t
2256tc_fill_vdso_timehands(struct vdso_timehands *vdso_th)
2257{
2258        struct timehands *th;
2259        uint32_t enabled;
2260
2261        th = timehands;
2262        vdso_th->th_algo = VDSO_TH_ALGO_1;
2263        vdso_th->th_scale = th->th_scale;
2264        vdso_th->th_offset_count = th->th_offset_count;
2265        vdso_th->th_counter_mask = th->th_counter->tc_counter_mask;
2266        vdso_th->th_offset = th->th_offset;
2267        vdso_th->th_boottime = boottimebin;
2268        enabled = cpu_fill_vdso_timehands(vdso_th, th->th_counter);
2269        if (!vdso_th_enable)
2270                enabled = 0;
2271        return (enabled);
2272}
2273#endif /* __rtems__ */
2274
2275#ifdef COMPAT_FREEBSD32
2276uint32_t
2277tc_fill_vdso_timehands32(struct vdso_timehands32 *vdso_th32)
2278{
2279        struct timehands *th;
2280        uint32_t enabled;
2281
2282        th = timehands;
2283        vdso_th32->th_algo = VDSO_TH_ALGO_1;
2284        *(uint64_t *)&vdso_th32->th_scale[0] = th->th_scale;
2285        vdso_th32->th_offset_count = th->th_offset_count;
2286        vdso_th32->th_counter_mask = th->th_counter->tc_counter_mask;
2287        vdso_th32->th_offset.sec = th->th_offset.sec;
2288        *(uint64_t *)&vdso_th32->th_offset.frac[0] = th->th_offset.frac;
2289        vdso_th32->th_boottime.sec = boottimebin.sec;
2290        *(uint64_t *)&vdso_th32->th_boottime.frac[0] = boottimebin.frac;
2291        enabled = cpu_fill_vdso_timehands32(vdso_th32, th->th_counter);
2292        if (!vdso_th_enable)
2293                enabled = 0;
2294        return (enabled);
2295}
2296#endif
Note: See TracBrowser for help on using the repository browser.