source: rtems/cpukit/score/include/rtems/score/thread.h @ 11e8bc5

4.11
Last change on this file since 11e8bc5 was 11e8bc5, checked in by Joel Sherrill <joel.sherrill@…>, on Jun 29, 2010 at 12:34:12 AM

2010-06-28 Joel Sherrill <joel.sherrill@…>

PR 1573/cpukit

  • configure.ac, posix/src/killinfo.c, posix/src/psignalclearprocesssignals.c, posix/src/psignalsetprocesssignals.c, posix/src/psignalunblockthread.c, posix/src/pthreadcreate.c, posix/src/pthreadkill.c, posix/src/pthreadsigmask.c, rtems/src/signalsend.c, rtems/src/taskmode.c, score/Makefile.am, score/preinstall.am, score/include/rtems/system.h, score/include/rtems/score/context.h, score/include/rtems/score/isr.h, score/include/rtems/score/thread.h, score/src/isr.c, score/src/isrthreaddispatch.c, score/src/thread.c, score/src/threaddispatch.c, score/src/threadloadenv.c: Add a per cpu data structure which contains the information required by RTEMS for each CPU core. This encapsulates information such as thread executing, heir, idle and dispatch needed.
  • score/include/rtems/score/percpu.h, score/src/percpu.c: New files.
  • Property mode set to 100644
File size: 26.4 KB
Line 
1/**
2 *  @file  rtems/score/thread.h
3 *
4 *  This include file contains all constants and structures associated
5 *  with the thread control block.
6 */
7
8/*
9 *  COPYRIGHT (c) 1989-2009.
10 *  On-Line Applications Research Corporation (OAR).
11 *
12 *  The license and distribution terms for this file may be
13 *  found in the file LICENSE in this distribution or at
14 *  http://www.rtems.com/license/LICENSE.
15 *
16 *  $Id$
17 */
18
19#ifndef _RTEMS_SCORE_THREAD_H
20#define _RTEMS_SCORE_THREAD_H
21
22/**
23 *  @defgroup ScoreThread Thread Handler
24 *
25 *  This handler encapsulates functionality related to the management of
26 *  threads.  This includes the creation, deletion, and scheduling of threads.
27 *
28 *  The following variables are maintained as part of the per cpu data
29 *  structure.
30 *
31 *  + Idle thread pointer
32 *  + Executing thread pointer
33 *  + Heir thread pointer
34 */
35/**@{*/
36
37#if defined(RTEMS_POSIX_API)
38  #define RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE
39#endif
40
41#if defined(RTEMS_POSIX_API)
42  #define RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT
43#endif
44
45#if defined(RTEMS_POSIX_API)
46  #define RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API
47#endif
48
49#ifdef __cplusplus
50extern "C" {
51#endif
52
53/*
54 *  The user can define this at configure time and go back to ticks
55 *  resolution.
56 */
57#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
58  #include <rtems/score/timestamp.h>
59
60  typedef Timestamp_Control Thread_CPU_usage_t;
61#else
62  typedef uint32_t Thread_CPU_usage_t;
63#endif
64
65#include <rtems/score/percpu.h>
66#include <rtems/score/context.h>
67#include <rtems/score/cpu.h>
68#if defined(RTEMS_MULTIPROCESSING)
69#include <rtems/score/mppkt.h>
70#endif
71#include <rtems/score/object.h>
72#include <rtems/score/priority.h>
73#include <rtems/score/stack.h>
74#include <rtems/score/states.h>
75#include <rtems/score/tod.h>
76#include <rtems/score/tqdata.h>
77#include <rtems/score/watchdog.h>
78
79/**
80 *  The following defines the "return type" of a thread.
81 *
82 *  @note  This cannot always be right.  Some APIs have void
83 *         tasks/threads, others return pointers, others may
84 *         return a numeric value.  Hopefully a pointer is
85 *         always at least as big as an uint32_t  . :)
86 */
87typedef void *Thread;
88
89/**
90 *  @brief Type of the numeric argument of a thread entry function with at
91 *  least one numeric argument.
92 *
93 *  This numeric argument type designates an unsigned integer type with the
94 *  property that any valid pointer to void can be converted to this type and
95 *  then converted back to a pointer to void.  The result will compare equal to
96 *  the original pointer.
97 */
98typedef uintptr_t Thread_Entry_numeric_type;
99
100/**
101 *  The following defines the ways in which the entry point for a
102 *  thread can be invoked.  Basically, it can be passed any
103 *  combination/permutation of a pointer and an uint32_t   value.
104 *
105 *  @note For now, we are ignoring the return type.
106 */
107typedef enum {
108  THREAD_START_NUMERIC,
109  THREAD_START_POINTER,
110  #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
111    THREAD_START_BOTH_POINTER_FIRST,
112    THREAD_START_BOTH_NUMERIC_FIRST
113  #endif
114} Thread_Start_types;
115
116/** This type corresponds to a very simple style thread entry point. */
117typedef Thread ( *Thread_Entry )( void );   /* basic type */
118
119/** This type corresponds to a thread entry point which takes a single
120 *  unsigned thirty-two bit integer as an argument.
121 */
122typedef Thread ( *Thread_Entry_numeric )( Thread_Entry_numeric_type );
123
124/** This type corresponds to a thread entry point which takes a single
125 *  untyped pointer as an argument.
126 */
127typedef Thread ( *Thread_Entry_pointer )( void * );
128
129/** This type corresponds to a thread entry point which takes a single
130 *  untyped pointer and an unsigned thirty-two bit integer as arguments.
131 */
132typedef Thread ( *Thread_Entry_both_pointer_first )( void *, Thread_Entry_numeric_type );
133
134/** This type corresponds to a thread entry point which takes a single
135 *  unsigned thirty-two bit integer and an untyped pointer and an
136 *  as arguments.
137 */
138typedef Thread ( *Thread_Entry_both_numeric_first )( Thread_Entry_numeric_type, void * );
139
140/**
141 *  The following lists the algorithms used to manage the thread cpu budget.
142 *
143 *  Reset Timeslice:   At each context switch, reset the time quantum.
144 *  Exhaust Timeslice: Only reset the quantum once it is consumed.
145 *  Callout:           Execute routine when budget is consumed.
146 */
147typedef enum {
148  THREAD_CPU_BUDGET_ALGORITHM_NONE,
149  THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE,
150  #if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
151    THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE,
152  #endif
153  #if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
154    THREAD_CPU_BUDGET_ALGORITHM_CALLOUT
155  #endif
156}  Thread_CPU_budget_algorithms;
157
158/**  This defines thes the entry point for the thread specific timeslice
159 *   budget management algorithm.
160 */
161typedef void (*Thread_CPU_budget_algorithm_callout )( Thread_Control * );
162
163/** @brief Per Task Variable Manager Structure Forward Reference
164 *
165 *  Forward reference to the per task variable structure.
166 */
167struct rtems_task_variable_tt;
168
169/** @brief Per Task Variable Manager Structure
170 *
171 *  This is the internal structure used to manager per Task Variables.
172 */
173typedef struct {
174  /** This field points to the next per task variable for this task. */
175  struct rtems_task_variable_tt  *next;
176  /** This field points to the physical memory location of this per
177   *  task variable.
178   */
179  void                          **ptr;
180  /** This field is to the global value for this per task variable. */
181  void                           *gval;
182  /** This field is to this thread's value for this per task variable. */
183  void                           *tval;
184  /** This field points to the destructor for this per task variable. */
185  void                          (*dtor)(void *);
186} rtems_task_variable_t;
187
188/**
189 *  The following structure contains the information which defines
190 *  the starting state of a thread.
191 */
192typedef struct {
193  /** This field is the starting address for the thread. */
194  Thread_Entry                         entry_point;
195  /** This field indicates the how task is invoked. */
196  Thread_Start_types                   prototype;
197  /** This field is the pointer argument passed at thread start. */
198  void                                *pointer_argument;
199  /** This field is the numeric argument passed at thread start. */
200  Thread_Entry_numeric_type            numeric_argument;
201  /*-------------- initial execution modes ----------------- */
202  /** This field indicates whether the thread was preemptible when
203    * it started.
204    */
205  bool                                 is_preemptible;
206  /** This field indicates the CPU budget algorith. */
207  Thread_CPU_budget_algorithms         budget_algorithm;
208  /** This field is the routine to invoke when the CPU allotment is
209   *  consumed.
210   */
211  Thread_CPU_budget_algorithm_callout  budget_callout;
212  /** This field is the initial ISR disable level of this thread. */
213  uint32_t                             isr_level;
214  /** This field is the initial priority. */
215  Priority_Control                     initial_priority;
216  #if defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
217    /** This field indicates whether the SuperCore allocated the stack. */
218    bool                                 core_allocated_stack;
219  #endif
220  /** This field is the stack information. */
221  Stack_Control                        Initial_stack;
222  #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
223    /** This field is the initial FP context area address. */
224    Context_Control_fp                  *fp_context;
225  #endif
226  /** This field is the initial stack area address. */
227  void                                *stack;
228} Thread_Start_information;
229
230/**
231 *  The following structure contains the information necessary to manage
232 *  a thread which it is  waiting for a resource.
233 */
234#define THREAD_STATUS_PROXY_BLOCKING 0x1111111
235
236/**
237 *  @brief Union type to hold a pointer to an immutable or a mutable object.
238 *
239 *  The main purpose is to enable passing of pointers to read-only send buffers
240 *  in the message passing subsystem.  This approach is somewhat fragile since
241 *  it prevents the compiler to check if the operations on objects are valid
242 *  with respect to the constant qualifier.  An alternative would be to add a
243 *  third pointer argument for immutable objects, but this would increase the
244 *  structure size.
245 */
246typedef union {
247  void       *mutable_object;
248  const void *immutable_object;
249} Thread_Wait_information_Object_argument_type;
250
251/** @brief Thread Blocking Management Information
252 *
253 *  This contains the information required to manage a thread while it is
254 *  blocked and to return information to it.
255 */
256typedef struct {
257  /** This field is the Id of the object this thread is waiting upon. */
258  Objects_Id            id;
259  /** This field is used to return an integer while when blocked. */
260  uint32_t              count;
261  /** This field is for a pointer to a user return argument. */
262  void                 *return_argument;
263  /** This field is for a pointer to a second user return argument. */
264  Thread_Wait_information_Object_argument_type
265                        return_argument_second;
266  /** This field contains any options in effect on this blocking operation. */
267  uint32_t              option;
268  /** This field will contain the return status from a blocking operation.
269   *
270   *  @note The following assumes that all API return codes can be
271   *        treated as an uint32_t.
272   */
273  uint32_t              return_code;
274
275  /** This field is the chain header for the second through Nth tasks
276   *  of the same priority blocked waiting on the same object.
277   */
278  Chain_Control         Block2n;
279  /** This field points to the thread queue on which this thread is blocked. */
280  Thread_queue_Control *queue;
281}   Thread_Wait_information;
282
283/**
284 *  The following defines the control block used to manage
285 *  each thread proxy.
286 *
287 *  @note It is critical that proxies and threads have identical
288 *        memory images for the shared part.
289 */
290typedef struct {
291  /** This field is the object management structure for each proxy. */
292  Objects_Control          Object;
293  /** This field is the current execution state of this proxy. */
294  States_Control           current_state;
295  /** This field is the current priority state of this proxy. */
296  Priority_Control         current_priority;
297  /** This field is the base priority of this proxy. */
298  Priority_Control         real_priority;
299  /** This field is the number of mutexes currently held by this proxy. */
300  uint32_t                 resource_count;
301
302  /** This field is the blocking information for this proxy. */
303  Thread_Wait_information  Wait;
304  /** This field is the Watchdog used to manage proxy delays and timeouts. */
305  Watchdog_Control         Timer;
306#if defined(RTEMS_MULTIPROCESSING)
307  /** This field is the received response packet in an MP system. */
308  MP_packet_Prefix        *receive_packet;
309#endif
310     /****************** end of common block ********************/
311  /** This field is used to manage the set of proxies in the system. */
312  Chain_Node               Active;
313}   Thread_Proxy_control;
314
315/**
316 *  The following record defines the control block used
317 *  to manage each thread.
318 *
319 *  @note It is critical that proxies and threads have identical
320 *        memory images for the shared part.
321 */
322typedef enum {
323  /** This value is for the Classic RTEMS API. */
324  THREAD_API_RTEMS,
325  /** This value is for the POSIX API. */
326  THREAD_API_POSIX
327}  Thread_APIs;
328
329/** This macro defines the first API which has threads. */
330#define THREAD_API_FIRST THREAD_API_RTEMS
331
332/** This macro defines the last API which has threads. */
333#define THREAD_API_LAST  THREAD_API_POSIX
334
335/**
336 *  This structure defines the Thread Control Block (TCB).
337 */
338struct Thread_Control_struct {
339  /** This field is the object management structure for each thread. */
340  Objects_Control          Object;
341  /** This field is the current execution state of this thread. */
342  States_Control           current_state;
343  /** This field is the current priority state of this thread. */
344  Priority_Control         current_priority;
345  /** This field is the base priority of this thread. */
346  Priority_Control         real_priority;
347  /** This field is the number of mutexes currently held by this thread. */
348  uint32_t                 resource_count;
349  /** This field is the blocking information for this thread. */
350  Thread_Wait_information  Wait;
351  /** This field is the Watchdog used to manage thread delays and timeouts. */
352  Watchdog_Control         Timer;
353#if defined(RTEMS_MULTIPROCESSING)
354  /** This field is the received response packet in an MP system. */
355  MP_packet_Prefix        *receive_packet;
356#endif
357#ifdef __RTEMS_STRICT_ORDER_MUTEX__
358  /** This field is the head of queue of priority inheritance mutex
359   *  held by the thread.
360   */
361  Chain_Control            lock_mutex;
362#endif
363     /*================= end of common block =================*/
364  /** This field is the number of nested suspend calls. */
365  uint32_t                              suspend_count;
366#if defined(RTEMS_MULTIPROCESSING)
367  /** This field is true if the thread is offered globally */
368  bool                                  is_global;
369#endif
370  /** This field is true if the thread is preemptible. */
371  bool                                  is_preemptible;
372#if __RTEMS_ADA__
373  /** This field is the GNAT self context pointer. */
374  void                                 *rtems_ada_self;
375#endif
376  /** This field is the length of the time quantum that this thread is
377   *  allowed to consume.  The algorithm used to manage limits on CPU usage
378   *  is specified by budget_algorithm.
379   */
380  uint32_t                              cpu_time_budget;
381  /** This field is the algorithm used to manage this thread's time
382   *  quantum.  The algorithm may be specified as none which case,
383   *  no limit is in place.
384   */
385  Thread_CPU_budget_algorithms          budget_algorithm;
386  /** This field is the method invoked with the budgeted time is consumed. */
387  Thread_CPU_budget_algorithm_callout   budget_callout;
388  /** This field is the amount of CPU time consumed by this thread
389   *  since it was created.
390   */
391  Thread_CPU_usage_t                    cpu_time_used;
392  /** This field points to the Ready FIFO for this priority. */
393  Chain_Control                        *ready;
394  /** This field contains precalculated priority map indices. */
395  Priority_Information                  Priority_map;
396  /** This field contains information about the starting state of
397   *  this thread.
398   */
399  Thread_Start_information              Start;
400  /** This field contains the context of this thread. */
401  Context_Control                       Registers;
402#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
403  /** This field points to the floating point context for this thread.
404   *  If NULL, the thread is integer only.
405   */
406  Context_Control_fp                   *fp_context;
407#endif
408  /** This field points to the newlib reentrancy structure for this thread. */
409  struct _reent                        *libc_reent;
410  /** This array contains the API extension area pointers. */
411  void                                 *API_Extensions[ THREAD_API_LAST + 1 ];
412  /** This field points to the user extension pointers. */
413  void                                **extensions;
414  /** This field points to the set of per task variables. */
415  rtems_task_variable_t                *task_variables;
416};
417
418/**
419 *  Self for the GNU Ada Run-Time
420 */
421SCORE_EXTERN void *rtems_ada_self;
422
423/**
424 *  The following defines the information control block used to
425 *  manage this class of objects.
426 */
427SCORE_EXTERN Objects_Information _Thread_Internal_information;
428
429/**
430 *  The following context area contains the context of the "thread"
431 *  which invoked the start multitasking routine.  This context is
432 *  restored as the last action of the stop multitasking routine.  Thus
433 *  control of the processor can be returned to the environment
434 *  which initiated the system.
435 */
436SCORE_EXTERN Context_Control _Thread_BSP_context;
437
438/**
439 *  The following declares the dispatch critical section nesting
440 *  counter which is used to prevent context switches at inopportune
441 *  moments.
442 */
443SCORE_EXTERN volatile uint32_t   _Thread_Dispatch_disable_level;
444
445/**
446 *  The following holds how many user extensions are in the system.  This
447 *  is used to determine how many user extension data areas to allocate
448 *  per thread.
449 */
450SCORE_EXTERN uint32_t   _Thread_Maximum_extensions;
451
452/**
453 *  The following is used to manage the length of a timeslice quantum.
454 */
455SCORE_EXTERN uint32_t   _Thread_Ticks_per_timeslice;
456
457/**
458 *  The following points to the array of FIFOs used to manage the
459 *  set of ready threads.
460 */
461SCORE_EXTERN Chain_Control *_Thread_Ready_chain;
462
463/**
464 *  The following points to the thread whose floating point
465 *  context is currently loaded.
466 */
467#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
468SCORE_EXTERN Thread_Control *_Thread_Allocated_fp;
469#endif
470
471/**
472 * The C library re-enter-rant global pointer. Some C library implementations
473 * such as newlib have a single global pointer that changed during a context
474 * switch. The pointer points to that global pointer. The Thread control block
475 * holds a pointer to the task specific data.
476 */
477SCORE_EXTERN struct _reent **_Thread_libc_reent;
478
479#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
480
481  /**
482   * This contains the time since boot when the last context switch occurred.
483   * By placing it in the BSS, it will automatically be zeroed out at
484   * system initialization and does not need to be known outside this
485   * file.
486   */
487  SCORE_EXTERN Timestamp_Control _Thread_Time_of_last_context_switch;
488#endif
489
490/**
491 *  This routine performs the initialization necessary for this handler.
492 */
493void _Thread_Handler_initialization(void);
494
495/**
496 *  This routine creates the idle thread.
497 *
498 *  @warning No thread should be created before this one.
499 */
500void _Thread_Create_idle(void);
501
502/**
503 *  This routine initiates multitasking.  It is invoked only as
504 *  part of initialization and its invocation is the last act of
505 *  the non-multitasking part of the system initialization.
506 */
507void _Thread_Start_multitasking( void );
508
509/**
510 *  This routine is responsible for transferring control of the
511 *  processor from the executing thread to the heir thread.  As part
512 *  of this process, it is responsible for the following actions:
513 *
514 *     + saving the context of the executing thread
515 *     + restoring the context of the heir thread
516 *     + dispatching any signals for the resulting executing thread
517 */
518void _Thread_Dispatch( void );
519
520/**
521 *  Allocate the requested stack space for the thread.
522 *  return the actual size allocated after any adjustment
523 *  or return zero if the allocation failed.
524 *  Set the Start.stack field to the address of the stack
525 */
526
527size_t _Thread_Stack_Allocate(
528  Thread_Control *the_thread,
529  size_t          stack_size
530);
531
532/**
533 *  Deallocate the Thread's stack.
534 */
535void _Thread_Stack_Free(
536  Thread_Control *the_thread
537);
538
539/**
540 *  This routine initializes the specified the thread.  It allocates
541 *  all memory associated with this thread.  It completes by adding
542 *  the thread to the local object table so operations on this
543 *  thread id are allowed.
544 *
545 *  @note If stack_area is NULL, it is allocated from the workspace.
546 *
547 *  @note If the stack is allocated from the workspace, then it is
548 *        guaranteed to be of at least minimum size.
549 */
550bool _Thread_Initialize(
551  Objects_Information                  *information,
552  Thread_Control                       *the_thread,
553  void                                 *stack_area,
554  size_t                                stack_size,
555  bool                                  is_fp,
556  Priority_Control                      priority,
557  bool                                  is_preemptible,
558  Thread_CPU_budget_algorithms          budget_algorithm,
559  Thread_CPU_budget_algorithm_callout   budget_callout,
560  uint32_t                              isr_level,
561  Objects_Name                          name
562);
563
564/**
565 *  This routine initializes the executable information for a thread
566 *  and makes it ready to execute.  After this routine executes, the
567 *  thread competes with all other threads for CPU time.
568 */
569bool _Thread_Start(
570  Thread_Control            *the_thread,
571  Thread_Start_types         the_prototype,
572  void                      *entry_point,
573  void                      *pointer_argument,
574  Thread_Entry_numeric_type  numeric_argument
575);
576
577/**
578 *  This support routine restarts the specified task in a way that the
579 *  next time this thread executes, it will begin execution at its
580 *  original starting point.
581 *
582 *  TODO:  multiple task arg profiles
583 */
584bool _Thread_Restart(
585  Thread_Control            *the_thread,
586  void                      *pointer_argument,
587  Thread_Entry_numeric_type  numeric_argument
588);
589
590/**
591 *  This routine resets a thread to its initial state but does
592 *  not restart it.
593 */
594void _Thread_Reset(
595  Thread_Control            *the_thread,
596  void                      *pointer_argument,
597  Thread_Entry_numeric_type  numeric_argument
598);
599
600/**
601 *  This routine frees all memory associated with the specified
602 *  thread and removes it from the local object table so no further
603 *  operations on this thread are allowed.
604 */
605void _Thread_Close(
606  Objects_Information  *information,
607  Thread_Control       *the_thread
608);
609
610/**
611 *  This routine removes any set states for the_thread.  It performs
612 *  any necessary scheduling operations including the selection of
613 *  a new heir thread.
614 */
615void _Thread_Ready(
616  Thread_Control *the_thread
617);
618
619/**
620 *  This routine clears the indicated STATES for the_thread.  It performs
621 *  any necessary scheduling operations including the selection of
622 *  a new heir thread.
623 */
624void _Thread_Clear_state(
625  Thread_Control *the_thread,
626  States_Control  state
627);
628
629/**
630 *  This routine sets the indicated states for the_thread.  It performs
631 *  any necessary scheduling operations including the selection of
632 *  a new heir thread.
633 */
634void _Thread_Set_state(
635  Thread_Control *the_thread,
636  States_Control  state
637);
638
639/**
640 *  This routine sets the TRANSIENT state for the_thread.  It performs
641 *  any necessary scheduling operations including the selection of
642 *  a new heir thread.
643 */
644void _Thread_Set_transient(
645  Thread_Control *the_thread
646);
647
648/**
649 *  This routine is invoked as part of processing each clock tick.
650 *  It is responsible for determining if the current thread allows
651 *  timeslicing and, if so, when its timeslice expires.
652 */
653void _Thread_Tickle_timeslice( void );
654
655/**
656 *  This routine is invoked when a thread wishes to voluntarily
657 *  transfer control of the processor to another thread of equal
658 *  or greater priority.
659 */
660void _Thread_Yield_processor( void );
661
662/**
663 *  This routine initializes the context of the_thread to its
664 *  appropriate starting state.
665 */
666void _Thread_Load_environment(
667  Thread_Control *the_thread
668);
669
670/**
671 *  This routine is the wrapper function for all threads.  It is
672 *  the starting point for all threads.  The user provided thread
673 *  entry point is invoked by this routine.  Operations
674 *  which must be performed immediately before and after the user's
675 *  thread executes are found here.
676 */
677void _Thread_Handler( void );
678
679/**
680 *  This routine is invoked when a thread must be unblocked at the
681 *  end of a time based delay (i.e. wake after or wake when).
682 */
683void _Thread_Delay_ended(
684  Objects_Id  id,
685  void       *ignored
686);
687
688/**
689 *  This routine changes the current priority of the_thread to
690 *  new_priority.  It performs any necessary scheduling operations
691 *  including the selection of a new heir thread.
692 */
693void _Thread_Change_priority (
694  Thread_Control   *the_thread,
695  Priority_Control  new_priority,
696  bool              prepend_it
697);
698
699/**
700 *  This routine updates the priority related fields in the_thread
701 *  control block to indicate the current priority is now new_priority.
702 */
703void _Thread_Set_priority(
704  Thread_Control   *the_thread,
705  Priority_Control  new_priority
706);
707
708/**
709 *  This routine updates the related suspend fields in the_thread
710 *  control block to indicate the current nested level.
711 */
712void _Thread_Suspend(
713  Thread_Control   *the_thread
714);
715
716/**
717 *  This routine updates the related suspend fields in the_thread
718 *  control block to indicate the current nested level.  A force
719 *  parameter of true will force a resume and clear the suspend count.
720 */
721void _Thread_Resume(
722  Thread_Control   *the_thread,
723  bool              force
724);
725
726#if (CPU_PROVIDES_IDLE_THREAD_BODY == FALSE)
727/**
728 *  This routine is the body of the system idle thread.
729 *
730 *  NOTE: This routine is actually instantiated by confdefs.h when needed.
731 */
732void *_Thread_Idle_body(
733  uintptr_t  ignored
734);
735#endif
736
737/**  This defines the type for a method which operates on a single thread.
738 */
739typedef void (*rtems_per_thread_routine)( Thread_Control * );
740
741/**
742 *  This routine iterates over all threads regardless of API and
743 *  invokes the specified routine.
744 */
745void rtems_iterate_over_all_threads(
746  rtems_per_thread_routine routine
747);
748
749/**
750 *  This function maps thread IDs to thread control
751 *  blocks.  If ID corresponds to a local thread, then it
752 *  returns the_thread control pointer which maps to ID
753 *  and location is set to OBJECTS_LOCAL.  If the thread ID is
754 *  global and resides on a remote node, then location is set
755 *  to OBJECTS_REMOTE, and the_thread is undefined.
756 *  Otherwise, location is set to OBJECTS_ERROR and
757 *  the_thread is undefined.
758 *
759 *  @note  The performance of many RTEMS services depends upon
760 *         the quick execution of the "good object" path in this
761 *         routine.  If there is a possibility of saving a few
762 *         cycles off the execution time, this routine is worth
763 *         further optimization attention.
764 */
765Thread_Control *_Thread_Get (
766  Objects_Id         id,
767  Objects_Locations *location
768);
769
770/**
771 *  @brief Cancel a blocking operation due to ISR
772 *
773 *  This method is used to cancel a blocking operation that was
774 *  satisfied from an ISR while the thread executing was in the
775 *  process of blocking.
776 *
777 *  @param[in] sync_state is the synchronization state
778 *  @param[in] the_thread is the thread whose blocking is canceled
779 *  @param[in] level is the previous ISR disable level
780 *
781 *  @note This is a rare routine in RTEMS.  It is called with
782 *        interrupts disabled and only when an ISR completed
783 *        a blocking condition in process.
784 */
785void _Thread_blocking_operation_Cancel(
786  Thread_blocking_operation_States  sync_state,
787  Thread_Control                   *the_thread,
788  ISR_Level                         level
789);
790
791#ifndef __RTEMS_APPLICATION__
792#include <rtems/score/thread.inl>
793#endif
794#if defined(RTEMS_MULTIPROCESSING)
795#include <rtems/score/threadmp.h>
796#endif
797
798#ifdef __cplusplus
799}
800#endif
801
802/**@}*/
803
804#endif
805/* end of include file */
Note: See TracBrowser for help on using the repository browser.