source: rtems/cpukit/score/cpu/v850/rtems/score/cpu.h @ 03b7789

4.115
Last change on this file since 03b7789 was 03b7789, checked in by Sebastian Huber <sebastian.huber@…>, on 04/26/14 at 13:09:10

score: Statically initialize _ISR_Vector_table

  • Property mode set to 100644
File size: 39.0 KB
Line 
1/**
2 * @file
3 *
4 * @brief V850 CPU Department Source
5 *
6 * This include file contains information pertaining to the v850
7 * processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2012.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/types.h>
27#include <rtems/score/v850.h>
28
29/* conditional compilation parameters */
30
31/**
32 * Should the calls to @ref _Thread_Enable_dispatch be inlined?
33 *
34 * If TRUE, then they are inlined.
35 * If FALSE, then a subroutine call is made.
36 *
37 * This conditional is an example of the classic trade-off of size
38 * versus speed.  Inlining the call (TRUE) typically increases the
39 * size of RTEMS while speeding up the enabling of dispatching.
40 *
41 * @note In general, the @ref _Thread_Dispatch_disable_level will
42 * only be 0 or 1 unless you are in an interrupt handler and that
43 * interrupt handler invokes the executive.]  When not inlined
44 * something calls @ref _Thread_Enable_dispatch which in turns calls
45 * @ref _Thread_Dispatch.  If the enable dispatch is inlined, then
46 * one subroutine call is avoided entirely.
47 *
48 * Port Specific Information:
49 *
50 * The v850 is a RISC CPU which typically has enough memory to justify
51 * the inlining of this method.
52 */
53#define CPU_INLINE_ENABLE_DISPATCH       TRUE
54
55/**
56 * Should the body of the search loops in _Thread_queue_Enqueue_priority
57 * be unrolled one time?  In unrolled each iteration of the loop examines
58 * two "nodes" on the chain being searched.  Otherwise, only one node
59 * is examined per iteration.
60 *
61 * If TRUE, then the loops are unrolled.
62 * If FALSE, then the loops are not unrolled.
63 *
64 * The primary factor in making this decision is the cost of disabling
65 * and enabling interrupts (_ISR_Flash) versus the cost of rest of the
66 * body of the loop.  On some CPUs, the flash is more expensive than
67 * one iteration of the loop body.  In this case, it might be desirable
68 * to unroll the loop.  It is important to note that on some CPUs, this
69 * code is the longest interrupt disable period in RTEMS.  So it is
70 * necessary to strike a balance when setting this parameter.
71 *
72 * Port Specific Information:
73 *
74 * The v850 is a RISC CPU which typically has enough memory to justify
75 * the unrolling of this method.
76 */
77#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
78
79/**
80 * Does RTEMS manage a dedicated interrupt stack in software?
81 *
82 * If TRUE, then a stack is allocated in @ref _ISR_Handler_initialization.
83 * If FALSE, nothing is done.
84 *
85 * If the CPU supports a dedicated interrupt stack in hardware,
86 * then it is generally the responsibility of the BSP to allocate it
87 * and set it up.
88 *
89 * If the CPU does not support a dedicated interrupt stack, then
90 * the porter has two options: (1) execute interrupts on the
91 * stack of the interrupted task, and (2) have RTEMS manage a dedicated
92 * interrupt stack.
93 *
94 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
95 *
96 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
97 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
98 * possible that both are FALSE for a particular CPU.  Although it
99 * is unclear what that would imply about the interrupt processing
100 * procedure on that CPU.
101 *
102 * Port Specific Information:
103 *
104 * The v850 does not have support for a hardware interrupt stack.
105 */
106#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
107
108/**
109 * Does the CPU follow the simple vectored interrupt model?
110 *
111 * If TRUE, then RTEMS allocates the vector table it internally manages.
112 * If FALSE, then the BSP is assumed to allocate and manage the vector
113 * table
114 *
115 * Port Specific Information:
116 *
117 * This port uses the Progammable Interrupt Controller interrupt model.
118 */
119#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
120
121/**
122 * Does this CPU have hardware support for a dedicated interrupt stack?
123 *
124 * If TRUE, then it must be installed during initialization.
125 * If FALSE, then no installation is performed.
126 *
127 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
128 *
129 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
130 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
131 * possible that both are FALSE for a particular CPU.  Although it
132 * is unclear what that would imply about the interrupt processing
133 * procedure on that CPU.
134 *
135 * Port Specific Information:
136 *
137 * The v850 does not have support for a hardware interrupt stack.
138 */
139#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
140
141/**
142 * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
143 *
144 * If TRUE, then the memory is allocated during initialization.
145 * If FALSE, then the memory is allocated during initialization.
146 *
147 * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
148 *
149 * Port Specific Information:
150 *
151 * XXX document implementation including references if appropriate
152 */
153#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
154
155/**
156 * @def CPU_HARDWARE_FP
157 *
158 * Does the CPU have hardware floating point?
159 *
160 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
161 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
162 *
163 * If there is a FP coprocessor such as the i387 or mc68881, then
164 * the answer is TRUE.
165 *
166 * The macro name "V850_HAS_FPU" should be made CPU specific.
167 * It indicates whether or not this CPU model has FP support.  For
168 * example, it would be possible to have an i386_nofp CPU model
169 * which set this to false to indicate that you have an i386 without
170 * an i387 and wish to leave floating point support out of RTEMS.
171 */
172
173/**
174 * @def CPU_SOFTWARE_FP
175 *
176 * Does the CPU have no hardware floating point and GCC provides a
177 * software floating point implementation which must be context
178 * switched?
179 *
180 * This feature conditional is used to indicate whether or not there
181 * is software implemented floating point that must be context
182 * switched.  The determination of whether or not this applies
183 * is very tool specific and the state saved/restored is also
184 * compiler specific.
185 *
186 * Port Specific Information:
187 *
188 * Some v850 models do have IEEE hardware floating point support but
189 * they do not have any special registers to save or bit(s) which
190 * determine if the FPU is enabled. In short, there appears to be nothing
191 * related to the floating point operations which impact the RTEMS
192 * thread context switch. Thus from an RTEMS perspective, there is really
193 * no FPU to manage.
194 */
195#define CPU_HARDWARE_FP     FALSE
196#define CPU_SOFTWARE_FP     FALSE
197
198/**
199 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
200 *
201 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
202 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
203 *
204 * So far, the only CPUs in which this option has been used are the
205 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
206 * gcc both implicitly used the floating point registers to perform
207 * integer multiplies.  Similarly, the PowerPC port of gcc has been
208 * seen to allocate floating point local variables and touch the FPU
209 * even when the flow through a subroutine (like vfprintf()) might
210 * not use floating point formats.
211 *
212 * If a function which you would not think utilize the FP unit DOES,
213 * then one can not easily predict which tasks will use the FP hardware.
214 * In this case, this option should be TRUE.
215 *
216 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
217 *
218 * Port Specific Information:
219 *
220 * This should be false until it has been demonstrated that gcc for the
221 * v850 generates FPU code when it is unexpected. But even this would
222 * not matter since there are no FP specific registers or bits which
223 * would be corrupted if an FP operation occurred in an integer only
224 * thread.
225 */
226#define CPU_ALL_TASKS_ARE_FP     FALSE
227
228/**
229 * Should the IDLE task have a floating point context?
230 *
231 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
232 * and it has a floating point context which is switched in and out.
233 * If FALSE, then the IDLE task does not have a floating point context.
234 *
235 * Setting this to TRUE negatively impacts the time required to preempt
236 * the IDLE task from an interrupt because the floating point context
237 * must be saved as part of the preemption.
238 *
239 * Port Specific Information:
240 *
241 * The IDLE thread should not be using the FPU. Leave this off.
242 */
243#define CPU_IDLE_TASK_IS_FP      FALSE
244
245/**
246 * Should the saving of the floating point registers be deferred
247 * until a context switch is made to another different floating point
248 * task?
249 *
250 * If TRUE, then the floating point context will not be stored until
251 * necessary.  It will remain in the floating point registers and not
252 * disturned until another floating point task is switched to.
253 *
254 * If FALSE, then the floating point context is saved when a floating
255 * point task is switched out and restored when the next floating point
256 * task is restored.  The state of the floating point registers between
257 * those two operations is not specified.
258 *
259 * If the floating point context does NOT have to be saved as part of
260 * interrupt dispatching, then it should be safe to set this to TRUE.
261 *
262 * Setting this flag to TRUE results in using a different algorithm
263 * for deciding when to save and restore the floating point context.
264 * The deferred FP switch algorithm minimizes the number of times
265 * the FP context is saved and restored.  The FP context is not saved
266 * until a context switch is made to another, different FP task.
267 * Thus in a system with only one FP task, the FP context will never
268 * be saved or restored.
269 *
270 * Port Specific Information:
271 *
272 * See earlier comments. There is no FPU state to manage.
273 */
274#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
275
276/**
277 * Does this port provide a CPU dependent IDLE task implementation?
278 *
279 * If TRUE, then the routine @ref _CPU_Thread_Idle_body
280 * must be provided and is the default IDLE thread body instead of
281 * @ref _CPU_Thread_Idle_body.
282 *
283 * If FALSE, then use the generic IDLE thread body if the BSP does
284 * not provide one.
285 *
286 * This is intended to allow for supporting processors which have
287 * a low power or idle mode.  When the IDLE thread is executed, then
288 * the CPU can be powered down.
289 *
290 * The order of precedence for selecting the IDLE thread body is:
291 *
292 *   -#  BSP provided
293 *   -#  CPU dependent (if provided)
294 *   -#  generic (if no BSP and no CPU dependent)
295 *
296 * Port Specific Information:
297 *
298 * There does not appear to be a reason for the v850 port itself to provide
299 * a special idle task.
300 */
301#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
302
303/**
304 * Does the stack grow up (toward higher addresses) or down
305 * (toward lower addresses)?
306 *
307 * If TRUE, then the grows upward.
308 * If FALSE, then the grows toward smaller addresses.
309 *
310 * Port Specific Information:
311 *
312 * The v850 stack grows from high addresses to low addresses.
313 */
314#define CPU_STACK_GROWS_UP               FALSE
315
316/**
317 * The following is the variable attribute used to force alignment
318 * of critical RTEMS structures.  On some processors it may make
319 * sense to have these aligned on tighter boundaries than
320 * the minimum requirements of the compiler in order to have as
321 * much of the critical data area as possible in a cache line.
322 *
323 * The placement of this macro in the declaration of the variables
324 * is based on the syntactically requirements of the GNU C
325 * "__attribute__" extension.  For example with GNU C, use
326 * the following to force a structures to a 32 byte boundary.
327 *
328 *     __attribute__ ((aligned (32)))
329 *
330 * @note Currently only the Priority Bit Map table uses this feature.
331 *       To benefit from using this, the data must be heavily
332 *       used so it will stay in the cache and used frequently enough
333 *       in the executive to justify turning this on.
334 *
335 * Port Specific Information:
336 *
337 * Until proven otherwise, use the compiler default.
338 */
339#define CPU_STRUCTURE_ALIGNMENT
340
341/**
342 * The v850 should use 64-bit timestamps and inline them.
343 */
344#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
345
346/**
347 * @defgroup CPUEndian Processor Dependent Endianness Support
348 *
349 * This group assists in issues related to processor endianness.
350 *
351 */
352/**@{**/
353
354/**
355 * Define what is required to specify how the network to host conversion
356 * routines are handled.
357 *
358 * @note @a CPU_BIG_ENDIAN and @a CPU_LITTLE_ENDIAN should NOT have the
359 * same values.
360 *
361 * @see CPU_LITTLE_ENDIAN
362 *
363 * Port Specific Information:
364 *
365 * The v850 is little endian.
366 */
367#define CPU_BIG_ENDIAN  FALSE
368
369/**
370 * Define what is required to specify how the network to host conversion
371 * routines are handled.
372 *
373 * @note @ref CPU_BIG_ENDIAN and @ref CPU_LITTLE_ENDIAN should NOT have the
374 * same values.
375 *
376 * @see CPU_BIG_ENDIAN
377 *
378 * Port Specific Information:
379 *
380 * The v850 is little endian.
381 */
382#define CPU_LITTLE_ENDIAN TRUE
383
384/** @} */
385
386/**
387 * @ingroup CPUInterrupt
388 * The following defines the number of bits actually used in the
389 * interrupt field of the task mode.  How those bits map to the
390 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
391 *
392 * Port Specific Information:
393 *
394 * The v850 only has a single bit in the CPU for interrupt disable/enable.
395 */
396#define CPU_MODES_INTERRUPT_MASK   0x00000001
397
398#define CPU_PER_CPU_CONTROL_SIZE 0
399
400typedef struct {
401  /* There is no CPU specific per-CPU state */
402} CPU_Per_CPU_control;
403
404/**
405 * @defgroup CPUContext Processor Dependent Context Management
406 *
407 * From the highest level viewpoint, there are 2 types of context to save.
408 *
409 *    -# Interrupt registers to save
410 *    -# Task level registers to save
411 *
412 * Since RTEMS handles integer and floating point contexts separately, this
413 * means we have the following 3 context items:
414 *
415 *    -# task level context stuff::  Context_Control
416 *    -# floating point task stuff:: Context_Control_fp
417 *    -# special interrupt level context :: CPU_Interrupt_frame
418 *
419 * On some processors, it is cost-effective to save only the callee
420 * preserved registers during a task context switch.  This means
421 * that the ISR code needs to save those registers which do not
422 * persist across function calls.  It is not mandatory to make this
423 * distinctions between the caller/callee saves registers for the
424 * purpose of minimizing context saved during task switch and on interrupts.
425 * If the cost of saving extra registers is minimal, simplicity is the
426 * choice.  Save the same context on interrupt entry as for tasks in
427 * this case.
428 *
429 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
430 * care should be used in designing the context area.
431 *
432 * On some CPUs with hardware floating point support, the Context_Control_fp
433 * structure will not be used or it simply consist of an array of a
434 * fixed number of bytes.   This is done when the floating point context
435 * is dumped by a "FP save context" type instruction and the format
436 * is not really defined by the CPU.  In this case, there is no need
437 * to figure out the exact format -- only the size.  Of course, although
438 * this is enough information for RTEMS, it is probably not enough for
439 * a debugger such as gdb.  But that is another problem.
440 *
441 * Port Specific Information:
442 *
443 * On the v850, this port saves special registers and those that are
444 * callee saved.
445 */
446/**@{**/
447
448/**
449 * This defines the minimal set of integer and processor state registers
450 * that must be saved during a voluntary context switch from one thread
451 * to another.
452 */
453typedef struct {
454    uint32_t   r1;
455    /** This field is the stack pointer (e.g. r3).  */
456    uint32_t   r3_stack_pointer;
457    uint32_t   r20;
458    uint32_t   r21;
459    uint32_t   r22;
460    uint32_t   r23;
461    uint32_t   r24;
462    uint32_t   r25;
463    uint32_t   r26;
464    uint32_t   r27;
465    uint32_t   r28;
466    uint32_t   r29;
467    uint32_t   r31;
468    uint32_t   psw;
469} Context_Control;
470
471/**
472 * This macro returns the stack pointer associated with @a _context.
473 *
474 * @param[in] _context is the thread context area to access
475 *
476 * @return This method returns the stack pointer.
477 */
478#define _CPU_Context_Get_SP( _context ) \
479  (_context)->r3_stack_pointer
480
481/**
482 * This defines the complete set of floating point registers that must
483 * be saved during any context switch from one thread to another.
484 */
485typedef struct {
486    /** FPU registers are listed here */
487    double      some_float_register;
488} Context_Control_fp;
489
490/**
491 * This defines the set of integer and processor state registers that must
492 * be saved during an interrupt.  This set does not include any which are
493 * in @ref Context_Control.
494 */
495typedef struct {
496    /** This field is a hint that a port will have a number of integer
497     * registers that need to be saved when an interrupt occurs or
498     * when a context switch occurs at the end of an ISR.
499     */
500    uint32_t   special_interrupt_register;
501} CPU_Interrupt_frame;
502
503/** @} */
504
505/**
506 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
507 *
508 * On some CPUs, RTEMS supports a software managed interrupt stack.
509 * This stack is allocated by the Interrupt Manager and the switch
510 * is performed in @ref _ISR_Handler.  These variables contain pointers
511 * to the lowest and highest addresses in the chunk of memory allocated
512 * for the interrupt stack.  Since it is unknown whether the stack
513 * grows up or down (in general), this give the CPU dependent
514 * code the option of picking the version it wants to use.
515 *
516 * @note These two variables are required if the macro
517 *       @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
518 *
519 * Port Specific Information:
520 *
521 * XXX document implementation including references if appropriate
522 */
523/**@{**/
524
525/**
526 * @ingroup CPUContext
527 * The size of the floating point context area.  On some CPUs this
528 * will not be a "sizeof" because the format of the floating point
529 * area is not defined -- only the size is.  This is usually on
530 * CPUs with a "floating point save context" instruction.
531 *
532 * Port Specific Information:
533 *
534 * The v850 does not need a floating point context but this needs to be
535 * defined so confdefs.h.
536 */
537/* #define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) */
538#define CPU_CONTEXT_FP_SIZE 0
539
540/**
541 * Amount of extra stack (above minimum stack size) required by
542 * MPCI receive server thread.  Remember that in a multiprocessor
543 * system this thread must exist and be able to process all directives.
544 *
545 * Port Specific Information:
546 *
547 * There is no reason to think the v850 needs extra MPCI receive
548 * server stack.
549 */
550#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
551
552/**
553 * This is defined if the port has a special way to report the ISR nesting
554 * level.  Most ports maintain the variable @a _ISR_Nest_level.
555 */
556#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
557
558/** @} */
559
560/**
561 * @ingroup CPUContext
562 * Should be large enough to run all RTEMS tests.  This ensures
563 * that a "reasonable" small application should not have any problems.
564 *
565 * Port Specific Information:
566 *
567 * This should be very conservative on the v850.
568 */
569#define CPU_STACK_MINIMUM_SIZE          (1024*4)
570
571#define CPU_SIZEOF_POINTER 4
572
573/**
574 * CPU's worst alignment requirement for data types on a byte boundary.  This
575 * alignment does not take into account the requirements for the stack.
576 *
577 * Port Specific Information:
578 *
579 * There is no apparent reason why this should be larger than 8.
580 */
581#define CPU_ALIGNMENT              8
582
583/**
584 * This number corresponds to the byte alignment requirement for the
585 * heap handler.  This alignment requirement may be stricter than that
586 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
587 * common for the heap to follow the same alignment requirement as
588 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
589 * the heap, then this should be set to @ref CPU_ALIGNMENT.
590 *
591 * @note  This does not have to be a power of 2 although it should be
592 *        a multiple of 2 greater than or equal to 2.  The requirement
593 *        to be a multiple of 2 is because the heap uses the least
594 *        significant field of the front and back flags to indicate
595 *        that a block is in use or free.  So you do not want any odd
596 *        length blocks really putting length data in that bit.
597 *
598 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
599 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
600 *        elements allocated from the heap meet all restrictions.
601 *
602 * Port Specific Information:
603 *
604 * There is no apparent reason why this should be larger than CPU_ALIGNMENT.
605 */
606#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
607
608/**
609 * This number corresponds to the byte alignment requirement for memory
610 * buffers allocated by the partition manager.  This alignment requirement
611 * may be stricter than that for the data types alignment specified by
612 * @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
613 * alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
614 * strict enough for the partition, then this should be set to
615 * @ref CPU_ALIGNMENT.
616 *
617 * @note  This does not have to be a power of 2.  It does have to
618 *        be greater or equal to than @ref CPU_ALIGNMENT.
619 *
620 * Port Specific Information:
621 *
622 * There is no apparent reason why this should be larger than CPU_ALIGNMENT.
623 */
624#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
625
626/**
627 * This number corresponds to the byte alignment requirement for the
628 * stack.  This alignment requirement may be stricter than that for the
629 * data types alignment specified by @ref CPU_ALIGNMENT.  If the
630 * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
631 * set to 0.
632 *
633 * @note This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
634 *
635 * Port Specific Information:
636 *
637 * The v850 has enough RAM where alignment to 16 may be desirable depending
638 * on the cache properties. But this remains to be demonstrated.
639 */
640#define CPU_STACK_ALIGNMENT        4
641
642/*
643 *  ISR handler macros
644 */
645
646/**
647 * @addtogroup CPUInterrupt
648 */
649/**@{**/
650
651/**
652 * Disable all interrupts for an RTEMS critical section.  The previous
653 * level is returned in @a _isr_cookie.
654 *
655 * @param[out] _isr_cookie will contain the previous level cookie
656 *
657 * Port Specific Information:
658 *
659 * On the v850, we need to save the PSW and use "di" to disable interrupts.
660 */
661#define _CPU_ISR_Disable( _isr_cookie ) \
662  do { \
663    unsigned int _psw; \
664    \
665    v850_get_psw( _psw ); \
666    __asm__ __volatile__( "di" ); \
667    _isr_cookie = _psw; \
668  } while (0)
669
670/**
671 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
672 * This indicates the end of an RTEMS critical section.  The parameter
673 * @a _isr_cookie is not modified.
674 *
675 * @param[in] _isr_cookie contain the previous level cookie
676 *
677 * Port Specific Information:
678 *
679 * On the v850, we simply need to restore the PSW.
680 */
681#define _CPU_ISR_Enable( _isr_cookie )  \
682  do { \
683    unsigned int _psw = (_isr_cookie); \
684    \
685    v850_set_psw( _psw ); \
686  } while (0)
687
688/**
689 * This temporarily restores the interrupt to @a _isr_cookie before immediately
690 * disabling them again.  This is used to divide long RTEMS critical
691 * sections into two or more parts.  The parameter @a _isr_cookie is not
692 * modified.
693 *
694 * @param[in] _isr_cookie contain the previous level cookie
695 *
696 * Port Specific Information:
697 *
698 * This saves at least one instruction over using enable/disable back to back.
699 */
700#define _CPU_ISR_Flash( _isr_cookie ) \
701  do { \
702    unsigned int _psw = (_isr_cookie); \
703    v850_set_psw( _psw ); \
704    __asm__ __volatile__( "di" ); \
705  } while (0)
706
707/**
708 * This routine and @ref _CPU_ISR_Get_level
709 * Map the interrupt level in task mode onto the hardware that the CPU
710 * actually provides.  Currently, interrupt levels which do not
711 * map onto the CPU in a generic fashion are undefined.  Someday,
712 * it would be nice if these were "mapped" by the application
713 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
714 * 8 - 255 would be available for bsp/application specific meaning.
715 * This could be used to manage a programmable interrupt controller
716 * via the rtems_task_mode directive.
717 *
718 * Port Specific Information:
719 *
720 * On the v850, level 0 is enabled. Non-zero is disabled.
721 */
722#define _CPU_ISR_Set_level( new_level ) \
723  do { \
724    if ( new_level ) \
725      __asm__ __volatile__( "di" ); \
726    else \
727      __asm__ __volatile__( "ei" ); \
728  } while (0)
729
730/**
731 * Return the current interrupt disable level for this task in
732 * the format used by the interrupt level portion of the task mode.
733 *
734 * @note This routine usually must be implemented as a subroutine.
735 *
736 * Port Specific Information:
737 *
738 * This method is implemented in C on the v850.
739 */
740uint32_t   _CPU_ISR_Get_level( void );
741
742/* end of ISR handler macros */
743
744/** @} */
745
746/* Context handler macros */
747
748/**
749 * @ingroup CPUContext
750 * Initialize the context to a state suitable for starting a
751 * task after a context restore operation.  Generally, this
752 * involves:
753 *
754 *    - setting a starting address
755 *    - preparing the stack
756 *    - preparing the stack and frame pointers
757 *    - setting the proper interrupt level in the context
758 *    - initializing the floating point context
759 *
760 * This routine generally does not set any unnecessary register
761 * in the context.  The state of the "general data" registers is
762 * undefined at task start time.
763 *
764 * @param[in] _the_context is the context structure to be initialized
765 * @param[in] _stack_base is the lowest physical address of this task's stack
766 * @param[in] _size is the size of this task's stack
767 * @param[in] _isr is the interrupt disable level
768 * @param[in] _entry_point is the thread's entry point.  This is
769 *        always @a _Thread_Handler
770 * @param[in] _is_fp is TRUE if the thread is to be a floating
771 *       point thread.  This is typically only used on CPUs where the
772 *       FPU may be easily disabled by software such as on the SPARC
773 *       where the PSR contains an enable FPU bit.
774 * @param[in] tls_area is the thread-local storage (TLS) area
775 *
776 * Port Specific Information:
777 *
778 * This method is implemented in C on the v850.
779 */
780void _CPU_Context_Initialize(
781  Context_Control  *the_context,
782  uint32_t         *stack_base,
783  uint32_t          size,
784  uint32_t          new_level,
785  void             *entry_point,
786  bool              is_fp,
787  void             *tls_area
788);
789
790/**
791 * This routine is responsible for somehow restarting the currently
792 * executing task.  If you are lucky, then all that is necessary
793 * is restoring the context.  Otherwise, there will need to be
794 * a special assembly routine which does something special in this
795 * case.  For many ports, simply adding a label to the restore path
796 * of @ref _CPU_Context_switch will work.  On other ports, it may be
797 * possibly to load a few arguments and jump to the restore path. It will
798 * not work if restarting self conflicts with the stack frame
799 * assumptions of restoring a context.
800 *
801 * Port Specific Information:
802 *
803 * On the v850, we require a special entry point to restart a task.
804 */
805#define _CPU_Context_Restart_self( _the_context ) \
806   _CPU_Context_restore( (_the_context) );
807
808/* XXX this should be possible to remove */
809#if 0
810/**
811 * @ingroup CPUContext
812 * The purpose of this macro is to allow the initial pointer into
813 * a floating point context area (used to save the floating point
814 * context) to be at an arbitrary place in the floating point
815 * context area.
816 *
817 * This is necessary because some FP units are designed to have
818 * their context saved as a stack which grows into lower addresses.
819 * Other FP units can be saved by simply moving registers into offsets
820 * from the base of the context area.  Finally some FP units provide
821 * a "dump context" instruction which could fill in from high to low
822 * or low to high based on the whim of the CPU designers.
823 *
824 * @param[in] _base is the lowest physical address of the floating point
825 *        context area
826 * @param[in] _offset is the offset into the floating point area
827 *
828 * Port Specific Information:
829 *
830 * XXX document implementation including references if appropriate
831 */
832#define _CPU_Context_Fp_start( _base, _offset ) \
833   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
834#endif
835
836/* XXX this should be possible to remove */
837#if 0
838/**
839 * This routine initializes the FP context area passed to it to.
840 * There are a few standard ways in which to initialize the
841 * floating point context.  The code included for this macro assumes
842 * that this is a CPU in which a "initial" FP context was saved into
843 * @a _CPU_Null_fp_context and it simply copies it to the destination
844 * context passed to it.
845 *
846 * Other floating point context save/restore models include:
847 *   -# not doing anything, and
848 *   -# putting a "null FP status word" in the correct place in the FP context.
849 *
850 * @param[in] _destination is the floating point context area
851 *
852 * Port Specific Information:
853 *
854 * XXX document implementation including references if appropriate
855 */
856#define _CPU_Context_Initialize_fp( _destination ) \
857  { \
858  }
859#endif
860
861/* end of Context handler macros */
862
863/* Fatal Error manager macros */
864
865/**
866 * This routine copies _error into a known place -- typically a stack
867 * location or a register, optionally disables interrupts, and
868 * halts/stops the CPU.
869 *
870 * Port Specific Information:
871 *
872 * Move the error code into r10, disable interrupts and halt.
873 */
874#define _CPU_Fatal_halt( _error ) \
875  do { \
876    __asm__ __volatile__ ( "di" ); \
877    __asm__ __volatile__ ( "mov %0, r10; " : "=r" ((_error)) ); \
878    __asm__ __volatile__ ( "halt" ); \
879  } while (0)
880
881/* end of Fatal Error manager macros */
882
883/* Bitfield handler macros */
884
885/**
886 * @defgroup CPUBitfield Processor Dependent Bitfield Manipulation
887 *
888 * This set of routines are used to implement fast searches for
889 * the most important ready task.
890 */
891/**@{**/
892
893/**
894 * This definition is set to TRUE if the port uses the generic bitfield
895 * manipulation implementation.
896 */
897#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
898
899/**
900 * This definition is set to TRUE if the port uses the data tables provided
901 * by the generic bitfield manipulation implementation.
902 * This can occur when actually using the generic bitfield manipulation
903 * implementation or when implementing the same algorithm in assembly
904 * language for improved performance.  It is unlikely that a port will use
905 * the data if it has a bitfield scan instruction.
906 *
907 * Port Specific Information:
908 *
909 * There is no single v850 instruction to do a bit scan so there is
910 * no CPU specific implementation of bit field scanning. The empty
911 * stub routines are left as a place holder in case someone figures
912 * out how to do a v850 implementation better than the generic algorithm.
913 */
914#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
915
916/**
917 * This routine sets @a _output to the bit number of the first bit
918 * set in @a _value.  @a _value is of CPU dependent type
919 * @a Priority_bit_map_Word.  This type may be either 16 or 32 bits
920 * wide although only the 16 least significant bits will be used.
921 *
922 * There are a number of variables in using a "find first bit" type
923 * instruction.
924 *
925 *   -# What happens when run on a value of zero?
926 *   -# Bits may be numbered from MSB to LSB or vice-versa.
927 *   -# The numbering may be zero or one based.
928 *   -# The "find first bit" instruction may search from MSB or LSB.
929 *
930 * RTEMS guarantees that (1) will never happen so it is not a concern.
931 * (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and
932 * @ref _CPU_Priority_bits_index.  These three form a set of routines
933 * which must logically operate together.  Bits in the _value are
934 * set and cleared based on masks built by @ref _CPU_Priority_Mask.
935 * The basic major and minor values calculated by @ref _Priority_Major
936 * and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index
937 * to properly range between the values returned by the "find first bit"
938 * instruction.  This makes it possible for @ref _Priority_Get_highest to
939 * calculate the major and directly index into the minor table.
940 * This mapping is necessary to ensure that 0 (a high priority major/minor)
941 * is the first bit found.
942 *
943 * This entire "find first bit" and mapping process depends heavily
944 * on the manner in which a priority is broken into a major and minor
945 * components with the major being the 4 MSB of a priority and minor
946 * the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
947 * priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
948 * to the lowest priority.
949 *
950 * If your CPU does not have a "find first bit" instruction, then
951 * there are ways to make do without it.  Here are a handful of ways
952 * to implement this in software:
953 *
954@verbatim
955      - a series of 16 bit test instructions
956      - a "binary search using if's"
957      - _number = 0
958        if _value > 0x00ff
959          _value >>=8
960          _number = 8;
961
962        if _value > 0x0000f
963          _value >=8
964          _number += 4
965
966        _number += bit_set_table[ _value ]
967@endverbatim
968
969 *   where bit_set_table[ 16 ] has values which indicate the first
970 *     bit set
971 *
972 * @param[in] _value is the value to be scanned
973 * @param[in] _output is the first bit set
974 *
975 * Port Specific Information:
976 *
977 * There is no single v850 instruction to do a bit scan so there is
978 * no CPU specific implementation of bit field scanning.
979 */
980#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
981#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
982  { \
983    (_output) = 0;   /* do something to prevent warnings */ \
984  }
985#endif
986
987/* end of Bitfield handler macros */
988
989/**
990 * This routine builds the mask which corresponds to the bit fields
991 * as searched by @ref _CPU_Bitfield_Find_first_bit.  See the discussion
992 * for that routine.
993 *
994 * Port Specific Information:
995 *
996 * There is no single v850 instruction to do a bit scan so there is
997 * no CPU specific implementation of bit field scanning.
998 */
999#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1000
1001#define _CPU_Priority_Mask( _bit_number ) \
1002  ( 1 << (_bit_number) )
1003
1004#endif
1005
1006/**
1007 * This routine translates the bit numbers returned by
1008 * @ref _CPU_Bitfield_Find_first_bit into something suitable for use as
1009 * a major or minor component of a priority.  See the discussion
1010 * for that routine.
1011 *
1012 * @param[in] _priority is the major or minor number to translate
1013 *
1014 * Port Specific Information:
1015 *
1016 * There is no single v850 instruction to do a bit scan so there is
1017 * no CPU specific implementation of bit field scanning.
1018 */
1019#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1020
1021#define _CPU_Priority_bits_index( _priority ) \
1022  (_priority)
1023
1024#endif
1025
1026/* end of Priority handler macros */
1027
1028/** @} */
1029
1030/* functions */
1031
1032/**
1033 * @brief CPU initialize.
1034 * This routine performs CPU dependent initialization.
1035 *
1036 * Port Specific Information:
1037 *
1038 * This is implemented in C.
1039 *
1040 * v850 CPU Dependent Source
1041 */
1042void _CPU_Initialize(void);
1043
1044/**
1045 * @addtogroup CPUContext
1046 */
1047/**@{**/
1048
1049/**
1050 * This routine switches from the run context to the heir context.
1051 *
1052 * @param[in] run points to the context of the currently executing task
1053 * @param[in] heir points to the context of the heir task
1054 *
1055 * Port Specific Information:
1056 *
1057 * This is implemented in assembly on the v850.
1058 */
1059void _CPU_Context_switch(
1060  Context_Control  *run,
1061  Context_Control  *heir
1062);
1063
1064/**
1065 * This routine is generally used only to restart self in an
1066 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
1067 *
1068 * @param[in] new_context points to the context to be restored.
1069 *
1070 * @note May be unnecessary to reload some registers.
1071 *
1072 * Port Specific Information:
1073 *
1074 * This is implemented in assembly on the v850.
1075 */
1076void _CPU_Context_restore(
1077  Context_Control *new_context
1078) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1079
1080/* XXX this should be possible to remove */
1081#if 0
1082/**
1083 * This routine saves the floating point context passed to it.
1084 *
1085 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1086 * point context area
1087 *
1088 * @return on output @a *fp_context_ptr will contain the address that
1089 * should be used with @ref _CPU_Context_restore_fp to restore this context.
1090 *
1091 * Port Specific Information:
1092 *
1093 * XXX document implementation including references if appropriate
1094 */
1095void _CPU_Context_save_fp(
1096  Context_Control_fp **fp_context_ptr
1097);
1098#endif
1099
1100/* XXX this should be possible to remove */
1101#if 0
1102/**
1103 * This routine restores the floating point context passed to it.
1104 *
1105 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1106 * point context area to restore
1107 *
1108 * @return on output @a *fp_context_ptr will contain the address that
1109 * should be used with @ref _CPU_Context_save_fp to save this context.
1110 *
1111 * Port Specific Information:
1112 *
1113 * XXX document implementation including references if appropriate
1114 */
1115void _CPU_Context_restore_fp(
1116  Context_Control_fp **fp_context_ptr
1117);
1118#endif
1119
1120static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
1121{
1122  /* TODO */
1123}
1124
1125static inline void _CPU_Context_validate( uintptr_t pattern )
1126{
1127  while (1) {
1128    /* TODO */
1129  }
1130}
1131
1132/** @} */
1133
1134/* FIXME */
1135typedef CPU_Interrupt_frame CPU_Exception_frame;
1136
1137void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1138
1139/**
1140 * @ingroup CPUEndian
1141 * The following routine swaps the endian format of an unsigned int.
1142 * It must be static because it is referenced indirectly.
1143 *
1144 * This version will work on any processor, but if there is a better
1145 * way for your CPU PLEASE use it.  The most common way to do this is to:
1146 *
1147 *    swap least significant two bytes with 16-bit rotate
1148 *    swap upper and lower 16-bits
1149 *    swap most significant two bytes with 16-bit rotate
1150 *
1151 * Some CPUs have special instructions which swap a 32-bit quantity in
1152 * a single instruction (e.g. i486).  It is probably best to avoid
1153 * an "endian swapping control bit" in the CPU.  One good reason is
1154 * that interrupts would probably have to be disabled to ensure that
1155 * an interrupt does not try to access the same "chunk" with the wrong
1156 * endian.  Another good reason is that on some CPUs, the endian bit
1157 * endianness for ALL fetches -- both code and data -- so the code
1158 * will be fetched incorrectly.
1159 *
1160 * @param[in] value is the value to be swapped
1161 * @return the value after being endian swapped
1162 *
1163 * Port Specific Information:
1164 *
1165 * The v850 has a single instruction to swap endianness on a 32 bit quantity.
1166 */
1167static inline uint32_t CPU_swap_u32(
1168  uint32_t value
1169)
1170{
1171  unsigned int swapped;
1172
1173  #if (V850_HAS_BYTE_SWAP_INSTRUCTION == 1)
1174    unsigned int v;
1175
1176    v = value;
1177    __asm__ __volatile__ ("bsw %0, %1" : "=r" (v), "=&r" (swapped) );
1178  #else
1179    uint32_t byte1, byte2, byte3, byte4;
1180
1181    byte4 = (value >> 24) & 0xff;
1182    byte3 = (value >> 16) & 0xff;
1183    byte2 = (value >> 8)  & 0xff;
1184    byte1 =  value        & 0xff;
1185
1186    swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1187  #endif
1188  return swapped;
1189}
1190
1191/**
1192 * @ingroup CPUEndian
1193 * This routine swaps a 16 bir quantity.
1194 *
1195 * @param[in] value is the value to be swapped
1196 * @return the value after being endian swapped
1197 *
1198 * Port Specific Information:
1199 *
1200 * The v850 has a single instruction to swap endianness on a 16 bit quantity.
1201 */
1202static inline uint16_t CPU_swap_u16( uint16_t value )
1203{
1204  unsigned int swapped;
1205
1206  #if (V850_HAS_BYTE_SWAP_INSTRUCTION == 1)
1207    unsigned int v;
1208
1209    v = value;
1210    __asm__ __volatile__ ("bsh %0, %1" : "=r" (v), "=&r" (swapped) );
1211  #else
1212    swapped = ((value & 0xff) << 8) | ((value >> 8) & 0xff);
1213  #endif
1214  return swapped;
1215}
1216
1217typedef uint32_t CPU_Counter_ticks;
1218
1219CPU_Counter_ticks _CPU_Counter_read( void );
1220
1221static inline CPU_Counter_ticks _CPU_Counter_difference(
1222  CPU_Counter_ticks second,
1223  CPU_Counter_ticks first
1224)
1225{
1226  return second - first;
1227}
1228
1229#ifdef __cplusplus
1230}
1231#endif
1232
1233#endif
Note: See TracBrowser for help on using the repository browser.