source: rtems/cpukit/score/cpu/v850/include/rtems/score/cpu.h @ 511dc4b

5
Last change on this file since 511dc4b was 511dc4b, checked in by Sebastian Huber <sebastian.huber@…>, on 06/19/18 at 07:09:51

Rework initialization and interrupt stack support

Statically initialize the interrupt stack area
(_Configuration_Interrupt_stack_area_begin,
_Configuration_Interrupt_stack_area_end, and
_Configuration_Interrupt_stack_size) via <rtems/confdefs.h>. Place the
interrupt stack area in a special section ".rtemsstack.interrupt". Let
BSPs define the optimal placement of this section in their linker
command files (e.g. in a fast on-chip memory).

This change makes makes the CPU_HAS_SOFTWARE_INTERRUPT_STACK and
CPU_HAS_HARDWARE_INTERRUPT_STACK CPU port defines superfluous, since the
low level initialization code has all information available via global
symbols.

This change makes the CPU_ALLOCATE_INTERRUPT_STACK CPU port define
superfluous, since the interrupt stacks are allocated by confdefs.h for
all architectures. There is no need for BSP-specific linker command
file magic (except the section placement), see previous ARM linker
command file as a bad example.

Remove _CPU_Install_interrupt_stack(). Initialize the hardware
interrupt stack in _CPU_Initialize() if necessary (e.g.
m68k_install_interrupt_stack()).

The optional _CPU_Interrupt_stack_setup() is still useful to customize
the registration of the interrupt stack area in the per-CPU information.

The initialization stack can reuse the interrupt stack, since

  • interrupts are disabled during the sequential system initialization, and
  • the boot_card() function does not return.

This stack resuse saves memory.

Changes per architecture:

arm:

  • Mostly replace the linker symbol based configuration of stacks with the standard <rtems/confdefs.h> configuration via CONFIGURE_INTERRUPT_STACK_SIZE. The size of the FIQ, ABT and UND mode stack is still defined via linker symbols. These modes are rarely used in applications and the default values provided by the BSP should be sufficient in most cases.
  • Remove the bsp_processor_count linker symbol hack used for the SMP support. This is possible since the interrupt stack area is now allocated by the linker and not allocated from the heap. This makes some configure.ac stuff obsolete. Remove the now superfluous BSP variants altcycv_devkit_smp and realview_pbx_a9_qemu_smp.

bfin:

  • Remove unused magic linker command file allocation of initialization stack. Maybe a previous linker command file copy and paste problem? In the start.S the initialization stack is set to a hard coded value.

lm32, m32c, mips, nios2, riscv, sh, v850:

  • Remove magic linker command file allocation of initialization stack. Reuse interrupt stack for initialization stack.

m68k:

  • Remove magic linker command file allocation of initialization stack. Reuse interrupt stack for initialization stack.

powerpc:

  • Remove magic linker command file allocation of initialization stack. Reuse interrupt stack for initialization stack.
  • Used dedicated memory region (REGION_RTEMSSTACK) for the interrupt stack on BSPs using the shared linkcmds.base (replacement for REGION_RWEXTRA).

sparc:

  • Remove the hard coded initialization stack. Use the interrupt stack for the initialization stack on the boot processor. This saves 16KiB of RAM.

Update #3459.

  • Property mode set to 100644
File size: 26.9 KB
Line 
1/**
2 * @file
3 *
4 * @brief V850 CPU Department Source
5 *
6 * This include file contains information pertaining to the v850
7 * processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2012.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/basedefs.h>
27#include <rtems/score/v850.h>
28
29/* conditional compilation parameters */
30
31/**
32 * Does the CPU follow the simple vectored interrupt model?
33 *
34 * If TRUE, then RTEMS allocates the vector table it internally manages.
35 * If FALSE, then the BSP is assumed to allocate and manage the vector
36 * table
37 *
38 * Port Specific Information:
39 *
40 * This port uses the Progammable Interrupt Controller interrupt model.
41 */
42#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
43
44/**
45 * @def CPU_HARDWARE_FP
46 *
47 * Does the CPU have hardware floating point?
48 *
49 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
50 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
51 *
52 * If there is a FP coprocessor such as the i387 or mc68881, then
53 * the answer is TRUE.
54 *
55 * The macro name "V850_HAS_FPU" should be made CPU specific.
56 * It indicates whether or not this CPU model has FP support.  For
57 * example, it would be possible to have an i386_nofp CPU model
58 * which set this to false to indicate that you have an i386 without
59 * an i387 and wish to leave floating point support out of RTEMS.
60 */
61
62/**
63 * @def CPU_SOFTWARE_FP
64 *
65 * Does the CPU have no hardware floating point and GCC provides a
66 * software floating point implementation which must be context
67 * switched?
68 *
69 * This feature conditional is used to indicate whether or not there
70 * is software implemented floating point that must be context
71 * switched.  The determination of whether or not this applies
72 * is very tool specific and the state saved/restored is also
73 * compiler specific.
74 *
75 * Port Specific Information:
76 *
77 * Some v850 models do have IEEE hardware floating point support but
78 * they do not have any special registers to save or bit(s) which
79 * determine if the FPU is enabled. In short, there appears to be nothing
80 * related to the floating point operations which impact the RTEMS
81 * thread context switch. Thus from an RTEMS perspective, there is really
82 * no FPU to manage.
83 */
84#define CPU_HARDWARE_FP     FALSE
85#define CPU_SOFTWARE_FP     FALSE
86
87/**
88 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
89 *
90 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
91 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
92 *
93 * So far, the only CPUs in which this option has been used are the
94 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
95 * gcc both implicitly used the floating point registers to perform
96 * integer multiplies.  Similarly, the PowerPC port of gcc has been
97 * seen to allocate floating point local variables and touch the FPU
98 * even when the flow through a subroutine (like vfprintf()) might
99 * not use floating point formats.
100 *
101 * If a function which you would not think utilize the FP unit DOES,
102 * then one can not easily predict which tasks will use the FP hardware.
103 * In this case, this option should be TRUE.
104 *
105 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
106 *
107 * Port Specific Information:
108 *
109 * This should be false until it has been demonstrated that gcc for the
110 * v850 generates FPU code when it is unexpected. But even this would
111 * not matter since there are no FP specific registers or bits which
112 * would be corrupted if an FP operation occurred in an integer only
113 * thread.
114 */
115#define CPU_ALL_TASKS_ARE_FP     FALSE
116
117/**
118 * Should the IDLE task have a floating point context?
119 *
120 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
121 * and it has a floating point context which is switched in and out.
122 * If FALSE, then the IDLE task does not have a floating point context.
123 *
124 * Setting this to TRUE negatively impacts the time required to preempt
125 * the IDLE task from an interrupt because the floating point context
126 * must be saved as part of the preemption.
127 *
128 * Port Specific Information:
129 *
130 * The IDLE thread should not be using the FPU. Leave this off.
131 */
132#define CPU_IDLE_TASK_IS_FP      FALSE
133
134/**
135 * Should the saving of the floating point registers be deferred
136 * until a context switch is made to another different floating point
137 * task?
138 *
139 * If TRUE, then the floating point context will not be stored until
140 * necessary.  It will remain in the floating point registers and not
141 * disturned until another floating point task is switched to.
142 *
143 * If FALSE, then the floating point context is saved when a floating
144 * point task is switched out and restored when the next floating point
145 * task is restored.  The state of the floating point registers between
146 * those two operations is not specified.
147 *
148 * If the floating point context does NOT have to be saved as part of
149 * interrupt dispatching, then it should be safe to set this to TRUE.
150 *
151 * Setting this flag to TRUE results in using a different algorithm
152 * for deciding when to save and restore the floating point context.
153 * The deferred FP switch algorithm minimizes the number of times
154 * the FP context is saved and restored.  The FP context is not saved
155 * until a context switch is made to another, different FP task.
156 * Thus in a system with only one FP task, the FP context will never
157 * be saved or restored.
158 *
159 * Port Specific Information:
160 *
161 * See earlier comments. There is no FPU state to manage.
162 */
163#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
164
165#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
166
167/**
168 * Does this port provide a CPU dependent IDLE task implementation?
169 *
170 * If TRUE, then the routine @ref _CPU_Thread_Idle_body
171 * must be provided and is the default IDLE thread body instead of
172 * @ref _CPU_Thread_Idle_body.
173 *
174 * If FALSE, then use the generic IDLE thread body if the BSP does
175 * not provide one.
176 *
177 * This is intended to allow for supporting processors which have
178 * a low power or idle mode.  When the IDLE thread is executed, then
179 * the CPU can be powered down.
180 *
181 * The order of precedence for selecting the IDLE thread body is:
182 *
183 *   -#  BSP provided
184 *   -#  CPU dependent (if provided)
185 *   -#  generic (if no BSP and no CPU dependent)
186 *
187 * Port Specific Information:
188 *
189 * There does not appear to be a reason for the v850 port itself to provide
190 * a special idle task.
191 */
192#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
193
194/**
195 * Does the stack grow up (toward higher addresses) or down
196 * (toward lower addresses)?
197 *
198 * If TRUE, then the grows upward.
199 * If FALSE, then the grows toward smaller addresses.
200 *
201 * Port Specific Information:
202 *
203 * The v850 stack grows from high addresses to low addresses.
204 */
205#define CPU_STACK_GROWS_UP               FALSE
206
207/* FIXME: Is this the right value? */
208#define CPU_CACHE_LINE_BYTES 32
209
210#define CPU_STRUCTURE_ALIGNMENT
211
212/**
213 * @ingroup CPUInterrupt
214 * The following defines the number of bits actually used in the
215 * interrupt field of the task mode.  How those bits map to the
216 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
217 *
218 * Port Specific Information:
219 *
220 * The v850 only has a single bit in the CPU for interrupt disable/enable.
221 */
222#define CPU_MODES_INTERRUPT_MASK   0x00000001
223
224#define CPU_MAXIMUM_PROCESSORS 32
225
226/**
227 * @defgroup CPUContext Processor Dependent Context Management
228 *
229 * From the highest level viewpoint, there are 2 types of context to save.
230 *
231 *    -# Interrupt registers to save
232 *    -# Task level registers to save
233 *
234 * Since RTEMS handles integer and floating point contexts separately, this
235 * means we have the following 3 context items:
236 *
237 *    -# task level context stuff::  Context_Control
238 *    -# floating point task stuff:: Context_Control_fp
239 *    -# special interrupt level context :: CPU_Interrupt_frame
240 *
241 * On some processors, it is cost-effective to save only the callee
242 * preserved registers during a task context switch.  This means
243 * that the ISR code needs to save those registers which do not
244 * persist across function calls.  It is not mandatory to make this
245 * distinctions between the caller/callee saves registers for the
246 * purpose of minimizing context saved during task switch and on interrupts.
247 * If the cost of saving extra registers is minimal, simplicity is the
248 * choice.  Save the same context on interrupt entry as for tasks in
249 * this case.
250 *
251 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
252 * care should be used in designing the context area.
253 *
254 * On some CPUs with hardware floating point support, the Context_Control_fp
255 * structure will not be used or it simply consist of an array of a
256 * fixed number of bytes.   This is done when the floating point context
257 * is dumped by a "FP save context" type instruction and the format
258 * is not really defined by the CPU.  In this case, there is no need
259 * to figure out the exact format -- only the size.  Of course, although
260 * this is enough information for RTEMS, it is probably not enough for
261 * a debugger such as gdb.  But that is another problem.
262 *
263 * Port Specific Information:
264 *
265 * On the v850, this port saves special registers and those that are
266 * callee saved.
267 */
268/**@{**/
269
270/**
271 * This defines the minimal set of integer and processor state registers
272 * that must be saved during a voluntary context switch from one thread
273 * to another.
274 */
275typedef struct {
276    uint32_t   r1;
277    /** This field is the stack pointer (e.g. r3).  */
278    uint32_t   r3_stack_pointer;
279    uint32_t   r20;
280    uint32_t   r21;
281    uint32_t   r22;
282    uint32_t   r23;
283    uint32_t   r24;
284    uint32_t   r25;
285    uint32_t   r26;
286    uint32_t   r27;
287    uint32_t   r28;
288    uint32_t   r29;
289    uint32_t   r31;
290    uint32_t   psw;
291} Context_Control;
292
293/**
294 * This macro returns the stack pointer associated with @a _context.
295 *
296 * @param[in] _context is the thread context area to access
297 *
298 * @return This method returns the stack pointer.
299 */
300#define _CPU_Context_Get_SP( _context ) \
301  (_context)->r3_stack_pointer
302
303/**
304 * This defines the complete set of floating point registers that must
305 * be saved during any context switch from one thread to another.
306 */
307typedef struct {
308    /** FPU registers are listed here */
309    double      some_float_register;
310} Context_Control_fp;
311
312/**
313 * This defines the set of integer and processor state registers that must
314 * be saved during an interrupt.  This set does not include any which are
315 * in @ref Context_Control.
316 */
317typedef struct {
318    /** This field is a hint that a port will have a number of integer
319     * registers that need to be saved when an interrupt occurs or
320     * when a context switch occurs at the end of an ISR.
321     */
322    uint32_t   special_interrupt_register;
323} CPU_Interrupt_frame;
324
325/** @} */
326
327/**
328 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
329 */
330/**@{**/
331
332/**
333 * @ingroup CPUContext
334 * The size of the floating point context area.  On some CPUs this
335 * will not be a "sizeof" because the format of the floating point
336 * area is not defined -- only the size is.  This is usually on
337 * CPUs with a "floating point save context" instruction.
338 *
339 * Port Specific Information:
340 *
341 * The v850 does not need a floating point context but this needs to be
342 * defined so confdefs.h.
343 */
344/* #define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) */
345#define CPU_CONTEXT_FP_SIZE 0
346
347/**
348 * Amount of extra stack (above minimum stack size) required by
349 * MPCI receive server thread.  Remember that in a multiprocessor
350 * system this thread must exist and be able to process all directives.
351 *
352 * Port Specific Information:
353 *
354 * There is no reason to think the v850 needs extra MPCI receive
355 * server stack.
356 */
357#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
358
359/**
360 * This is defined if the port has a special way to report the ISR nesting
361 * level.  Most ports maintain the variable @a _ISR_Nest_level.
362 */
363#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
364
365/** @} */
366
367/**
368 * @ingroup CPUContext
369 * Should be large enough to run all RTEMS tests.  This ensures
370 * that a "reasonable" small application should not have any problems.
371 *
372 * Port Specific Information:
373 *
374 * This should be very conservative on the v850.
375 */
376#define CPU_STACK_MINIMUM_SIZE          (1024*4)
377
378#define CPU_SIZEOF_POINTER 4
379
380/**
381 * CPU's worst alignment requirement for data types on a byte boundary.  This
382 * alignment does not take into account the requirements for the stack.
383 *
384 * Port Specific Information:
385 *
386 * There is no apparent reason why this should be larger than 8.
387 */
388#define CPU_ALIGNMENT              8
389
390/**
391 * This number corresponds to the byte alignment requirement for the
392 * heap handler.  This alignment requirement may be stricter than that
393 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
394 * common for the heap to follow the same alignment requirement as
395 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
396 * the heap, then this should be set to @ref CPU_ALIGNMENT.
397 *
398 * @note  This does not have to be a power of 2 although it should be
399 *        a multiple of 2 greater than or equal to 2.  The requirement
400 *        to be a multiple of 2 is because the heap uses the least
401 *        significant field of the front and back flags to indicate
402 *        that a block is in use or free.  So you do not want any odd
403 *        length blocks really putting length data in that bit.
404 *
405 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
406 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
407 *        elements allocated from the heap meet all restrictions.
408 *
409 * Port Specific Information:
410 *
411 * There is no apparent reason why this should be larger than CPU_ALIGNMENT.
412 */
413#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
414
415/**
416 * This number corresponds to the byte alignment requirement for memory
417 * buffers allocated by the partition manager.  This alignment requirement
418 * may be stricter than that for the data types alignment specified by
419 * @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
420 * alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
421 * strict enough for the partition, then this should be set to
422 * @ref CPU_ALIGNMENT.
423 *
424 * @note  This does not have to be a power of 2.  It does have to
425 *        be greater or equal to than @ref CPU_ALIGNMENT.
426 *
427 * Port Specific Information:
428 *
429 * There is no apparent reason why this should be larger than CPU_ALIGNMENT.
430 */
431#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
432
433/**
434 * This number corresponds to the byte alignment requirement for the
435 * stack.  This alignment requirement may be stricter than that for the
436 * data types alignment specified by @ref CPU_ALIGNMENT.  If the
437 * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
438 * set to 0.
439 *
440 * @note This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
441 *
442 * Port Specific Information:
443 *
444 * The v850 has enough RAM where alignment to 16 may be desirable depending
445 * on the cache properties. But this remains to be demonstrated.
446 */
447#define CPU_STACK_ALIGNMENT        4
448
449#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
450
451/*
452 *  ISR handler macros
453 */
454
455/**
456 * @addtogroup CPUInterrupt
457 */
458/**@{**/
459
460/**
461 * Disable all interrupts for an RTEMS critical section.  The previous
462 * level is returned in @a _isr_cookie.
463 *
464 * @param[out] _isr_cookie will contain the previous level cookie
465 *
466 * Port Specific Information:
467 *
468 * On the v850, we need to save the PSW and use "di" to disable interrupts.
469 */
470#define _CPU_ISR_Disable( _isr_cookie ) \
471  do { \
472    unsigned int _psw; \
473    \
474    v850_get_psw( _psw ); \
475    __asm__ __volatile__( "di" ); \
476    _isr_cookie = _psw; \
477  } while (0)
478
479/**
480 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
481 * This indicates the end of an RTEMS critical section.  The parameter
482 * @a _isr_cookie is not modified.
483 *
484 * @param[in] _isr_cookie contain the previous level cookie
485 *
486 * Port Specific Information:
487 *
488 * On the v850, we simply need to restore the PSW.
489 */
490#define _CPU_ISR_Enable( _isr_cookie )  \
491  do { \
492    unsigned int _psw = (_isr_cookie); \
493    \
494    v850_set_psw( _psw ); \
495  } while (0)
496
497/**
498 * This temporarily restores the interrupt to @a _isr_cookie before immediately
499 * disabling them again.  This is used to divide long RTEMS critical
500 * sections into two or more parts.  The parameter @a _isr_cookie is not
501 * modified.
502 *
503 * @param[in] _isr_cookie contain the previous level cookie
504 *
505 * Port Specific Information:
506 *
507 * This saves at least one instruction over using enable/disable back to back.
508 */
509#define _CPU_ISR_Flash( _isr_cookie ) \
510  do { \
511    unsigned int _psw = (_isr_cookie); \
512    v850_set_psw( _psw ); \
513    __asm__ __volatile__( "di" ); \
514  } while (0)
515
516RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
517{
518  return ( level & V850_PSW_INTERRUPT_DISABLE_MASK )
519    != V850_PSW_INTERRUPT_DISABLE;
520}
521
522/**
523 * This routine and @ref _CPU_ISR_Get_level
524 * Map the interrupt level in task mode onto the hardware that the CPU
525 * actually provides.  Currently, interrupt levels which do not
526 * map onto the CPU in a generic fashion are undefined.  Someday,
527 * it would be nice if these were "mapped" by the application
528 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
529 * 8 - 255 would be available for bsp/application specific meaning.
530 * This could be used to manage a programmable interrupt controller
531 * via the rtems_task_mode directive.
532 *
533 * Port Specific Information:
534 *
535 * On the v850, level 0 is enabled. Non-zero is disabled.
536 */
537#define _CPU_ISR_Set_level( new_level ) \
538  do { \
539    if ( new_level ) \
540      __asm__ __volatile__( "di" ); \
541    else \
542      __asm__ __volatile__( "ei" ); \
543  } while (0)
544
545/**
546 * Return the current interrupt disable level for this task in
547 * the format used by the interrupt level portion of the task mode.
548 *
549 * @note This routine usually must be implemented as a subroutine.
550 *
551 * Port Specific Information:
552 *
553 * This method is implemented in C on the v850.
554 */
555uint32_t   _CPU_ISR_Get_level( void );
556
557/* end of ISR handler macros */
558
559/** @} */
560
561/* Context handler macros */
562
563/**
564 * @ingroup CPUContext
565 * Initialize the context to a state suitable for starting a
566 * task after a context restore operation.  Generally, this
567 * involves:
568 *
569 *    - setting a starting address
570 *    - preparing the stack
571 *    - preparing the stack and frame pointers
572 *    - setting the proper interrupt level in the context
573 *    - initializing the floating point context
574 *
575 * This routine generally does not set any unnecessary register
576 * in the context.  The state of the "general data" registers is
577 * undefined at task start time.
578 *
579 * @param[in] _the_context is the context structure to be initialized
580 * @param[in] _stack_base is the lowest physical address of this task's stack
581 * @param[in] _size is the size of this task's stack
582 * @param[in] _isr is the interrupt disable level
583 * @param[in] _entry_point is the thread's entry point.  This is
584 *        always @a _Thread_Handler
585 * @param[in] _is_fp is TRUE if the thread is to be a floating
586 *       point thread.  This is typically only used on CPUs where the
587 *       FPU may be easily disabled by software such as on the SPARC
588 *       where the PSR contains an enable FPU bit.
589 * @param[in] tls_area is the thread-local storage (TLS) area
590 *
591 * Port Specific Information:
592 *
593 * This method is implemented in C on the v850.
594 */
595void _CPU_Context_Initialize(
596  Context_Control  *the_context,
597  uint32_t         *stack_base,
598  uint32_t          size,
599  uint32_t          new_level,
600  void             *entry_point,
601  bool              is_fp,
602  void             *tls_area
603);
604
605/**
606 * This routine is responsible for somehow restarting the currently
607 * executing task.  If you are lucky, then all that is necessary
608 * is restoring the context.  Otherwise, there will need to be
609 * a special assembly routine which does something special in this
610 * case.  For many ports, simply adding a label to the restore path
611 * of @ref _CPU_Context_switch will work.  On other ports, it may be
612 * possibly to load a few arguments and jump to the restore path. It will
613 * not work if restarting self conflicts with the stack frame
614 * assumptions of restoring a context.
615 *
616 * Port Specific Information:
617 *
618 * On the v850, we require a special entry point to restart a task.
619 */
620#define _CPU_Context_Restart_self( _the_context ) \
621   _CPU_Context_restore( (_the_context) );
622
623/* XXX this should be possible to remove */
624#if 0
625/**
626 * This routine initializes the FP context area passed to it to.
627 * There are a few standard ways in which to initialize the
628 * floating point context.  The code included for this macro assumes
629 * that this is a CPU in which a "initial" FP context was saved into
630 * @a _CPU_Null_fp_context and it simply copies it to the destination
631 * context passed to it.
632 *
633 * Other floating point context save/restore models include:
634 *   -# not doing anything, and
635 *   -# putting a "null FP status word" in the correct place in the FP context.
636 *
637 * @param[in] _destination is the floating point context area
638 *
639 * Port Specific Information:
640 *
641 * XXX document implementation including references if appropriate
642 */
643#define _CPU_Context_Initialize_fp( _destination ) \
644  { \
645  }
646#endif
647
648/* end of Context handler macros */
649
650/* Fatal Error manager macros */
651
652/**
653 * This routine copies _error into a known place -- typically a stack
654 * location or a register, optionally disables interrupts, and
655 * halts/stops the CPU.
656 *
657 * Port Specific Information:
658 *
659 * Move the error code into r10, disable interrupts and halt.
660 */
661#define _CPU_Fatal_halt( _source, _error ) \
662  do { \
663    __asm__ __volatile__ ( "di" ); \
664    __asm__ __volatile__ ( "mov %0, r10; " : "=r" ((_error)) ); \
665    __asm__ __volatile__ ( "halt" ); \
666  } while (0)
667
668/* end of Fatal Error manager macros */
669
670#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
671
672/* functions */
673
674/**
675 * @brief CPU initialize.
676 * This routine performs CPU dependent initialization.
677 *
678 * Port Specific Information:
679 *
680 * This is implemented in C.
681 *
682 * v850 CPU Dependent Source
683 */
684void _CPU_Initialize(void);
685
686/**
687 * @addtogroup CPUContext
688 */
689/**@{**/
690
691/**
692 * This routine switches from the run context to the heir context.
693 *
694 * @param[in] run points to the context of the currently executing task
695 * @param[in] heir points to the context of the heir task
696 *
697 * Port Specific Information:
698 *
699 * This is implemented in assembly on the v850.
700 */
701void _CPU_Context_switch(
702  Context_Control  *run,
703  Context_Control  *heir
704);
705
706/**
707 * This routine is generally used only to restart self in an
708 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
709 *
710 * @param[in] new_context points to the context to be restored.
711 *
712 * @note May be unnecessary to reload some registers.
713 *
714 * Port Specific Information:
715 *
716 * This is implemented in assembly on the v850.
717 */
718void _CPU_Context_restore(
719  Context_Control *new_context
720) RTEMS_NO_RETURN;
721
722/* XXX this should be possible to remove */
723#if 0
724/**
725 * This routine saves the floating point context passed to it.
726 *
727 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
728 * point context area
729 *
730 * @return on output @a *fp_context_ptr will contain the address that
731 * should be used with @ref _CPU_Context_restore_fp to restore this context.
732 *
733 * Port Specific Information:
734 *
735 * XXX document implementation including references if appropriate
736 */
737void _CPU_Context_save_fp(
738  Context_Control_fp **fp_context_ptr
739);
740#endif
741
742/* XXX this should be possible to remove */
743#if 0
744/**
745 * This routine restores the floating point context passed to it.
746 *
747 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
748 * point context area to restore
749 *
750 * @return on output @a *fp_context_ptr will contain the address that
751 * should be used with @ref _CPU_Context_save_fp to save this context.
752 *
753 * Port Specific Information:
754 *
755 * XXX document implementation including references if appropriate
756 */
757void _CPU_Context_restore_fp(
758  Context_Control_fp **fp_context_ptr
759);
760#endif
761
762static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
763{
764  /* TODO */
765}
766
767static inline void _CPU_Context_validate( uintptr_t pattern )
768{
769  while (1) {
770    /* TODO */
771  }
772}
773
774/** @} */
775
776/* FIXME */
777typedef CPU_Interrupt_frame CPU_Exception_frame;
778
779void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
780
781/**
782 * @ingroup CPUEndian
783 * The following routine swaps the endian format of an unsigned int.
784 * It must be static because it is referenced indirectly.
785 *
786 * This version will work on any processor, but if there is a better
787 * way for your CPU PLEASE use it.  The most common way to do this is to:
788 *
789 *    swap least significant two bytes with 16-bit rotate
790 *    swap upper and lower 16-bits
791 *    swap most significant two bytes with 16-bit rotate
792 *
793 * Some CPUs have special instructions which swap a 32-bit quantity in
794 * a single instruction (e.g. i486).  It is probably best to avoid
795 * an "endian swapping control bit" in the CPU.  One good reason is
796 * that interrupts would probably have to be disabled to ensure that
797 * an interrupt does not try to access the same "chunk" with the wrong
798 * endian.  Another good reason is that on some CPUs, the endian bit
799 * endianness for ALL fetches -- both code and data -- so the code
800 * will be fetched incorrectly.
801 *
802 * @param[in] value is the value to be swapped
803 * @return the value after being endian swapped
804 *
805 * Port Specific Information:
806 *
807 * The v850 has a single instruction to swap endianness on a 32 bit quantity.
808 */
809static inline uint32_t CPU_swap_u32(
810  uint32_t value
811)
812{
813  unsigned int swapped;
814
815  #if (V850_HAS_BYTE_SWAP_INSTRUCTION == 1)
816    unsigned int v;
817
818    v = value;
819    __asm__ __volatile__ ("bsw %0, %1" : "=r" (v), "=&r" (swapped) );
820  #else
821    uint32_t byte1, byte2, byte3, byte4;
822
823    byte4 = (value >> 24) & 0xff;
824    byte3 = (value >> 16) & 0xff;
825    byte2 = (value >> 8)  & 0xff;
826    byte1 =  value        & 0xff;
827
828    swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
829  #endif
830  return swapped;
831}
832
833/**
834 * @ingroup CPUEndian
835 * This routine swaps a 16 bir quantity.
836 *
837 * @param[in] value is the value to be swapped
838 * @return the value after being endian swapped
839 *
840 * Port Specific Information:
841 *
842 * The v850 has a single instruction to swap endianness on a 16 bit quantity.
843 */
844static inline uint16_t CPU_swap_u16( uint16_t value )
845{
846  unsigned int swapped;
847
848  #if (V850_HAS_BYTE_SWAP_INSTRUCTION == 1)
849    unsigned int v;
850
851    v = value;
852    __asm__ __volatile__ ("bsh %0, %1" : "=r" (v), "=&r" (swapped) );
853  #else
854    swapped = ((value & 0xff) << 8) | ((value >> 8) & 0xff);
855  #endif
856  return swapped;
857}
858
859typedef uint32_t CPU_Counter_ticks;
860
861uint32_t _CPU_Counter_frequency( void );
862
863CPU_Counter_ticks _CPU_Counter_read( void );
864
865static inline CPU_Counter_ticks _CPU_Counter_difference(
866  CPU_Counter_ticks second,
867  CPU_Counter_ticks first
868)
869{
870  return second - first;
871}
872
873/** Type that can store a 32-bit integer or a pointer. */
874typedef uintptr_t CPU_Uint32ptr;
875
876#ifdef __cplusplus
877}
878#endif
879
880#endif
Note: See TracBrowser for help on using the repository browser.