source: rtems/cpukit/score/cpu/unix/rtems/score/cpu.h @ ccb09f6

4.104.114.84.95
Last change on this file since ccb09f6 was ccb09f6, checked in by Ralf Corsepius <ralf.corsepius@…>, on 04/17/07 at 04:42:37

Use Context_Control_fp* instead of void* for fp_contexts. Eliminate evil casts.

  • Property mode set to 100644
File size: 32.1 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the
7 *  UNIX port of RTEMS.
8 *
9 *  COPYRIGHT (c) 1994 by Division Incorporated
10 *
11 *  The license and distribution terms for this file may be
12 *  found in the file LICENSE in this distribution or at
13 *  http://www.rtems.com/license/LICENSE.
14 *
15 *  COPYRIGHT (c) 1989-2006.
16 *  On-Line Applications Research Corporation (OAR).
17 *
18 *  The license and distribution terms for this file may in
19 *  the file LICENSE in this distribution or at
20 *  http://www.rtems.com/license/LICENSE.
21 *
22 *  $Id$
23 */
24
25#ifndef _RTEMS_SCORE_CPU_H
26#define _RTEMS_SCORE_CPU_H
27
28#ifdef __cplusplus
29extern "C" {
30#endif
31
32#include <rtems/score/unix.h>              /* pick up machine definitions */
33#ifndef ASM
34#include <rtems/score/types.h>
35#endif
36
37#if defined(linux)
38#define MALLOC_0_RETURNS_NULL
39#endif
40
41/* conditional compilation parameters */
42
43/*
44 *  Should the calls to _Thread_Enable_dispatch be inlined?
45 *
46 *  If TRUE, then they are inlined.
47 *  If FALSE, then a subroutine call is made.
48 *
49 *  Basically this is an example of the classic trade-off of size
50 *  versus speed.  Inlining the call (TRUE) typically increases the
51 *  size of RTEMS while speeding up the enabling of dispatching.
52 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
53 *  only be 0 or 1 unless you are in an interrupt handler and that
54 *  interrupt handler invokes the executive.]  When not inlined
55 *  something calls _Thread_Enable_dispatch which in turns calls
56 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
57 *  one subroutine call is avoided entirely.]
58 */
59
60#define CPU_INLINE_ENABLE_DISPATCH       FALSE
61
62/*
63 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
64 *  be unrolled one time?  In unrolled each iteration of the loop examines
65 *  two "nodes" on the chain being searched.  Otherwise, only one node
66 *  is examined per iteration.
67 *
68 *  If TRUE, then the loops are unrolled.
69 *  If FALSE, then the loops are not unrolled.
70 *
71 *  The primary factor in making this decision is the cost of disabling
72 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
73 *  body of the loop.  On some CPUs, the flash is more expensive than
74 *  one iteration of the loop body.  In this case, it might be desirable
75 *  to unroll the loop.  It is important to note that on some CPUs, this
76 *  code is the longest interrupt disable period in RTEMS.  So it is
77 *  necessary to strike a balance when setting this parameter.
78 */
79
80#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
81
82/*
83 *  Does RTEMS manage a dedicated interrupt stack in software?
84 *
85 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
86 *  If FALSE, nothing is done.
87 *
88 *  If the CPU supports a dedicated interrupt stack in hardware,
89 *  then it is generally the responsibility of the BSP to allocate it
90 *  and set it up.
91 *
92 *  If the CPU does not support a dedicated interrupt stack, then
93 *  the porter has two options: (1) execute interrupts on the
94 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
95 *  interrupt stack.
96 *
97 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
98 *
99 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
100 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
101 *  possible that both are FALSE for a particular CPU.  Although it
102 *  is unclear what that would imply about the interrupt processing
103 *  procedure on that CPU.
104 */
105
106#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
107
108/*
109 *  Does this CPU have hardware support for a dedicated interrupt stack?
110 *
111 *  If TRUE, then it must be installed during initialization.
112 *  If FALSE, then no installation is performed.
113 *
114 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
115 *
116 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
117 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
118 *  possible that both are FALSE for a particular CPU.  Although it
119 *  is unclear what that would imply about the interrupt processing
120 *  procedure on that CPU.
121 */
122
123#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
124
125/*
126 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
127 *
128 *  If TRUE, then the memory is allocated during initialization.
129 *  If FALSE, then the memory is allocated during initialization.
130 *
131 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
132 */
133
134#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
135
136/*
137 *  Does the RTEMS invoke the user's ISR with the vector number and
138 *  a pointer to the saved interrupt frame (1) or just the vector
139 *  number (0)?
140 */
141
142#define CPU_ISR_PASSES_FRAME_POINTER 0
143
144/*
145 *  Does the CPU have hardware floating point?
146 *
147 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
148 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
149 *
150 *  If there is a FP coprocessor such as the i387 or mc68881, then
151 *  the answer is TRUE.
152 *
153 *  The macro name "UNIX_HAS_FPU" should be made CPU specific.
154 *  It indicates whether or not this CPU model has FP support.  For
155 *  example, it would be possible to have an i386_nofp CPU model
156 *  which set this to false to indicate that you have an i386 without
157 *  an i387 and wish to leave floating point support out of RTEMS.
158 */
159
160#define CPU_HARDWARE_FP     TRUE
161#define CPU_SOFTWARE_FP     FALSE
162
163/*
164 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
165 *
166 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
167 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
168 *
169 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
170 */
171
172#define CPU_ALL_TASKS_ARE_FP     FALSE
173
174/*
175 *  Should the IDLE task have a floating point context?
176 *
177 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
178 *  and it has a floating point context which is switched in and out.
179 *  If FALSE, then the IDLE task does not have a floating point context.
180 *
181 *  Setting this to TRUE negatively impacts the time required to preempt
182 *  the IDLE task from an interrupt because the floating point context
183 *  must be saved as part of the preemption.
184 */
185
186#define CPU_IDLE_TASK_IS_FP      FALSE
187
188/*
189 *  Should the saving of the floating point registers be deferred
190 *  until a context switch is made to another different floating point
191 *  task?
192 *
193 *  If TRUE, then the floating point context will not be stored until
194 *  necessary.  It will remain in the floating point registers and not
195 *  disturned until another floating point task is switched to.
196 *
197 *  If FALSE, then the floating point context is saved when a floating
198 *  point task is switched out and restored when the next floating point
199 *  task is restored.  The state of the floating point registers between
200 *  those two operations is not specified.
201 *
202 *  If the floating point context does NOT have to be saved as part of
203 *  interrupt dispatching, then it should be safe to set this to TRUE.
204 *
205 *  Setting this flag to TRUE results in using a different algorithm
206 *  for deciding when to save and restore the floating point context.
207 *  The deferred FP switch algorithm minimizes the number of times
208 *  the FP context is saved and restored.  The FP context is not saved
209 *  until a context switch is made to another, different FP task.
210 *  Thus in a system with only one FP task, the FP context will never
211 *  be saved or restored.
212 */
213
214#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
215
216/*
217 *  Does this port provide a CPU dependent IDLE task implementation?
218 *
219 *  If TRUE, then the routine _CPU_Thread_Idle_body
220 *  must be provided and is the default IDLE thread body instead of
221 *  _CPU_Thread_Idle_body.
222 *
223 *  If FALSE, then use the generic IDLE thread body if the BSP does
224 *  not provide one.
225 *
226 *  This is intended to allow for supporting processors which have
227 *  a low power or idle mode.  When the IDLE thread is executed, then
228 *  the CPU can be powered down.
229 *
230 *  The order of precedence for selecting the IDLE thread body is:
231 *
232 *    1.  BSP provided
233 *    2.  CPU dependent (if provided)
234 *    3.  generic (if no BSP and no CPU dependent)
235 */
236
237#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
238
239/*
240 *  Does the stack grow up (toward higher addresses) or down
241 *  (toward lower addresses)?
242 *
243 *  If TRUE, then the grows upward.
244 *  If FALSE, then the grows toward smaller addresses.
245 */
246
247#if defined(__hppa__)
248#define CPU_STACK_GROWS_UP               TRUE
249#elif defined(__sparc__) || defined(__i386__)
250#define CPU_STACK_GROWS_UP               FALSE
251#else
252#error "unknown CPU!!"
253#endif
254
255
256/*
257 *  The following is the variable attribute used to force alignment
258 *  of critical RTEMS structures.  On some processors it may make
259 *  sense to have these aligned on tighter boundaries than
260 *  the minimum requirements of the compiler in order to have as
261 *  much of the critical data area as possible in a cache line.
262 *
263 *  The placement of this macro in the declaration of the variables
264 *  is based on the syntactically requirements of the GNU C
265 *  "__attribute__" extension.  For example with GNU C, use
266 *  the following to force a structures to a 32 byte boundary.
267 *
268 *      __attribute__ ((aligned (32)))
269 *
270 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
271 *         To benefit from using this, the data must be heavily
272 *         used so it will stay in the cache and used frequently enough
273 *         in the executive to justify turning this on.
274 *
275 *  This is really not critical on the POSIX simulator ports as
276 *  performance is not the goal here.
277 */
278
279#define CPU_STRUCTURE_ALIGNMENT
280
281/*
282 *  Define what is required to specify how the network to host conversion
283 *  routines are handled.
284 */
285
286#if defined(__hppa__) || defined(__sparc__)
287#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
288#define CPU_BIG_ENDIAN                           TRUE
289#define CPU_LITTLE_ENDIAN                        FALSE
290#elif defined(__i386__)
291#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
292#define CPU_BIG_ENDIAN                           FALSE
293#define CPU_LITTLE_ENDIAN                        TRUE
294#else
295#error "Unknown CPU!!!"
296#endif
297
298/*
299 *  The following defines the number of bits actually used in the
300 *  interrupt field of the task mode.  How those bits map to the
301 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
302 */
303
304#define CPU_MODES_INTERRUPT_MASK   0x00000001
305
306#define CPU_NAME "UNIX"
307
308/*
309 *  Processor defined structures required for cpukit/score.
310 */
311
312/* may need to put some structures here.  */
313
314#if defined(__hppa__)
315/*
316 * Word indices within a jmp_buf structure
317 */
318
319#ifdef RTEMS_NEWLIB_SETJMP
320#define RP_OFF       6
321#define SP_OFF       2
322#define R3_OFF      10
323#define R4_OFF      11
324#define R5_OFF      12
325#define R6_OFF      13
326#define R7_OFF      14
327#define R8_OFF      15
328#define R9_OFF      16
329#define R10_OFF     17
330#define R11_OFF     18
331#define R12_OFF     19
332#define R13_OFF     20
333#define R14_OFF     21
334#define R15_OFF     22
335#define R16_OFF     23
336#define R17_OFF     24
337#define R18_OFF     25
338#define DP_OFF      26
339#endif
340
341#ifdef RTEMS_UNIXLIB_SETJMP
342#define RP_OFF       0
343#define SP_OFF       1
344#define R3_OFF       4
345#define R4_OFF       5
346#define R5_OFF       6
347#define R6_OFF       7
348#define R7_OFF       8
349#define R8_OFF       9
350#define R9_OFF      10
351#define R10_OFF     11
352#define R11_OFF     12
353#define R12_OFF     13
354#define R13_OFF     14
355#define R14_OFF     15
356#define R15_OFF     16
357#define R16_OFF     17
358#define R17_OFF     18
359#define R18_OFF     19
360#define DP_OFF      20
361#endif
362#endif
363
364#if defined(__i386__)
365 
366#ifdef RTEMS_NEWLIB
367#error "Newlib not installed"
368#endif
369 
370/*
371 *  For i386 targets
372 */
373 
374#ifdef RTEMS_UNIXLIB
375#if defined(__FreeBSD__)
376#define RET_OFF    0
377#define EBX_OFF    1
378#define EBP_OFF    2
379#define ESP_OFF    3
380#define ESI_OFF    4
381#define EDI_OFF    5
382#elif defined(__CYGWIN__)
383#define EAX_OFF    0
384#define EBX_OFF    1
385#define ECX_OFF    2
386#define EDX_OFF    3
387#define ESI_OFF    4
388#define EDI_OFF    5
389#define EBP_OFF    6
390#define ESP_OFF    7
391#define RET_OFF    8
392#else
393/* Linux */
394#define EBX_OFF    0
395#define ESI_OFF    1
396#define EDI_OFF    2
397#define EBP_OFF    3
398#define ESP_OFF    4
399#define RET_OFF    5
400#endif
401#endif
402 
403#endif
404 
405#if defined(__sparc__)
406
407/*
408 *  Word indices within a jmp_buf structure
409 */
410 
411#ifdef RTEMS_NEWLIB
412#define ADDR_ADJ_OFFSET -8
413#define SP_OFF    0
414#define RP_OFF    1
415#define FP_OFF    2
416#endif
417
418#ifdef RTEMS_UNIXLIB
419#define ADDR_ADJ_OFFSET 0
420#define G0_OFF    0
421#define SP_OFF    1
422#define RP_OFF    2   
423#define FP_OFF    3
424#define I7_OFF    4
425#endif
426
427#endif
428
429/*
430 * Contexts
431 *
432 *  Generally there are 2 types of context to save.
433 *     1. Interrupt registers to save
434 *     2. Task level registers to save
435 *
436 *  This means we have the following 3 context items:
437 *     1. task level context stuff::  Context_Control
438 *     2. floating point task stuff:: Context_Control_fp
439 *     3. special interrupt level context :: Context_Control_interrupt
440 *
441 *  On some processors, it is cost-effective to save only the callee
442 *  preserved registers during a task context switch.  This means
443 *  that the ISR code needs to save those registers which do not
444 *  persist across function calls.  It is not mandatory to make this
445 *  distinctions between the caller/callee saves registers for the
446 *  purpose of minimizing context saved during task switch and on interrupts.
447 *  If the cost of saving extra registers is minimal, simplicity is the
448 *  choice.  Save the same context on interrupt entry as for tasks in
449 *  this case.
450 *
451 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
452 *  care should be used in designing the context area.
453 *
454 *  On some CPUs with hardware floating point support, the Context_Control_fp
455 *  structure will not be used or it simply consist of an array of a
456 *  fixed number of bytes.   This is done when the floating point context
457 *  is dumped by a "FP save context" type instruction and the format
458 *  is not really defined by the CPU.  In this case, there is no need
459 *  to figure out the exact format -- only the size.  Of course, although
460 *  this is enough information for RTEMS, it is probably not enough for
461 *  a debugger such as gdb.  But that is another problem.
462 */
463
464/*
465 *  This is really just the area for the following fields.
466 *
467 *    jmp_buf    regs;
468 *    uint32_t   isr_level;
469 *
470 *  Doing it this way avoids conflicts between the native stuff and the
471 *  RTEMS stuff.
472 *
473 *  NOTE:
474 *      hpux9 setjmp is optimized for the case where the setjmp buffer
475 *      is 8 byte aligned.  In a RISC world, this seems likely to enable
476 *      8 byte copies, especially for the float registers.
477 *      So we always align them on 8 byte boundaries.
478 */
479
480#ifdef __GNUC__
481#define CONTEXT_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (8)))
482#else
483#define CONTEXT_STRUCTURE_ALIGNMENT
484#endif
485
486typedef struct {
487  char      Area[ SIZEOF_CPU_CONTEXT ] CONTEXT_STRUCTURE_ALIGNMENT;
488} Context_Control;
489
490typedef struct {
491} Context_Control_fp;
492
493typedef struct {
494} CPU_Interrupt_frame;
495
496
497/*
498 *  The following table contains the information required to configure
499 *  the UNIX Simulator specific parameters.
500 */
501
502typedef struct {
503  void       (*pretasking_hook)( void );
504  void       (*predriver_hook)( void );
505  void       (*postdriver_hook)( void );
506  void       (*idle_task)( void );
507  boolean      do_zero_of_workspace;
508  uint32_t     idle_task_stack_size;
509  uint32_t     interrupt_stack_size;
510  uint32_t     extra_mpci_receive_server_stack;
511  void *     (*stack_allocate_hook)( uint32_t   );
512  void       (*stack_free_hook)( void* );
513  /* end of required fields */
514}   rtems_cpu_table;
515
516/*
517 *  Macros to access required entires in the CPU Table are in
518 *  the file rtems/system.h.
519 */
520
521/*
522 *  Macros to access UNIX specific additions to the CPU Table
523 */
524
525/* There are no CPU specific additions to the CPU Table for this port. */
526
527/*
528 *  This variable is optional.  It is used on CPUs on which it is difficult
529 *  to generate an "uninitialized" FP context.  It is filled in by
530 *  _CPU_Initialize and copied into the task's FP context area during
531 *  _CPU_Context_Initialize.
532 */
533
534SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
535
536/*
537 *  On some CPUs, RTEMS supports a software managed interrupt stack.
538 *  This stack is allocated by the Interrupt Manager and the switch
539 *  is performed in _ISR_Handler.  These variables contain pointers
540 *  to the lowest and highest addresses in the chunk of memory allocated
541 *  for the interrupt stack.  Since it is unknown whether the stack
542 *  grows up or down (in general), this give the CPU dependent
543 *  code the option of picking the version it wants to use.
544 *
545 *  NOTE: These two variables are required if the macro
546 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
547 */
548
549SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
550SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
551
552/*
553 *  With some compilation systems, it is difficult if not impossible to
554 *  call a high-level language routine from assembly language.  This
555 *  is especially true of commercial Ada compilers and name mangling
556 *  C++ ones.  This variable can be optionally defined by the CPU porter
557 *  and contains the address of the routine _Thread_Dispatch.  This
558 *  can make it easier to invoke that routine at the end of the interrupt
559 *  sequence (if a dispatch is necessary).
560 */
561
562SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
563
564/*
565 *  Nothing prevents the porter from declaring more CPU specific variables.
566 */
567
568/* XXX: if needed, put more variables here */
569
570/*
571 *  The size of the floating point context area.  On some CPUs this
572 *  will not be a "sizeof" because the format of the floating point
573 *  area is not defined -- only the size is.  This is usually on
574 *  CPUs with a "floating point save context" instruction.
575 */
576
577#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
578
579/*
580 * The size of a frame on the stack
581 */
582
583#if defined(__hppa__)
584#define CPU_FRAME_SIZE  (32 * 4)
585#elif defined(__sparc__)
586#define CPU_FRAME_SIZE  (112)   /* based on disassembled test code */
587#elif defined(__i386__)
588#define CPU_FRAME_SIZE  (24)  /* return address, sp, and bp pushed plus fudge */
589#else
590#error "Unknown CPU!!!"
591#endif
592
593/*
594 *  Amount of extra stack (above minimum stack size) required by
595 *  MPCI receive server thread.  Remember that in a multiprocessor
596 *  system this thread must exist and be able to process all directives.
597 */
598
599#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
600
601/*
602 *  This defines the number of entries in the ISR_Vector_table managed
603 *  by RTEMS.
604 */
605
606#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
607#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
608
609/*
610 *  This is defined if the port has a special way to report the ISR nesting
611 *  level.  Most ports maintain the variable _ISR_Nest_level.
612 */
613
614#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
615
616/*
617 *  Should be large enough to run all RTEMS tests.  This ensures
618 *  that a "reasonable" small application should not have any problems.
619 */
620
621#define CPU_STACK_MINIMUM_SIZE          (16 * 1024)
622
623/*
624 *  CPU's worst alignment requirement for data types on a byte boundary.  This
625 *  alignment does not take into account the requirements for the stack.
626 */
627
628#define CPU_ALIGNMENT              8
629
630/*
631 *  This number corresponds to the byte alignment requirement for the
632 *  heap handler.  This alignment requirement may be stricter than that
633 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
634 *  common for the heap to follow the same alignment requirement as
635 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
636 *  then this should be set to CPU_ALIGNMENT.
637 *
638 *  NOTE:  This does not have to be a power of 2.  It does have to
639 *         be greater or equal to than CPU_ALIGNMENT.
640 */
641
642#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
643
644/*
645 *  This number corresponds to the byte alignment requirement for memory
646 *  buffers allocated by the partition manager.  This alignment requirement
647 *  may be stricter than that for the data types alignment specified by
648 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
649 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
650 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
651 *
652 *  NOTE:  This does not have to be a power of 2.  It does have to
653 *         be greater or equal to than CPU_ALIGNMENT.
654 */
655
656#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
657
658/*
659 *  This number corresponds to the byte alignment requirement for the
660 *  stack.  This alignment requirement may be stricter than that for the
661 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
662 *  is strict enough for the stack, then this should be set to 0.
663 *
664 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
665 */
666
667#define CPU_STACK_ALIGNMENT        64
668
669/*
670 *  ISR handler macros
671 */
672
673/*
674 *  Support routine to initialize the RTEMS vector table after it is allocated.
675 */
676
677void _CPU_Initialize_vectors(void);
678
679/*
680 *  Disable all interrupts for an RTEMS critical section.  The previous
681 *  level is returned in _level.
682 */
683
684extern uint32_t   _CPU_ISR_Disable_support(void);
685
686#define _CPU_ISR_Disable( _level ) \
687    do { \
688      (_level) = _CPU_ISR_Disable_support(); \
689    } while ( 0 )
690
691/*
692 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
693 *  This indicates the end of an RTEMS critical section.  The parameter
694 *  _level is not modified.
695 */
696
697void _CPU_ISR_Enable(uint32_t   level);
698
699/*
700 *  This temporarily restores the interrupt to _level before immediately
701 *  disabling them again.  This is used to divide long RTEMS critical
702 *  sections into two or more parts.  The parameter _level is not
703 * modified.
704 */
705
706#define _CPU_ISR_Flash( _level ) \
707  do { \
708      register uint32_t   _ignored = 0; \
709      _CPU_ISR_Enable( (_level) ); \
710      _CPU_ISR_Disable( _ignored ); \
711  } while ( 0 )
712
713/*
714 *  Map interrupt level in task mode onto the hardware that the CPU
715 *  actually provides.  Currently, interrupt levels which do not
716 *  map onto the CPU in a generic fashion are undefined.  Someday,
717 *  it would be nice if these were "mapped" by the application
718 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
719 *  8 - 255 would be available for bsp/application specific meaning.
720 *  This could be used to manage a programmable interrupt controller
721 *  via the rtems_task_mode directive.
722 */
723
724#define _CPU_ISR_Set_level( new_level ) \
725  { \
726    if ( new_level == 0 ) _CPU_ISR_Enable( 0 ); \
727    else                  _CPU_ISR_Enable( 1 ); \
728  }
729
730uint32_t   _CPU_ISR_Get_level( void );
731
732/* end of ISR handler macros */
733
734/* Context handler macros */
735
736/*
737 *  This routine is responsible for somehow restarting the currently
738 *  executing task.  If you are lucky, then all that is necessary
739 *  is restoring the context.  Otherwise, there will need to be
740 *  a special assembly routine which does something special in this
741 *  case.  Context_Restore should work most of the time.  It will
742 *  not work if restarting self conflicts with the stack frame
743 *  assumptions of restoring a context.
744 */
745
746#define _CPU_Context_Restart_self( _the_context ) \
747   _CPU_Context_restore( (_the_context) );
748
749/*
750 *  The purpose of this macro is to allow the initial pointer into
751 *  a floating point context area (used to save the floating point
752 *  context) to be at an arbitrary place in the floating point
753 *  context area.
754 *
755 *  This is necessary because some FP units are designed to have
756 *  their context saved as a stack which grows into lower addresses.
757 *  Other FP units can be saved by simply moving registers into offsets
758 *  from the base of the context area.  Finally some FP units provide
759 *  a "dump context" instruction which could fill in from high to low
760 *  or low to high based on the whim of the CPU designers.
761 */
762
763#define _CPU_Context_Fp_start( _base, _offset ) \
764   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
765
766/*
767 *  This routine initializes the FP context area passed to it to.
768 *  There are a few standard ways in which to initialize the
769 *  floating point context.  The code included for this macro assumes
770 *  that this is a CPU in which a "initial" FP context was saved into
771 *  _CPU_Null_fp_context and it simply copies it to the destination
772 *  context passed to it.
773 *
774 *  Other models include (1) not doing anything, and (2) putting
775 *  a "null FP status word" in the correct place in the FP context.
776 */
777
778#define _CPU_Context_Initialize_fp( _destination ) \
779  { \
780   *(*(_destination)) = _CPU_Null_fp_context; \
781  }
782
783#define _CPU_Context_save_fp( _fp_context ) \
784    _CPU_Save_float_context(*(_fp_context))
785
786#define _CPU_Context_restore_fp( _fp_context ) \
787    _CPU_Restore_float_context(*(_fp_context))
788
789extern void _CPU_Context_Initialize(
790  Context_Control  *_the_context,
791  uint32_t         *_stack_base,
792  uint32_t          _size,
793  uint32_t          _new_level,
794  void             *_entry_point,
795  boolean           _is_fp
796);
797
798/* end of Context handler macros */
799
800/* Fatal Error manager macros */
801
802/*
803 *  This routine copies _error into a known place -- typically a stack
804 *  location or a register, optionally disables interrupts, and
805 *  halts/stops the CPU.
806 */
807
808#define _CPU_Fatal_halt( _error ) \
809    _CPU_Fatal_error( _error )
810
811/* end of Fatal Error manager macros */
812
813/* Bitfield handler macros */
814
815/*
816 *  This routine sets _output to the bit number of the first bit
817 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
818 *  This type may be either 16 or 32 bits wide although only the 16
819 *  least significant bits will be used.
820 *
821 *  There are a number of variables in using a "find first bit" type
822 *  instruction.
823 *
824 *    (1) What happens when run on a value of zero?
825 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
826 *    (3) The numbering may be zero or one based.
827 *    (4) The "find first bit" instruction may search from MSB or LSB.
828 *
829 *  RTEMS guarantees that (1) will never happen so it is not a concern.
830 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
831 *  _CPU_Priority_bits_index().  These three form a set of routines
832 *  which must logically operate together.  Bits in the _value are
833 *  set and cleared based on masks built by _CPU_Priority_mask().
834 *  The basic major and minor values calculated by _Priority_Major()
835 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
836 *  to properly range between the values returned by the "find first bit"
837 *  instruction.  This makes it possible for _Priority_Get_highest() to
838 *  calculate the major and directly index into the minor table.
839 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
840 *  is the first bit found.
841 *
842 *  This entire "find first bit" and mapping process depends heavily
843 *  on the manner in which a priority is broken into a major and minor
844 *  components with the major being the 4 MSB of a priority and minor
845 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
846 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
847 *  to the lowest priority.
848 *
849 *  If your CPU does not have a "find first bit" instruction, then
850 *  there are ways to make do without it.  Here are a handful of ways
851 *  to implement this in software:
852 *
853 *    - a series of 16 bit test instructions
854 *    - a "binary search using if's"
855 *    - _number = 0
856 *      if _value > 0x00ff
857 *        _value >>=8
858 *        _number = 8;
859 *
860 *      if _value > 0x0000f
861 *        _value >=8
862 *        _number += 4
863 *
864 *      _number += bit_set_table[ _value ]
865 *
866 *    where bit_set_table[ 16 ] has values which indicate the first
867 *      bit set
868 */
869
870/*
871 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
872 *  dependencies on either a native bitscan instruction or an ffs() in the
873 *  C library.
874 */
875 
876#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
877#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
878 
879/* end of Bitfield handler macros */
880 
881/* Priority handler handler macros */
882 
883/*
884 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
885 *  dependencies on either a native bitscan instruction or an ffs() in the
886 *  C library.
887 */
888 
889/* end of Priority handler macros */
890
891/* functions */
892
893/*
894 *  _CPU_Initialize
895 *
896 *  This routine performs CPU dependent initialization.
897 */
898
899void _CPU_Initialize(
900  rtems_cpu_table  *cpu_table,
901  void      (*thread_dispatch)
902);
903
904/*
905 *  _CPU_ISR_install_raw_handler
906 *
907 *  This routine installs a "raw" interrupt handler directly into the
908 *  processor's vector table.
909 */
910 
911void _CPU_ISR_install_raw_handler(
912  uint32_t    vector,
913  proc_ptr    new_handler,
914  proc_ptr   *old_handler
915);
916
917/*
918 *  _CPU_ISR_install_vector
919 *
920 *  This routine installs an interrupt vector.
921 */
922
923void _CPU_ISR_install_vector(
924  uint32_t    vector,
925  proc_ptr    new_handler,
926  proc_ptr   *old_handler
927);
928
929/*
930 *  _CPU_Install_interrupt_stack
931 *
932 *  This routine installs the hardware interrupt stack pointer.
933 *
934 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
935 *         is TRUE.
936 */
937
938void _CPU_Install_interrupt_stack( void );
939
940/*
941 *  _CPU_Thread_Idle_body
942 *
943 *  This routine is the CPU dependent IDLE thread body.
944 *
945 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
946 *         is TRUE.
947 */
948
949void _CPU_Thread_Idle_body( void );
950
951/*
952 *  _CPU_Context_switch
953 *
954 *  This routine switches from the run context to the heir context.
955 */
956
957void _CPU_Context_switch(
958  Context_Control  *run,
959  Context_Control  *heir
960);
961
962/*
963 *  _CPU_Context_restore
964 *
965 *  This routine is generally used only to restart self in an
966 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
967 *
968 *  NOTE: May be unnecessary to reload some registers.
969 */
970
971void _CPU_Context_restore(
972  Context_Control *new_context
973);
974
975/*
976 *  _CPU_Save_float_context
977 *
978 *  This routine saves the floating point context passed to it.
979 */
980
981void _CPU_Save_float_context(
982  Context_Control_fp *fp_context_ptr
983);
984
985/*
986 *  _CPU_Restore_float_context
987 *
988 *  This routine restores the floating point context passed to it.
989 */
990
991void _CPU_Restore_float_context(
992  Context_Control_fp *fp_context_ptr
993);
994
995
996void _CPU_ISR_Set_signal_level(
997  uint32_t   level
998);
999
1000void _CPU_Fatal_error(
1001  uint32_t   _error
1002);
1003
1004/*  The following routine swaps the endian format of an unsigned int.
1005 *  It must be static because it is referenced indirectly.
1006 *
1007 *  This version will work on any processor, but if there is a better
1008 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1009 *
1010 *     swap least significant two bytes with 16-bit rotate
1011 *     swap upper and lower 16-bits
1012 *     swap most significant two bytes with 16-bit rotate
1013 *
1014 *  Some CPUs have special instructions which swap a 32-bit quantity in
1015 *  a single instruction (e.g. i486).  It is probably best to avoid
1016 *  an "endian swapping control bit" in the CPU.  One good reason is
1017 *  that interrupts would probably have to be disabled to ensure that
1018 *  an interrupt does not try to access the same "chunk" with the wrong
1019 *  endian.  Another good reason is that on some CPUs, the endian bit
1020 *  endianness for ALL fetches -- both code and data -- so the code
1021 *  will be fetched incorrectly.
1022 */
1023 
1024static inline uint32_t CPU_swap_u32(
1025  uint32_t value
1026)
1027{
1028  uint32_t   byte1, byte2, byte3, byte4, swapped;
1029 
1030  byte4 = (value >> 24) & 0xff;
1031  byte3 = (value >> 16) & 0xff;
1032  byte2 = (value >> 8)  & 0xff;
1033  byte1 =  value        & 0xff;
1034 
1035  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1036  return( swapped );
1037}
1038
1039#define CPU_swap_u16( value ) \
1040  (((value&0xff) << 8) | ((value >> 8)&0xff))
1041
1042/*
1043 *  Special Purpose Routines to hide the use of UNIX system calls.
1044 */
1045
1046
1047/*
1048 *  Pointer to a sync io  Handler
1049 */
1050
1051typedef void ( *rtems_sync_io_handler )(
1052  int fd,
1053  boolean read,
1054  boolean wrtie,
1055  boolean except
1056);
1057
1058/* returns -1 if fd to large, 0 is successful */
1059int _CPU_Set_sync_io_handler(
1060  int fd,
1061  boolean read,
1062  boolean write,
1063  boolean except,
1064  rtems_sync_io_handler handler
1065);
1066
1067/* returns -1 if fd to large, o if successful */
1068int _CPU_Clear_sync_io_handler(
1069  int fd
1070);
1071
1072int _CPU_Get_clock_vector( void );
1073
1074void _CPU_Start_clock(
1075  int microseconds
1076);
1077
1078void _CPU_Stop_clock( void );
1079
1080#if defined(RTEMS_MULTIPROCESSING)
1081
1082void _CPU_SHM_Init(
1083  uint32_t     maximum_nodes,
1084  boolean      is_master_node,
1085  void       **shm_address,
1086  uint32_t    *shm_length
1087);
1088
1089int _CPU_Get_pid( void );
1090 
1091int _CPU_SHM_Get_vector( void );
1092 
1093void _CPU_SHM_Send_interrupt(
1094  int pid,
1095  int vector
1096);
1097 
1098void _CPU_SHM_Lock(
1099  int semaphore
1100);
1101
1102void _CPU_SHM_Unlock(
1103  int semaphore
1104);
1105#endif
1106
1107#ifdef __cplusplus
1108}
1109#endif
1110
1111#endif
Note: See TracBrowser for help on using the repository browser.