source: rtems/cpukit/score/cpu/unix/rtems/score/cpu.h @ 4b89ba7

4.104.114.95
Last change on this file since 4b89ba7 was 4b89ba7, checked in by Joel Sherrill <joel.sherrill@…>, on 12/03/07 at 22:22:55

2007-12-03 Joel Sherrill <joel.sherrill@…>

  • rtems/score/cpu.h: Moved most of the remaining CPU Table fields to the Configuration Table. This included pretasking_hook, predriver_hook, postdriver_hook, idle_task, do_zero_of_workspace, extra_mpci_receive_server_stack, stack_allocate_hook, and stack_free_hook. As a side-effect of this effort some multiprocessing code was made conditional and some style clean up occurred.
  • Property mode set to 100644
File size: 31.3 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the
7 *  UNIX port of RTEMS.
8 *
9 *  COPYRIGHT (c) 1994 by Division Incorporated
10 *
11 *  The license and distribution terms for this file may be
12 *  found in the file LICENSE in this distribution or at
13 *  http://www.rtems.com/license/LICENSE.
14 *
15 *  COPYRIGHT (c) 1989-2006.
16 *  On-Line Applications Research Corporation (OAR).
17 *
18 *  The license and distribution terms for this file may in
19 *  the file LICENSE in this distribution or at
20 *  http://www.rtems.com/license/LICENSE.
21 *
22 *  $Id$
23 */
24
25#ifndef _RTEMS_SCORE_CPU_H
26#define _RTEMS_SCORE_CPU_H
27
28#ifdef __cplusplus
29extern "C" {
30#endif
31
32#include <rtems/score/unix.h>              /* pick up machine definitions */
33#ifndef ASM
34#include <rtems/score/types.h>
35#endif
36
37#if defined(linux)
38#define MALLOC_0_RETURNS_NULL
39#endif
40
41/* conditional compilation parameters */
42
43/*
44 *  Should the calls to _Thread_Enable_dispatch be inlined?
45 *
46 *  If TRUE, then they are inlined.
47 *  If FALSE, then a subroutine call is made.
48 *
49 *  Basically this is an example of the classic trade-off of size
50 *  versus speed.  Inlining the call (TRUE) typically increases the
51 *  size of RTEMS while speeding up the enabling of dispatching.
52 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
53 *  only be 0 or 1 unless you are in an interrupt handler and that
54 *  interrupt handler invokes the executive.]  When not inlined
55 *  something calls _Thread_Enable_dispatch which in turns calls
56 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
57 *  one subroutine call is avoided entirely.]
58 */
59
60#define CPU_INLINE_ENABLE_DISPATCH       FALSE
61
62/*
63 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
64 *  be unrolled one time?  In unrolled each iteration of the loop examines
65 *  two "nodes" on the chain being searched.  Otherwise, only one node
66 *  is examined per iteration.
67 *
68 *  If TRUE, then the loops are unrolled.
69 *  If FALSE, then the loops are not unrolled.
70 *
71 *  The primary factor in making this decision is the cost of disabling
72 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
73 *  body of the loop.  On some CPUs, the flash is more expensive than
74 *  one iteration of the loop body.  In this case, it might be desirable
75 *  to unroll the loop.  It is important to note that on some CPUs, this
76 *  code is the longest interrupt disable period in RTEMS.  So it is
77 *  necessary to strike a balance when setting this parameter.
78 */
79
80#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
81
82/*
83 *  Does RTEMS manage a dedicated interrupt stack in software?
84 *
85 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
86 *  If FALSE, nothing is done.
87 *
88 *  If the CPU supports a dedicated interrupt stack in hardware,
89 *  then it is generally the responsibility of the BSP to allocate it
90 *  and set it up.
91 *
92 *  If the CPU does not support a dedicated interrupt stack, then
93 *  the porter has two options: (1) execute interrupts on the
94 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
95 *  interrupt stack.
96 *
97 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
98 *
99 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
100 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
101 *  possible that both are FALSE for a particular CPU.  Although it
102 *  is unclear what that would imply about the interrupt processing
103 *  procedure on that CPU.
104 */
105
106#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
107
108/*
109 *  Does this CPU have hardware support for a dedicated interrupt stack?
110 *
111 *  If TRUE, then it must be installed during initialization.
112 *  If FALSE, then no installation is performed.
113 *
114 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
115 *
116 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
117 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
118 *  possible that both are FALSE for a particular CPU.  Although it
119 *  is unclear what that would imply about the interrupt processing
120 *  procedure on that CPU.
121 */
122
123#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
124
125/*
126 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
127 *
128 *  If TRUE, then the memory is allocated during initialization.
129 *  If FALSE, then the memory is allocated during initialization.
130 *
131 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
132 */
133
134#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
135
136/*
137 *  Does the RTEMS invoke the user's ISR with the vector number and
138 *  a pointer to the saved interrupt frame (1) or just the vector
139 *  number (0)?
140 */
141
142#define CPU_ISR_PASSES_FRAME_POINTER 0
143
144/*
145 *  Does the CPU have hardware floating point?
146 *
147 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
148 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
149 *
150 *  If there is a FP coprocessor such as the i387 or mc68881, then
151 *  the answer is TRUE.
152 *
153 *  The macro name "UNIX_HAS_FPU" should be made CPU specific.
154 *  It indicates whether or not this CPU model has FP support.  For
155 *  example, it would be possible to have an i386_nofp CPU model
156 *  which set this to false to indicate that you have an i386 without
157 *  an i387 and wish to leave floating point support out of RTEMS.
158 */
159
160#define CPU_HARDWARE_FP     TRUE
161#define CPU_SOFTWARE_FP     FALSE
162
163/*
164 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
165 *
166 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
167 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
168 *
169 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
170 */
171
172#define CPU_ALL_TASKS_ARE_FP     FALSE
173
174/*
175 *  Should the IDLE task have a floating point context?
176 *
177 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
178 *  and it has a floating point context which is switched in and out.
179 *  If FALSE, then the IDLE task does not have a floating point context.
180 *
181 *  Setting this to TRUE negatively impacts the time required to preempt
182 *  the IDLE task from an interrupt because the floating point context
183 *  must be saved as part of the preemption.
184 */
185
186#define CPU_IDLE_TASK_IS_FP      FALSE
187
188/*
189 *  Should the saving of the floating point registers be deferred
190 *  until a context switch is made to another different floating point
191 *  task?
192 *
193 *  If TRUE, then the floating point context will not be stored until
194 *  necessary.  It will remain in the floating point registers and not
195 *  disturned until another floating point task is switched to.
196 *
197 *  If FALSE, then the floating point context is saved when a floating
198 *  point task is switched out and restored when the next floating point
199 *  task is restored.  The state of the floating point registers between
200 *  those two operations is not specified.
201 *
202 *  If the floating point context does NOT have to be saved as part of
203 *  interrupt dispatching, then it should be safe to set this to TRUE.
204 *
205 *  Setting this flag to TRUE results in using a different algorithm
206 *  for deciding when to save and restore the floating point context.
207 *  The deferred FP switch algorithm minimizes the number of times
208 *  the FP context is saved and restored.  The FP context is not saved
209 *  until a context switch is made to another, different FP task.
210 *  Thus in a system with only one FP task, the FP context will never
211 *  be saved or restored.
212 */
213
214#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
215
216/*
217 *  Does this port provide a CPU dependent IDLE task implementation?
218 *
219 *  If TRUE, then the routine _CPU_Thread_Idle_body
220 *  must be provided and is the default IDLE thread body instead of
221 *  _CPU_Thread_Idle_body.
222 *
223 *  If FALSE, then use the generic IDLE thread body if the BSP does
224 *  not provide one.
225 *
226 *  This is intended to allow for supporting processors which have
227 *  a low power or idle mode.  When the IDLE thread is executed, then
228 *  the CPU can be powered down.
229 *
230 *  The order of precedence for selecting the IDLE thread body is:
231 *
232 *    1.  BSP provided
233 *    2.  CPU dependent (if provided)
234 *    3.  generic (if no BSP and no CPU dependent)
235 */
236
237#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
238
239/*
240 *  Does the stack grow up (toward higher addresses) or down
241 *  (toward lower addresses)?
242 *
243 *  If TRUE, then the grows upward.
244 *  If FALSE, then the grows toward smaller addresses.
245 */
246
247#if defined(__hppa__)
248#define CPU_STACK_GROWS_UP               TRUE
249#elif defined(__sparc__) || defined(__i386__)
250#define CPU_STACK_GROWS_UP               FALSE
251#else
252#error "unknown CPU!!"
253#endif
254
255
256/*
257 *  The following is the variable attribute used to force alignment
258 *  of critical RTEMS structures.  On some processors it may make
259 *  sense to have these aligned on tighter boundaries than
260 *  the minimum requirements of the compiler in order to have as
261 *  much of the critical data area as possible in a cache line.
262 *
263 *  The placement of this macro in the declaration of the variables
264 *  is based on the syntactically requirements of the GNU C
265 *  "__attribute__" extension.  For example with GNU C, use
266 *  the following to force a structures to a 32 byte boundary.
267 *
268 *      __attribute__ ((aligned (32)))
269 *
270 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
271 *         To benefit from using this, the data must be heavily
272 *         used so it will stay in the cache and used frequently enough
273 *         in the executive to justify turning this on.
274 *
275 *  This is really not critical on the POSIX simulator ports as
276 *  performance is not the goal here.
277 */
278
279#define CPU_STRUCTURE_ALIGNMENT
280
281/*
282 *  Define what is required to specify how the network to host conversion
283 *  routines are handled.
284 */
285
286#if defined(__hppa__) || defined(__sparc__)
287#define CPU_BIG_ENDIAN                           TRUE
288#define CPU_LITTLE_ENDIAN                        FALSE
289#elif defined(__i386__)
290#define CPU_BIG_ENDIAN                           FALSE
291#define CPU_LITTLE_ENDIAN                        TRUE
292#else
293#error "Unknown CPU!!!"
294#endif
295
296/*
297 *  The following defines the number of bits actually used in the
298 *  interrupt field of the task mode.  How those bits map to the
299 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
300 */
301
302#define CPU_MODES_INTERRUPT_MASK   0x00000001
303
304#define CPU_NAME "UNIX"
305
306/*
307 *  Processor defined structures required for cpukit/score.
308 */
309
310/* may need to put some structures here.  */
311
312#if defined(__hppa__)
313/*
314 * Word indices within a jmp_buf structure
315 */
316
317#ifdef RTEMS_NEWLIB_SETJMP
318#define RP_OFF       6
319#define SP_OFF       2
320#define R3_OFF      10
321#define R4_OFF      11
322#define R5_OFF      12
323#define R6_OFF      13
324#define R7_OFF      14
325#define R8_OFF      15
326#define R9_OFF      16
327#define R10_OFF     17
328#define R11_OFF     18
329#define R12_OFF     19
330#define R13_OFF     20
331#define R14_OFF     21
332#define R15_OFF     22
333#define R16_OFF     23
334#define R17_OFF     24
335#define R18_OFF     25
336#define DP_OFF      26
337#endif
338
339#ifdef RTEMS_UNIXLIB_SETJMP
340#define RP_OFF       0
341#define SP_OFF       1
342#define R3_OFF       4
343#define R4_OFF       5
344#define R5_OFF       6
345#define R6_OFF       7
346#define R7_OFF       8
347#define R8_OFF       9
348#define R9_OFF      10
349#define R10_OFF     11
350#define R11_OFF     12
351#define R12_OFF     13
352#define R13_OFF     14
353#define R14_OFF     15
354#define R15_OFF     16
355#define R16_OFF     17
356#define R17_OFF     18
357#define R18_OFF     19
358#define DP_OFF      20
359#endif
360#endif
361
362#if defined(__i386__)
363 
364#ifdef RTEMS_NEWLIB
365#error "Newlib not installed"
366#endif
367 
368/*
369 *  For i386 targets
370 */
371 
372#ifdef RTEMS_UNIXLIB
373#if defined(__FreeBSD__)
374#define RET_OFF    0
375#define EBX_OFF    1
376#define EBP_OFF    2
377#define ESP_OFF    3
378#define ESI_OFF    4
379#define EDI_OFF    5
380#elif defined(__CYGWIN__)
381#define EAX_OFF    0
382#define EBX_OFF    1
383#define ECX_OFF    2
384#define EDX_OFF    3
385#define ESI_OFF    4
386#define EDI_OFF    5
387#define EBP_OFF    6
388#define ESP_OFF    7
389#define RET_OFF    8
390#else
391/* Linux */
392#define EBX_OFF    0
393#define ESI_OFF    1
394#define EDI_OFF    2
395#define EBP_OFF    3
396#define ESP_OFF    4
397#define RET_OFF    5
398#endif
399#endif
400 
401#endif
402 
403#if defined(__sparc__)
404
405/*
406 *  Word indices within a jmp_buf structure
407 */
408 
409#ifdef RTEMS_NEWLIB
410#define ADDR_ADJ_OFFSET -8
411#define SP_OFF    0
412#define RP_OFF    1
413#define FP_OFF    2
414#endif
415
416#ifdef RTEMS_UNIXLIB
417#define ADDR_ADJ_OFFSET 0
418#define G0_OFF    0
419#define SP_OFF    1
420#define RP_OFF    2   
421#define FP_OFF    3
422#define I7_OFF    4
423#endif
424
425#endif
426
427/*
428 * Contexts
429 *
430 *  Generally there are 2 types of context to save.
431 *     1. Interrupt registers to save
432 *     2. Task level registers to save
433 *
434 *  This means we have the following 3 context items:
435 *     1. task level context stuff::  Context_Control
436 *     2. floating point task stuff:: Context_Control_fp
437 *     3. special interrupt level context :: Context_Control_interrupt
438 *
439 *  On some processors, it is cost-effective to save only the callee
440 *  preserved registers during a task context switch.  This means
441 *  that the ISR code needs to save those registers which do not
442 *  persist across function calls.  It is not mandatory to make this
443 *  distinctions between the caller/callee saves registers for the
444 *  purpose of minimizing context saved during task switch and on interrupts.
445 *  If the cost of saving extra registers is minimal, simplicity is the
446 *  choice.  Save the same context on interrupt entry as for tasks in
447 *  this case.
448 *
449 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
450 *  care should be used in designing the context area.
451 *
452 *  On some CPUs with hardware floating point support, the Context_Control_fp
453 *  structure will not be used or it simply consist of an array of a
454 *  fixed number of bytes.   This is done when the floating point context
455 *  is dumped by a "FP save context" type instruction and the format
456 *  is not really defined by the CPU.  In this case, there is no need
457 *  to figure out the exact format -- only the size.  Of course, although
458 *  this is enough information for RTEMS, it is probably not enough for
459 *  a debugger such as gdb.  But that is another problem.
460 */
461
462/*
463 *  This is really just the area for the following fields.
464 *
465 *    jmp_buf    regs;
466 *    uint32_t   isr_level;
467 *
468 *  Doing it this way avoids conflicts between the native stuff and the
469 *  RTEMS stuff.
470 *
471 *  NOTE:
472 *      hpux9 setjmp is optimized for the case where the setjmp buffer
473 *      is 8 byte aligned.  In a RISC world, this seems likely to enable
474 *      8 byte copies, especially for the float registers.
475 *      So we always align them on 8 byte boundaries.
476 */
477
478#ifdef __GNUC__
479#define CONTEXT_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (8)))
480#else
481#define CONTEXT_STRUCTURE_ALIGNMENT
482#endif
483
484typedef struct {
485  char      Area[ SIZEOF_CPU_CONTEXT ] CONTEXT_STRUCTURE_ALIGNMENT;
486} Context_Control;
487
488typedef struct {
489} Context_Control_fp;
490
491typedef struct {
492} CPU_Interrupt_frame;
493
494
495/*
496 *  The following table contains the information required to configure
497 *  the UNIX Simulator specific parameters.
498 */
499
500typedef struct {
501  uint32_t     interrupt_stack_size;
502}   rtems_cpu_table;
503
504/*
505 *  This variable is optional.  It is used on CPUs on which it is difficult
506 *  to generate an "uninitialized" FP context.  It is filled in by
507 *  _CPU_Initialize and copied into the task's FP context area during
508 *  _CPU_Context_Initialize.
509 */
510
511SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
512
513/*
514 *  On some CPUs, RTEMS supports a software managed interrupt stack.
515 *  This stack is allocated by the Interrupt Manager and the switch
516 *  is performed in _ISR_Handler.  These variables contain pointers
517 *  to the lowest and highest addresses in the chunk of memory allocated
518 *  for the interrupt stack.  Since it is unknown whether the stack
519 *  grows up or down (in general), this give the CPU dependent
520 *  code the option of picking the version it wants to use.
521 *
522 *  NOTE: These two variables are required if the macro
523 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
524 */
525
526SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
527SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
528
529/*
530 *  With some compilation systems, it is difficult if not impossible to
531 *  call a high-level language routine from assembly language.  This
532 *  is especially true of commercial Ada compilers and name mangling
533 *  C++ ones.  This variable can be optionally defined by the CPU porter
534 *  and contains the address of the routine _Thread_Dispatch.  This
535 *  can make it easier to invoke that routine at the end of the interrupt
536 *  sequence (if a dispatch is necessary).
537 */
538
539SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
540
541/*
542 *  Nothing prevents the porter from declaring more CPU specific variables.
543 */
544
545/* XXX: if needed, put more variables here */
546
547/*
548 *  The size of the floating point context area.  On some CPUs this
549 *  will not be a "sizeof" because the format of the floating point
550 *  area is not defined -- only the size is.  This is usually on
551 *  CPUs with a "floating point save context" instruction.
552 */
553
554#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
555
556/*
557 * The size of a frame on the stack
558 */
559
560#if defined(__hppa__)
561#define CPU_FRAME_SIZE  (32 * 4)
562#elif defined(__sparc__)
563#define CPU_FRAME_SIZE  (112)   /* based on disassembled test code */
564#elif defined(__i386__)
565#define CPU_FRAME_SIZE  (24)  /* return address, sp, and bp pushed plus fudge */
566#else
567#error "Unknown CPU!!!"
568#endif
569
570/*
571 *  Amount of extra stack (above minimum stack size) required by
572 *  MPCI receive server thread.  Remember that in a multiprocessor
573 *  system this thread must exist and be able to process all directives.
574 */
575
576#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
577
578/*
579 *  This defines the number of entries in the ISR_Vector_table managed
580 *  by RTEMS.
581 */
582
583#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
584#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
585
586/*
587 *  This is defined if the port has a special way to report the ISR nesting
588 *  level.  Most ports maintain the variable _ISR_Nest_level.
589 */
590
591#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
592
593/*
594 *  Should be large enough to run all RTEMS tests.  This ensures
595 *  that a "reasonable" small application should not have any problems.
596 */
597
598#define CPU_STACK_MINIMUM_SIZE          (16 * 1024)
599
600/*
601 *  CPU's worst alignment requirement for data types on a byte boundary.  This
602 *  alignment does not take into account the requirements for the stack.
603 */
604
605#define CPU_ALIGNMENT              8
606
607/*
608 *  This number corresponds to the byte alignment requirement for the
609 *  heap handler.  This alignment requirement may be stricter than that
610 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
611 *  common for the heap to follow the same alignment requirement as
612 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
613 *  then this should be set to CPU_ALIGNMENT.
614 *
615 *  NOTE:  This does not have to be a power of 2.  It does have to
616 *         be greater or equal to than CPU_ALIGNMENT.
617 */
618
619#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
620
621/*
622 *  This number corresponds to the byte alignment requirement for memory
623 *  buffers allocated by the partition manager.  This alignment requirement
624 *  may be stricter than that for the data types alignment specified by
625 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
626 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
627 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
628 *
629 *  NOTE:  This does not have to be a power of 2.  It does have to
630 *         be greater or equal to than CPU_ALIGNMENT.
631 */
632
633#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
634
635/*
636 *  This number corresponds to the byte alignment requirement for the
637 *  stack.  This alignment requirement may be stricter than that for the
638 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
639 *  is strict enough for the stack, then this should be set to 0.
640 *
641 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
642 */
643
644#define CPU_STACK_ALIGNMENT        64
645
646/*
647 *  ISR handler macros
648 */
649
650/*
651 *  Support routine to initialize the RTEMS vector table after it is allocated.
652 */
653
654void _CPU_Initialize_vectors(void);
655
656/*
657 *  Disable all interrupts for an RTEMS critical section.  The previous
658 *  level is returned in _level.
659 */
660
661extern uint32_t   _CPU_ISR_Disable_support(void);
662
663#define _CPU_ISR_Disable( _level ) \
664    do { \
665      (_level) = _CPU_ISR_Disable_support(); \
666    } while ( 0 )
667
668/*
669 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
670 *  This indicates the end of an RTEMS critical section.  The parameter
671 *  _level is not modified.
672 */
673
674void _CPU_ISR_Enable(uint32_t   level);
675
676/*
677 *  This temporarily restores the interrupt to _level before immediately
678 *  disabling them again.  This is used to divide long RTEMS critical
679 *  sections into two or more parts.  The parameter _level is not
680 * modified.
681 */
682
683#define _CPU_ISR_Flash( _level ) \
684  do { \
685      register uint32_t   _ignored = 0; \
686      _CPU_ISR_Enable( (_level) ); \
687      _CPU_ISR_Disable( _ignored ); \
688  } while ( 0 )
689
690/*
691 *  Map interrupt level in task mode onto the hardware that the CPU
692 *  actually provides.  Currently, interrupt levels which do not
693 *  map onto the CPU in a generic fashion are undefined.  Someday,
694 *  it would be nice if these were "mapped" by the application
695 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
696 *  8 - 255 would be available for bsp/application specific meaning.
697 *  This could be used to manage a programmable interrupt controller
698 *  via the rtems_task_mode directive.
699 */
700
701#define _CPU_ISR_Set_level( new_level ) \
702  { \
703    if ( new_level == 0 ) _CPU_ISR_Enable( 0 ); \
704    else                  _CPU_ISR_Enable( 1 ); \
705  }
706
707uint32_t   _CPU_ISR_Get_level( void );
708
709/* end of ISR handler macros */
710
711/* Context handler macros */
712
713/*
714 *  This routine is responsible for somehow restarting the currently
715 *  executing task.  If you are lucky, then all that is necessary
716 *  is restoring the context.  Otherwise, there will need to be
717 *  a special assembly routine which does something special in this
718 *  case.  Context_Restore should work most of the time.  It will
719 *  not work if restarting self conflicts with the stack frame
720 *  assumptions of restoring a context.
721 */
722
723#define _CPU_Context_Restart_self( _the_context ) \
724   _CPU_Context_restore( (_the_context) );
725
726/*
727 *  The purpose of this macro is to allow the initial pointer into
728 *  a floating point context area (used to save the floating point
729 *  context) to be at an arbitrary place in the floating point
730 *  context area.
731 *
732 *  This is necessary because some FP units are designed to have
733 *  their context saved as a stack which grows into lower addresses.
734 *  Other FP units can be saved by simply moving registers into offsets
735 *  from the base of the context area.  Finally some FP units provide
736 *  a "dump context" instruction which could fill in from high to low
737 *  or low to high based on the whim of the CPU designers.
738 */
739
740#define _CPU_Context_Fp_start( _base, _offset ) \
741   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
742
743/*
744 *  This routine initializes the FP context area passed to it to.
745 *  There are a few standard ways in which to initialize the
746 *  floating point context.  The code included for this macro assumes
747 *  that this is a CPU in which a "initial" FP context was saved into
748 *  _CPU_Null_fp_context and it simply copies it to the destination
749 *  context passed to it.
750 *
751 *  Other models include (1) not doing anything, and (2) putting
752 *  a "null FP status word" in the correct place in the FP context.
753 */
754
755#define _CPU_Context_Initialize_fp( _destination ) \
756  { \
757   *(*(_destination)) = _CPU_Null_fp_context; \
758  }
759
760#define _CPU_Context_save_fp( _fp_context ) \
761    _CPU_Save_float_context(*(_fp_context))
762
763#define _CPU_Context_restore_fp( _fp_context ) \
764    _CPU_Restore_float_context(*(_fp_context))
765
766extern void _CPU_Context_Initialize(
767  Context_Control  *_the_context,
768  uint32_t         *_stack_base,
769  uint32_t          _size,
770  uint32_t          _new_level,
771  void             *_entry_point,
772  boolean           _is_fp
773);
774
775/* end of Context handler macros */
776
777/* Fatal Error manager macros */
778
779/*
780 *  This routine copies _error into a known place -- typically a stack
781 *  location or a register, optionally disables interrupts, and
782 *  halts/stops the CPU.
783 */
784
785#define _CPU_Fatal_halt( _error ) \
786    _CPU_Fatal_error( _error )
787
788/* end of Fatal Error manager macros */
789
790/* Bitfield handler macros */
791
792/*
793 *  This routine sets _output to the bit number of the first bit
794 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
795 *  This type may be either 16 or 32 bits wide although only the 16
796 *  least significant bits will be used.
797 *
798 *  There are a number of variables in using a "find first bit" type
799 *  instruction.
800 *
801 *    (1) What happens when run on a value of zero?
802 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
803 *    (3) The numbering may be zero or one based.
804 *    (4) The "find first bit" instruction may search from MSB or LSB.
805 *
806 *  RTEMS guarantees that (1) will never happen so it is not a concern.
807 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
808 *  _CPU_Priority_bits_index().  These three form a set of routines
809 *  which must logically operate together.  Bits in the _value are
810 *  set and cleared based on masks built by _CPU_Priority_mask().
811 *  The basic major and minor values calculated by _Priority_Major()
812 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
813 *  to properly range between the values returned by the "find first bit"
814 *  instruction.  This makes it possible for _Priority_Get_highest() to
815 *  calculate the major and directly index into the minor table.
816 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
817 *  is the first bit found.
818 *
819 *  This entire "find first bit" and mapping process depends heavily
820 *  on the manner in which a priority is broken into a major and minor
821 *  components with the major being the 4 MSB of a priority and minor
822 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
823 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
824 *  to the lowest priority.
825 *
826 *  If your CPU does not have a "find first bit" instruction, then
827 *  there are ways to make do without it.  Here are a handful of ways
828 *  to implement this in software:
829 *
830 *    - a series of 16 bit test instructions
831 *    - a "binary search using if's"
832 *    - _number = 0
833 *      if _value > 0x00ff
834 *        _value >>=8
835 *        _number = 8;
836 *
837 *      if _value > 0x0000f
838 *        _value >=8
839 *        _number += 4
840 *
841 *      _number += bit_set_table[ _value ]
842 *
843 *    where bit_set_table[ 16 ] has values which indicate the first
844 *      bit set
845 */
846
847/*
848 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
849 *  dependencies on either a native bitscan instruction or an ffs() in the
850 *  C library.
851 */
852 
853#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
854#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
855 
856/* end of Bitfield handler macros */
857 
858/* Priority handler handler macros */
859 
860/*
861 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
862 *  dependencies on either a native bitscan instruction or an ffs() in the
863 *  C library.
864 */
865 
866/* end of Priority handler macros */
867
868/* functions */
869
870/*
871 *  _CPU_Initialize
872 *
873 *  This routine performs CPU dependent initialization.
874 */
875
876void _CPU_Initialize(
877  rtems_cpu_table  *cpu_table,
878  void      (*thread_dispatch)
879);
880
881/*
882 *  _CPU_ISR_install_raw_handler
883 *
884 *  This routine installs a "raw" interrupt handler directly into the
885 *  processor's vector table.
886 */
887 
888void _CPU_ISR_install_raw_handler(
889  uint32_t    vector,
890  proc_ptr    new_handler,
891  proc_ptr   *old_handler
892);
893
894/*
895 *  _CPU_ISR_install_vector
896 *
897 *  This routine installs an interrupt vector.
898 */
899
900void _CPU_ISR_install_vector(
901  uint32_t    vector,
902  proc_ptr    new_handler,
903  proc_ptr   *old_handler
904);
905
906/*
907 *  _CPU_Install_interrupt_stack
908 *
909 *  This routine installs the hardware interrupt stack pointer.
910 *
911 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
912 *         is TRUE.
913 */
914
915void _CPU_Install_interrupt_stack( void );
916
917/*
918 *  _CPU_Thread_Idle_body
919 *
920 *  This routine is the CPU dependent IDLE thread body.
921 *
922 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
923 *         is TRUE.
924 */
925
926void _CPU_Thread_Idle_body( void );
927
928/*
929 *  _CPU_Context_switch
930 *
931 *  This routine switches from the run context to the heir context.
932 */
933
934void _CPU_Context_switch(
935  Context_Control  *run,
936  Context_Control  *heir
937);
938
939/*
940 *  _CPU_Context_restore
941 *
942 *  This routine is generally used only to restart self in an
943 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
944 *
945 *  NOTE: May be unnecessary to reload some registers.
946 */
947
948void _CPU_Context_restore(
949  Context_Control *new_context
950);
951
952/*
953 *  _CPU_Save_float_context
954 *
955 *  This routine saves the floating point context passed to it.
956 */
957
958void _CPU_Save_float_context(
959  Context_Control_fp *fp_context_ptr
960);
961
962/*
963 *  _CPU_Restore_float_context
964 *
965 *  This routine restores the floating point context passed to it.
966 */
967
968void _CPU_Restore_float_context(
969  Context_Control_fp *fp_context_ptr
970);
971
972
973void _CPU_ISR_Set_signal_level(
974  uint32_t   level
975);
976
977void _CPU_Fatal_error(
978  uint32_t   _error
979);
980
981/*  The following routine swaps the endian format of an unsigned int.
982 *  It must be static because it is referenced indirectly.
983 *
984 *  This version will work on any processor, but if there is a better
985 *  way for your CPU PLEASE use it.  The most common way to do this is to:
986 *
987 *     swap least significant two bytes with 16-bit rotate
988 *     swap upper and lower 16-bits
989 *     swap most significant two bytes with 16-bit rotate
990 *
991 *  Some CPUs have special instructions which swap a 32-bit quantity in
992 *  a single instruction (e.g. i486).  It is probably best to avoid
993 *  an "endian swapping control bit" in the CPU.  One good reason is
994 *  that interrupts would probably have to be disabled to ensure that
995 *  an interrupt does not try to access the same "chunk" with the wrong
996 *  endian.  Another good reason is that on some CPUs, the endian bit
997 *  endianness for ALL fetches -- both code and data -- so the code
998 *  will be fetched incorrectly.
999 */
1000 
1001static inline uint32_t CPU_swap_u32(
1002  uint32_t value
1003)
1004{
1005  uint32_t   byte1, byte2, byte3, byte4, swapped;
1006 
1007  byte4 = (value >> 24) & 0xff;
1008  byte3 = (value >> 16) & 0xff;
1009  byte2 = (value >> 8)  & 0xff;
1010  byte1 =  value        & 0xff;
1011 
1012  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1013  return( swapped );
1014}
1015
1016#define CPU_swap_u16( value ) \
1017  (((value&0xff) << 8) | ((value >> 8)&0xff))
1018
1019/*
1020 *  Special Purpose Routines to hide the use of UNIX system calls.
1021 */
1022
1023
1024/*
1025 *  Pointer to a sync io  Handler
1026 */
1027
1028typedef void ( *rtems_sync_io_handler )(
1029  int fd,
1030  boolean read,
1031  boolean wrtie,
1032  boolean except
1033);
1034
1035/* returns -1 if fd to large, 0 is successful */
1036int _CPU_Set_sync_io_handler(
1037  int fd,
1038  boolean read,
1039  boolean write,
1040  boolean except,
1041  rtems_sync_io_handler handler
1042);
1043
1044/* returns -1 if fd to large, o if successful */
1045int _CPU_Clear_sync_io_handler(
1046  int fd
1047);
1048
1049int _CPU_Get_clock_vector( void );
1050
1051void _CPU_Start_clock(
1052  int microseconds
1053);
1054
1055void _CPU_Stop_clock( void );
1056
1057#if defined(RTEMS_MULTIPROCESSING)
1058
1059void _CPU_SHM_Init(
1060  uint32_t     maximum_nodes,
1061  boolean      is_master_node,
1062  void       **shm_address,
1063  uint32_t    *shm_length
1064);
1065
1066int _CPU_Get_pid( void );
1067 
1068int _CPU_SHM_Get_vector( void );
1069 
1070void _CPU_SHM_Send_interrupt(
1071  int pid,
1072  int vector
1073);
1074 
1075void _CPU_SHM_Lock(
1076  int semaphore
1077);
1078
1079void _CPU_SHM_Unlock(
1080  int semaphore
1081);
1082#endif
1083
1084#ifdef __cplusplus
1085}
1086#endif
1087
1088#endif
Note: See TracBrowser for help on using the repository browser.