source: rtems/cpukit/score/cpu/unix/rtems/score/cpu.h @ 411b065

4.104.114.84.95
Last change on this file since 411b065 was 411b065, checked in by Ralf Corsepius <ralf.corsepius@…>, on 04/06/04 at 02:13:21

2004-04-06 Ralf Corsepius <ralf_corsepius@…>

  • rtems/score/cpu.h: Remove unixsize.h.
  • configure.ac: Remove (Merged into$(top_srcdir)/configure.ac).
  • Makefile.am: Remove unixsize.h. Don't include multilib.am. Reflect merging configure.ac into $(top_srcdir)/configure.ac.
  • Property mode set to 100644
File size: 32.1 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the
4 *  UNIX port of RTEMS.
5 *
6 *  COPYRIGHT (c) 1994 by Division Incorporated
7 *
8 *  The license and distribution terms for this file may be
9 *  found in the file LICENSE in this distribution or at
10 *  http://www.rtems.com/license/LICENSE.
11 *
12 *  $Id$
13 */
14
15#ifndef __CPU_h
16#define __CPU_h
17
18#ifdef __cplusplus
19extern "C" {
20#endif
21
22#include <rtems/score/unix.h>              /* pick up machine definitions */
23#ifndef ASM
24#include <rtems/score/types.h>
25#endif
26
27#if defined(solaris2)
28#undef  _POSIX_C_SOURCE
29#define _POSIX_C_SOURCE 3
30#endif
31
32#if defined(linux)
33#define MALLOC_0_RETURNS_NULL
34#endif
35
36/* conditional compilation parameters */
37
38/*
39 *  Should the calls to _Thread_Enable_dispatch be inlined?
40 *
41 *  If TRUE, then they are inlined.
42 *  If FALSE, then a subroutine call is made.
43 *
44 *  Basically this is an example of the classic trade-off of size
45 *  versus speed.  Inlining the call (TRUE) typically increases the
46 *  size of RTEMS while speeding up the enabling of dispatching.
47 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
48 *  only be 0 or 1 unless you are in an interrupt handler and that
49 *  interrupt handler invokes the executive.]  When not inlined
50 *  something calls _Thread_Enable_dispatch which in turns calls
51 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
52 *  one subroutine call is avoided entirely.]
53 */
54
55#define CPU_INLINE_ENABLE_DISPATCH       FALSE
56
57/*
58 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
59 *  be unrolled one time?  In unrolled each iteration of the loop examines
60 *  two "nodes" on the chain being searched.  Otherwise, only one node
61 *  is examined per iteration.
62 *
63 *  If TRUE, then the loops are unrolled.
64 *  If FALSE, then the loops are not unrolled.
65 *
66 *  The primary factor in making this decision is the cost of disabling
67 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
68 *  body of the loop.  On some CPUs, the flash is more expensive than
69 *  one iteration of the loop body.  In this case, it might be desirable
70 *  to unroll the loop.  It is important to note that on some CPUs, this
71 *  code is the longest interrupt disable period in RTEMS.  So it is
72 *  necessary to strike a balance when setting this parameter.
73 */
74
75#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
76
77/*
78 *  Does RTEMS manage a dedicated interrupt stack in software?
79 *
80 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
81 *  If FALSE, nothing is done.
82 *
83 *  If the CPU supports a dedicated interrupt stack in hardware,
84 *  then it is generally the responsibility of the BSP to allocate it
85 *  and set it up.
86 *
87 *  If the CPU does not support a dedicated interrupt stack, then
88 *  the porter has two options: (1) execute interrupts on the
89 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
90 *  interrupt stack.
91 *
92 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
93 *
94 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
95 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
96 *  possible that both are FALSE for a particular CPU.  Although it
97 *  is unclear what that would imply about the interrupt processing
98 *  procedure on that CPU.
99 */
100
101#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
102
103/*
104 *  Does this CPU have hardware support for a dedicated interrupt stack?
105 *
106 *  If TRUE, then it must be installed during initialization.
107 *  If FALSE, then no installation is performed.
108 *
109 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
110 *
111 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
112 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
113 *  possible that both are FALSE for a particular CPU.  Although it
114 *  is unclear what that would imply about the interrupt processing
115 *  procedure on that CPU.
116 */
117
118#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
119
120/*
121 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
122 *
123 *  If TRUE, then the memory is allocated during initialization.
124 *  If FALSE, then the memory is allocated during initialization.
125 *
126 *  This should be TRUE if CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
127 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
128 */
129
130#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
131
132/*
133 *  Does the RTEMS invoke the user's ISR with the vector number and
134 *  a pointer to the saved interrupt frame (1) or just the vector
135 *  number (0)?
136 */
137
138#define CPU_ISR_PASSES_FRAME_POINTER 0
139
140/*
141 *  Does the CPU have hardware floating point?
142 *
143 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
144 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
145 *
146 *  If there is a FP coprocessor such as the i387 or mc68881, then
147 *  the answer is TRUE.
148 *
149 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
150 *  It indicates whether or not this CPU model has FP support.  For
151 *  example, it would be possible to have an i386_nofp CPU model
152 *  which set this to false to indicate that you have an i386 without
153 *  an i387 and wish to leave floating point support out of RTEMS.
154 */
155
156#define CPU_HARDWARE_FP     TRUE
157#define CPU_SOFTWARE_FP     FALSE
158
159/*
160 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
161 *
162 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
163 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
164 *
165 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
166 */
167
168#define CPU_ALL_TASKS_ARE_FP     FALSE
169
170/*
171 *  Should the IDLE task have a floating point context?
172 *
173 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
174 *  and it has a floating point context which is switched in and out.
175 *  If FALSE, then the IDLE task does not have a floating point context.
176 *
177 *  Setting this to TRUE negatively impacts the time required to preempt
178 *  the IDLE task from an interrupt because the floating point context
179 *  must be saved as part of the preemption.
180 */
181
182#define CPU_IDLE_TASK_IS_FP      FALSE
183
184/*
185 *  Should the saving of the floating point registers be deferred
186 *  until a context switch is made to another different floating point
187 *  task?
188 *
189 *  If TRUE, then the floating point context will not be stored until
190 *  necessary.  It will remain in the floating point registers and not
191 *  disturned until another floating point task is switched to.
192 *
193 *  If FALSE, then the floating point context is saved when a floating
194 *  point task is switched out and restored when the next floating point
195 *  task is restored.  The state of the floating point registers between
196 *  those two operations is not specified.
197 *
198 *  If the floating point context does NOT have to be saved as part of
199 *  interrupt dispatching, then it should be safe to set this to TRUE.
200 *
201 *  Setting this flag to TRUE results in using a different algorithm
202 *  for deciding when to save and restore the floating point context.
203 *  The deferred FP switch algorithm minimizes the number of times
204 *  the FP context is saved and restored.  The FP context is not saved
205 *  until a context switch is made to another, different FP task.
206 *  Thus in a system with only one FP task, the FP context will never
207 *  be saved or restored.
208 */
209
210#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
211
212/*
213 *  Does this port provide a CPU dependent IDLE task implementation?
214 *
215 *  If TRUE, then the routine _CPU_Thread_Idle_body
216 *  must be provided and is the default IDLE thread body instead of
217 *  _CPU_Thread_Idle_body.
218 *
219 *  If FALSE, then use the generic IDLE thread body if the BSP does
220 *  not provide one.
221 *
222 *  This is intended to allow for supporting processors which have
223 *  a low power or idle mode.  When the IDLE thread is executed, then
224 *  the CPU can be powered down.
225 *
226 *  The order of precedence for selecting the IDLE thread body is:
227 *
228 *    1.  BSP provided
229 *    2.  CPU dependent (if provided)
230 *    3.  generic (if no BSP and no CPU dependent)
231 */
232
233#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
234
235/*
236 *  Does the stack grow up (toward higher addresses) or down
237 *  (toward lower addresses)?
238 *
239 *  If TRUE, then the grows upward.
240 *  If FALSE, then the grows toward smaller addresses.
241 */
242
243#if defined(__hppa__)
244#define CPU_STACK_GROWS_UP               TRUE
245#elif defined(__sparc__) || defined(__i386__)
246#define CPU_STACK_GROWS_UP               FALSE
247#else
248#error "unknown CPU!!"
249#endif
250
251
252/*
253 *  The following is the variable attribute used to force alignment
254 *  of critical RTEMS structures.  On some processors it may make
255 *  sense to have these aligned on tighter boundaries than
256 *  the minimum requirements of the compiler in order to have as
257 *  much of the critical data area as possible in a cache line.
258 *
259 *  The placement of this macro in the declaration of the variables
260 *  is based on the syntactically requirements of the GNU C
261 *  "__attribute__" extension.  For example with GNU C, use
262 *  the following to force a structures to a 32 byte boundary.
263 *
264 *      __attribute__ ((aligned (32)))
265 *
266 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
267 *         To benefit from using this, the data must be heavily
268 *         used so it will stay in the cache and used frequently enough
269 *         in the executive to justify turning this on.
270 *
271 *  This is really not critical on the POSIX simulator ports as
272 *  performance is not the goal here.
273 */
274
275#define CPU_STRUCTURE_ALIGNMENT
276
277/*
278 *  Define what is required to specify how the network to host conversion
279 *  routines are handled.
280 */
281
282#if defined(__hppa__) || defined(__sparc__)
283#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
284#define CPU_BIG_ENDIAN                           TRUE
285#define CPU_LITTLE_ENDIAN                        FALSE
286#elif defined(__i386__)
287#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
288#define CPU_BIG_ENDIAN                           FALSE
289#define CPU_LITTLE_ENDIAN                        TRUE
290#else
291#error "Unknown CPU!!!"
292#endif
293
294/*
295 *  The following defines the number of bits actually used in the
296 *  interrupt field of the task mode.  How those bits map to the
297 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
298 */
299
300#define CPU_MODES_INTERRUPT_MASK   0x00000001
301
302#define CPU_NAME "UNIX"
303
304/*
305 *  Processor defined structures
306 *
307 *  Examples structures include the descriptor tables from the i386
308 *  and the processor control structure on the i960ca.
309 */
310
311/* may need to put some structures here.  */
312
313#if defined(__hppa__)
314/*
315 * Word indices within a jmp_buf structure
316 */
317
318#ifdef RTEMS_NEWLIB_SETJMP
319#define RP_OFF       6
320#define SP_OFF       2
321#define R3_OFF      10
322#define R4_OFF      11
323#define R5_OFF      12
324#define R6_OFF      13
325#define R7_OFF      14
326#define R8_OFF      15
327#define R9_OFF      16
328#define R10_OFF     17
329#define R11_OFF     18
330#define R12_OFF     19
331#define R13_OFF     20
332#define R14_OFF     21
333#define R15_OFF     22
334#define R16_OFF     23
335#define R17_OFF     24
336#define R18_OFF     25
337#define DP_OFF      26
338#endif
339
340#ifdef RTEMS_UNIXLIB_SETJMP
341#define RP_OFF       0
342#define SP_OFF       1
343#define R3_OFF       4
344#define R4_OFF       5
345#define R5_OFF       6
346#define R6_OFF       7
347#define R7_OFF       8
348#define R8_OFF       9
349#define R9_OFF      10
350#define R10_OFF     11
351#define R11_OFF     12
352#define R12_OFF     13
353#define R13_OFF     14
354#define R14_OFF     15
355#define R15_OFF     16
356#define R16_OFF     17
357#define R17_OFF     18
358#define R18_OFF     19
359#define DP_OFF      20
360#endif
361#endif
362
363#if defined(__i386__)
364 
365#ifdef RTEMS_NEWLIB
366#error "Newlib not installed"
367#endif
368 
369/*
370 *  For i386 targets
371 */
372 
373#ifdef RTEMS_UNIXLIB
374#if defined(__FreeBSD__)
375#define RET_OFF    0
376#define EBX_OFF    1
377#define EBP_OFF    2
378#define ESP_OFF    3
379#define ESI_OFF    4
380#define EDI_OFF    5
381#elif defined(__CYGWIN__)
382#define EAX_OFF    0
383#define EBX_OFF    1
384#define ECX_OFF    2
385#define EDX_OFF    3
386#define ESI_OFF    4
387#define EDI_OFF    5
388#define EBP_OFF    6
389#define ESP_OFF    7
390#define RET_OFF    8
391#else
392/* Linux */
393#define EBX_OFF    0
394#define ESI_OFF    1
395#define EDI_OFF    2
396#define EBP_OFF    3
397#define ESP_OFF    4
398#define RET_OFF    5
399#endif
400#endif
401 
402#endif
403 
404#if defined(__sparc__)
405
406/*
407 *  Word indices within a jmp_buf structure
408 */
409 
410#ifdef RTEMS_NEWLIB
411#define ADDR_ADJ_OFFSET -8
412#define SP_OFF    0
413#define RP_OFF    1
414#define FP_OFF    2
415#endif
416
417#ifdef RTEMS_UNIXLIB
418#define ADDR_ADJ_OFFSET 0
419#define G0_OFF    0
420#define SP_OFF    1
421#define RP_OFF    2   
422#define FP_OFF    3
423#define I7_OFF    4
424#endif
425
426#endif
427
428/*
429 * Contexts
430 *
431 *  Generally there are 2 types of context to save.
432 *     1. Interrupt registers to save
433 *     2. Task level registers to save
434 *
435 *  This means we have the following 3 context items:
436 *     1. task level context stuff::  Context_Control
437 *     2. floating point task stuff:: Context_Control_fp
438 *     3. special interrupt level context :: Context_Control_interrupt
439 *
440 *  On some processors, it is cost-effective to save only the callee
441 *  preserved registers during a task context switch.  This means
442 *  that the ISR code needs to save those registers which do not
443 *  persist across function calls.  It is not mandatory to make this
444 *  distinctions between the caller/callee saves registers for the
445 *  purpose of minimizing context saved during task switch and on interrupts.
446 *  If the cost of saving extra registers is minimal, simplicity is the
447 *  choice.  Save the same context on interrupt entry as for tasks in
448 *  this case.
449 *
450 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
451 *  care should be used in designing the context area.
452 *
453 *  On some CPUs with hardware floating point support, the Context_Control_fp
454 *  structure will not be used or it simply consist of an array of a
455 *  fixed number of bytes.   This is done when the floating point context
456 *  is dumped by a "FP save context" type instruction and the format
457 *  is not really defined by the CPU.  In this case, there is no need
458 *  to figure out the exact format -- only the size.  Of course, although
459 *  this is enough information for RTEMS, it is probably not enough for
460 *  a debugger such as gdb.  But that is another problem.
461 */
462
463/*
464 *  This is really just the area for the following fields.
465 *
466 *    jmp_buf    regs;
467 *    uint32_t   isr_level;
468 *
469 *  Doing it this way avoids conflicts between the native stuff and the
470 *  RTEMS stuff.
471 *
472 *  NOTE:
473 *      hpux9 setjmp is optimized for the case where the setjmp buffer
474 *      is 8 byte aligned.  In a RISC world, this seems likely to enable
475 *      8 byte copies, especially for the float registers.
476 *      So we always align them on 8 byte boundaries.
477 */
478
479#ifdef __GNUC__
480#define CONTEXT_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (8)))
481#else
482#define CONTEXT_STRUCTURE_ALIGNMENT
483#endif
484
485typedef struct {
486  char      Area[ SIZEOF_CPU_CONTEXT ] CONTEXT_STRUCTURE_ALIGNMENT;
487} Context_Control;
488
489typedef struct {
490} Context_Control_fp;
491
492typedef struct {
493} CPU_Interrupt_frame;
494
495
496/*
497 *  The following table contains the information required to configure
498 *  the UNIX Simulator specific parameters.
499 */
500
501typedef struct {
502  void       (*pretasking_hook)( void );
503  void       (*predriver_hook)( void );
504  void       (*postdriver_hook)( void );
505  void       (*idle_task)( void );
506  boolean      do_zero_of_workspace;
507  uint32_t     idle_task_stack_size;
508  uint32_t     interrupt_stack_size;
509  uint32_t     extra_mpci_receive_server_stack;
510  void *     (*stack_allocate_hook)( uint32_t   );
511  void       (*stack_free_hook)( void* );
512  /* end of required fields */
513}   rtems_cpu_table;
514
515/*
516 *  Macros to access required entires in the CPU Table are in
517 *  the file rtems/system.h.
518 */
519
520/*
521 *  Macros to access UNIX specific additions to the CPU Table
522 */
523
524/* There are no CPU specific additions to the CPU Table for this port. */
525
526/*
527 *  This variable is optional.  It is used on CPUs on which it is difficult
528 *  to generate an "uninitialized" FP context.  It is filled in by
529 *  _CPU_Initialize and copied into the task's FP context area during
530 *  _CPU_Context_Initialize.
531 */
532
533SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
534
535/*
536 *  On some CPUs, RTEMS supports a software managed interrupt stack.
537 *  This stack is allocated by the Interrupt Manager and the switch
538 *  is performed in _ISR_Handler.  These variables contain pointers
539 *  to the lowest and highest addresses in the chunk of memory allocated
540 *  for the interrupt stack.  Since it is unknown whether the stack
541 *  grows up or down (in general), this give the CPU dependent
542 *  code the option of picking the version it wants to use.
543 *
544 *  NOTE: These two variables are required if the macro
545 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
546 */
547
548SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
549SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
550
551/*
552 *  With some compilation systems, it is difficult if not impossible to
553 *  call a high-level language routine from assembly language.  This
554 *  is especially true of commercial Ada compilers and name mangling
555 *  C++ ones.  This variable can be optionally defined by the CPU porter
556 *  and contains the address of the routine _Thread_Dispatch.  This
557 *  can make it easier to invoke that routine at the end of the interrupt
558 *  sequence (if a dispatch is necessary).
559 */
560
561SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
562
563/*
564 *  Nothing prevents the porter from declaring more CPU specific variables.
565 */
566
567/* XXX: if needed, put more variables here */
568
569/*
570 *  The size of the floating point context area.  On some CPUs this
571 *  will not be a "sizeof" because the format of the floating point
572 *  area is not defined -- only the size is.  This is usually on
573 *  CPUs with a "floating point save context" instruction.
574 */
575
576#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
577
578/*
579 * The size of a frame on the stack
580 */
581
582#if defined(__hppa__)
583#define CPU_FRAME_SIZE  (32 * 4)
584#elif defined(__sparc__)
585#define CPU_FRAME_SIZE  (112)   /* based on disassembled test code */
586#elif defined(__i386__)
587#define CPU_FRAME_SIZE  (24)  /* return address, sp, and bp pushed plus fudge */
588#else
589#error "Unknown CPU!!!"
590#endif
591
592/*
593 *  Amount of extra stack (above minimum stack size) required by
594 *  MPCI receive server thread.  Remember that in a multiprocessor
595 *  system this thread must exist and be able to process all directives.
596 */
597
598#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
599
600/*
601 *  This defines the number of entries in the ISR_Vector_table managed
602 *  by RTEMS.
603 */
604
605#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
606#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
607
608/*
609 *  This is defined if the port has a special way to report the ISR nesting
610 *  level.  Most ports maintain the variable _ISR_Nest_level.
611 */
612
613#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
614
615/*
616 *  Should be large enough to run all RTEMS tests.  This insures
617 *  that a "reasonable" small application should not have any problems.
618 */
619
620#define CPU_STACK_MINIMUM_SIZE          (16 * 1024)
621
622/*
623 *  CPU's worst alignment requirement for data types on a byte boundary.  This
624 *  alignment does not take into account the requirements for the stack.
625 */
626
627#define CPU_ALIGNMENT              8
628
629/*
630 *  This number corresponds to the byte alignment requirement for the
631 *  heap handler.  This alignment requirement may be stricter than that
632 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
633 *  common for the heap to follow the same alignment requirement as
634 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
635 *  then this should be set to CPU_ALIGNMENT.
636 *
637 *  NOTE:  This does not have to be a power of 2.  It does have to
638 *         be greater or equal to than CPU_ALIGNMENT.
639 */
640
641#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
642
643/*
644 *  This number corresponds to the byte alignment requirement for memory
645 *  buffers allocated by the partition manager.  This alignment requirement
646 *  may be stricter than that for the data types alignment specified by
647 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
648 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
649 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
650 *
651 *  NOTE:  This does not have to be a power of 2.  It does have to
652 *         be greater or equal to than CPU_ALIGNMENT.
653 */
654
655#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
656
657/*
658 *  This number corresponds to the byte alignment requirement for the
659 *  stack.  This alignment requirement may be stricter than that for the
660 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
661 *  is strict enough for the stack, then this should be set to 0.
662 *
663 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
664 */
665
666#define CPU_STACK_ALIGNMENT        64
667
668/*
669 *  ISR handler macros
670 */
671
672/*
673 *  Support routine to initialize the RTEMS vector table after it is allocated.
674 */
675
676void _CPU_Initialize_vectors(void);
677
678/*
679 *  Disable all interrupts for an RTEMS critical section.  The previous
680 *  level is returned in _level.
681 */
682
683extern uint32_t   _CPU_ISR_Disable_support(void);
684
685#define _CPU_ISR_Disable( _level ) \
686    do { \
687      (_level) = _CPU_ISR_Disable_support(); \
688    } while ( 0 )
689
690/*
691 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
692 *  This indicates the end of an RTEMS critical section.  The parameter
693 *  _level is not modified.
694 */
695
696void _CPU_ISR_Enable(uint32_t   level);
697
698/*
699 *  This temporarily restores the interrupt to _level before immediately
700 *  disabling them again.  This is used to divide long RTEMS critical
701 *  sections into two or more parts.  The parameter _level is not
702 * modified.
703 */
704
705#define _CPU_ISR_Flash( _level ) \
706  do { \
707      register uint32_t   _ignored = 0; \
708      _CPU_ISR_Enable( (_level) ); \
709      _CPU_ISR_Disable( _ignored ); \
710  } while ( 0 )
711
712/*
713 *  Map interrupt level in task mode onto the hardware that the CPU
714 *  actually provides.  Currently, interrupt levels which do not
715 *  map onto the CPU in a generic fashion are undefined.  Someday,
716 *  it would be nice if these were "mapped" by the application
717 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
718 *  8 - 255 would be available for bsp/application specific meaning.
719 *  This could be used to manage a programmable interrupt controller
720 *  via the rtems_task_mode directive.
721 */
722
723#define _CPU_ISR_Set_level( new_level ) \
724  { \
725    if ( new_level == 0 ) _CPU_ISR_Enable( 0 ); \
726    else                  _CPU_ISR_Enable( 1 ); \
727  }
728
729uint32_t   _CPU_ISR_Get_level( void );
730
731/* end of ISR handler macros */
732
733/* Context handler macros */
734
735/*
736 *  This routine is responsible for somehow restarting the currently
737 *  executing task.  If you are lucky, then all that is necessary
738 *  is restoring the context.  Otherwise, there will need to be
739 *  a special assembly routine which does something special in this
740 *  case.  Context_Restore should work most of the time.  It will
741 *  not work if restarting self conflicts with the stack frame
742 *  assumptions of restoring a context.
743 */
744
745#define _CPU_Context_Restart_self( _the_context ) \
746   _CPU_Context_restore( (_the_context) );
747
748/*
749 *  The purpose of this macro is to allow the initial pointer into
750 *  a floating point context area (used to save the floating point
751 *  context) to be at an arbitrary place in the floating point
752 *  context area.
753 *
754 *  This is necessary because some FP units are designed to have
755 *  their context saved as a stack which grows into lower addresses.
756 *  Other FP units can be saved by simply moving registers into offsets
757 *  from the base of the context area.  Finally some FP units provide
758 *  a "dump context" instruction which could fill in from high to low
759 *  or low to high based on the whim of the CPU designers.
760 */
761
762#define _CPU_Context_Fp_start( _base, _offset ) \
763   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
764
765/*
766 *  This routine initializes the FP context area passed to it to.
767 *  There are a few standard ways in which to initialize the
768 *  floating point context.  The code included for this macro assumes
769 *  that this is a CPU in which a "initial" FP context was saved into
770 *  _CPU_Null_fp_context and it simply copies it to the destination
771 *  context passed to it.
772 *
773 *  Other models include (1) not doing anything, and (2) putting
774 *  a "null FP status word" in the correct place in the FP context.
775 */
776
777#define _CPU_Context_Initialize_fp( _destination ) \
778  { \
779   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
780  }
781
782#define _CPU_Context_save_fp( _fp_context ) \
783    _CPU_Save_float_context( *(Context_Control_fp **)(_fp_context))
784
785#define _CPU_Context_restore_fp( _fp_context ) \
786    _CPU_Restore_float_context( *(Context_Control_fp **)(_fp_context))
787
788extern void _CPU_Context_Initialize(
789  Context_Control  *_the_context,
790  uint32_t         *_stack_base,
791  uint32_t          _size,
792  uint32_t          _new_level,
793  void             *_entry_point,
794  boolean           _is_fp
795);
796
797/* end of Context handler macros */
798
799/* Fatal Error manager macros */
800
801/*
802 *  This routine copies _error into a known place -- typically a stack
803 *  location or a register, optionally disables interrupts, and
804 *  halts/stops the CPU.
805 */
806
807#define _CPU_Fatal_halt( _error ) \
808    _CPU_Fatal_error( _error )
809
810/* end of Fatal Error manager macros */
811
812/* Bitfield handler macros */
813
814/*
815 *  This routine sets _output to the bit number of the first bit
816 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
817 *  This type may be either 16 or 32 bits wide although only the 16
818 *  least significant bits will be used.
819 *
820 *  There are a number of variables in using a "find first bit" type
821 *  instruction.
822 *
823 *    (1) What happens when run on a value of zero?
824 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
825 *    (3) The numbering may be zero or one based.
826 *    (4) The "find first bit" instruction may search from MSB or LSB.
827 *
828 *  RTEMS guarantees that (1) will never happen so it is not a concern.
829 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
830 *  _CPU_Priority_bits_index().  These three form a set of routines
831 *  which must logically operate together.  Bits in the _value are
832 *  set and cleared based on masks built by _CPU_Priority_mask().
833 *  The basic major and minor values calculated by _Priority_Major()
834 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
835 *  to properly range between the values returned by the "find first bit"
836 *  instruction.  This makes it possible for _Priority_Get_highest() to
837 *  calculate the major and directly index into the minor table.
838 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
839 *  is the first bit found.
840 *
841 *  This entire "find first bit" and mapping process depends heavily
842 *  on the manner in which a priority is broken into a major and minor
843 *  components with the major being the 4 MSB of a priority and minor
844 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
845 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
846 *  to the lowest priority.
847 *
848 *  If your CPU does not have a "find first bit" instruction, then
849 *  there are ways to make do without it.  Here are a handful of ways
850 *  to implement this in software:
851 *
852 *    - a series of 16 bit test instructions
853 *    - a "binary search using if's"
854 *    - _number = 0
855 *      if _value > 0x00ff
856 *        _value >>=8
857 *        _number = 8;
858 *
859 *      if _value > 0x0000f
860 *        _value >=8
861 *        _number += 4
862 *
863 *      _number += bit_set_table[ _value ]
864 *
865 *    where bit_set_table[ 16 ] has values which indicate the first
866 *      bit set
867 */
868
869/*
870 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
871 *  dependencies on either a native bitscan instruction or an ffs() in the
872 *  C library.
873 */
874 
875#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
876#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
877 
878/* end of Bitfield handler macros */
879 
880/* Priority handler handler macros */
881 
882/*
883 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
884 *  dependencies on either a native bitscan instruction or an ffs() in the
885 *  C library.
886 */
887 
888/* end of Priority handler macros */
889
890/* functions */
891
892/*
893 *  _CPU_Initialize
894 *
895 *  This routine performs CPU dependent initialization.
896 */
897
898void _CPU_Initialize(
899  rtems_cpu_table  *cpu_table,
900  void      (*thread_dispatch)
901);
902
903/*
904 *  _CPU_ISR_install_raw_handler
905 *
906 *  This routine installs a "raw" interrupt handler directly into the
907 *  processor's vector table.
908 */
909 
910void _CPU_ISR_install_raw_handler(
911  uint32_t    vector,
912  proc_ptr    new_handler,
913  proc_ptr   *old_handler
914);
915
916/*
917 *  _CPU_ISR_install_vector
918 *
919 *  This routine installs an interrupt vector.
920 */
921
922void _CPU_ISR_install_vector(
923  uint32_t    vector,
924  proc_ptr    new_handler,
925  proc_ptr   *old_handler
926);
927
928/*
929 *  _CPU_Install_interrupt_stack
930 *
931 *  This routine installs the hardware interrupt stack pointer.
932 *
933 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
934 *         is TRUE.
935 */
936
937void _CPU_Install_interrupt_stack( void );
938
939/*
940 *  _CPU_Thread_Idle_body
941 *
942 *  This routine is the CPU dependent IDLE thread body.
943 *
944 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
945 *         is TRUE.
946 */
947
948void _CPU_Thread_Idle_body( void );
949
950/*
951 *  _CPU_Context_switch
952 *
953 *  This routine switches from the run context to the heir context.
954 */
955
956void _CPU_Context_switch(
957  Context_Control  *run,
958  Context_Control  *heir
959);
960
961/*
962 *  _CPU_Context_restore
963 *
964 *  This routine is generally used only to restart self in an
965 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
966 *
967 *  NOTE: May be unnecessary to reload some registers.
968 */
969
970void _CPU_Context_restore(
971  Context_Control *new_context
972);
973
974/*
975 *  _CPU_Save_float_context
976 *
977 *  This routine saves the floating point context passed to it.
978 */
979
980void _CPU_Save_float_context(
981  Context_Control_fp *fp_context_ptr
982);
983
984/*
985 *  _CPU_Restore_float_context
986 *
987 *  This routine restores the floating point context passed to it.
988 */
989
990void _CPU_Restore_float_context(
991  Context_Control_fp *fp_context_ptr
992);
993
994
995void _CPU_ISR_Set_signal_level(
996  uint32_t   level
997);
998
999void _CPU_Fatal_error(
1000  uint32_t   _error
1001);
1002
1003/*  The following routine swaps the endian format of an unsigned int.
1004 *  It must be static because it is referenced indirectly.
1005 *
1006 *  This version will work on any processor, but if there is a better
1007 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1008 *
1009 *     swap least significant two bytes with 16-bit rotate
1010 *     swap upper and lower 16-bits
1011 *     swap most significant two bytes with 16-bit rotate
1012 *
1013 *  Some CPUs have special instructions which swap a 32-bit quantity in
1014 *  a single instruction (e.g. i486).  It is probably best to avoid
1015 *  an "endian swapping control bit" in the CPU.  One good reason is
1016 *  that interrupts would probably have to be disabled to insure that
1017 *  an interrupt does not try to access the same "chunk" with the wrong
1018 *  endian.  Another good reason is that on some CPUs, the endian bit
1019 *  endianness for ALL fetches -- both code and data -- so the code
1020 *  will be fetched incorrectly.
1021 */
1022 
1023static inline unsigned int CPU_swap_u32(
1024  unsigned int value
1025)
1026{
1027  uint32_t   byte1, byte2, byte3, byte4, swapped;
1028 
1029  byte4 = (value >> 24) & 0xff;
1030  byte3 = (value >> 16) & 0xff;
1031  byte2 = (value >> 8)  & 0xff;
1032  byte1 =  value        & 0xff;
1033 
1034  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1035  return( swapped );
1036}
1037
1038#define CPU_swap_u16( value ) \
1039  (((value&0xff) << 8) | ((value >> 8)&0xff))
1040
1041/*
1042 *  Special Purpose Routines to hide the use of UNIX system calls.
1043 */
1044
1045
1046/*
1047 *  Pointer to a sync io  Handler
1048 */
1049
1050typedef void ( *rtems_sync_io_handler )(
1051  int fd,
1052  boolean read,
1053  boolean wrtie,
1054  boolean except
1055);
1056
1057/* returns -1 if fd to large, 0 is successful */
1058int _CPU_Set_sync_io_handler(
1059  int fd,
1060  boolean read,
1061  boolean write,
1062  boolean except,
1063  rtems_sync_io_handler handler
1064);
1065
1066/* returns -1 if fd to large, o if successful */
1067int _CPU_Clear_sync_io_handler(
1068  int fd
1069);
1070
1071int _CPU_Get_clock_vector( void );
1072
1073void _CPU_Start_clock(
1074  int microseconds
1075);
1076
1077void _CPU_Stop_clock( void );
1078
1079#if defined(RTEMS_MULTIPROCESSING)
1080
1081void _CPU_SHM_Init(
1082  uint32_t     maximum_nodes,
1083  boolean      is_master_node,
1084  void       **shm_address,
1085  uint32_t    *shm_length
1086);
1087
1088int _CPU_Get_pid( void );
1089 
1090int _CPU_SHM_Get_vector( void );
1091 
1092void _CPU_SHM_Send_interrupt(
1093  int pid,
1094  int vector
1095);
1096 
1097void _CPU_SHM_Lock(
1098  int semaphore
1099);
1100
1101void _CPU_SHM_Unlock(
1102  int semaphore
1103);
1104#endif
1105
1106#ifdef __cplusplus
1107}
1108#endif
1109
1110#endif
Note: See TracBrowser for help on using the repository browser.