source: rtems/cpukit/score/cpu/sparc64/rtems/score/cpu.h @ 84e6f15

5
Last change on this file since 84e6f15 was 84e6f15, checked in by Sebastian Huber <sebastian.huber@…>, on 11/10/16 at 11:02:28

score: Robust thread dispatch

On SMP configurations, it is a fatal error to call blocking operating
system with interrupts disabled, since this prevents delivery of
inter-processor interrupts. This could lead to executing threads which
are not allowed to execute resulting in undefined behaviour.

The ARM Cortex-M port has a similar problem, since the interrupt state
is not a part of the thread context.

Update #2811.

  • Property mode set to 100644
File size: 30.3 KB
Line 
1/**
2 * @file
3 *
4 * @brief SPARC64 CPU Department Source
5 *
6 * This include file contains information pertaining to the port of
7 * the executive to the SPARC64 processor.
8 */
9
10/*
11 *
12 *
13 *  COPYRIGHT (c) 1989-2006. On-Line Applications Research Corporation (OAR).
14 *
15 *  This file is based on the SPARC cpu.h file. Modifications are made
16 *  to support the SPARC64 processor.
17 *  COPYRIGHT (c) 2010. Gedare Bloom.
18 *
19 *  The license and distribution terms for this file may be
20 *  found in the file LICENSE in this distribution or at
21 *  http://www.rtems.org/license/LICENSE.
22 */
23
24#ifndef _RTEMS_SCORE_CPU_H
25#define _RTEMS_SCORE_CPU_H
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31#include <rtems/score/types.h>
32#include <rtems/score/sparc64.h>
33
34/* conditional compilation parameters */
35
36/*
37 *  Does the executive manage a dedicated interrupt stack in software?
38 *
39 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
40 *  If FALSE, nothing is done.
41 *
42 *  The SPARC does not have a dedicated HW interrupt stack and one has
43 *  been implemented in SW.
44 */
45
46#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
47
48/*
49 *  Does the CPU follow the simple vectored interrupt model?
50 *
51 *  If TRUE, then RTEMS allocates the vector table it internally manages.
52 *  If FALSE, then the BSP is assumed to allocate and manage the vector
53 *  table
54 *
55 *  SPARC Specific Information:
56 *
57 *  XXX document implementation including references if appropriate
58 */
59#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
60
61/*
62 *  Does this CPU have hardware support for a dedicated interrupt stack?
63 *
64 *  If TRUE, then it must be installed during initialization.
65 *  If FALSE, then no installation is performed.
66 *
67 *  The SPARC does not have a dedicated HW interrupt stack.
68 */
69
70#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
71
72/*
73 *  Do we allocate a dedicated interrupt stack in the Interrupt Manager?
74 *
75 *  If TRUE, then the memory is allocated during initialization.
76 *  If FALSE, then the memory is allocated during initialization.
77 */
78
79#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
80
81/*
82 *  Does the RTEMS invoke the user's ISR with the vector number and
83 *  a pointer to the saved interrupt frame (1) or just the vector
84 *  number (0)?
85 */
86
87#define CPU_ISR_PASSES_FRAME_POINTER FALSE
88
89/*
90 *  Does the CPU have hardware floating point?
91 *
92 *  If TRUE, then the FLOATING_POINT task attribute is supported.
93 *  If FALSE, then the FLOATING_POINT task attribute is ignored.
94 */
95
96#if ( SPARC_HAS_FPU == 1 )
97#define CPU_HARDWARE_FP     TRUE
98#else
99#define CPU_HARDWARE_FP     FALSE
100#endif
101#define CPU_SOFTWARE_FP     FALSE
102
103/*
104 *  Are all tasks FLOATING_POINT tasks implicitly?
105 *
106 *  If TRUE, then the FLOATING_POINT task attribute is assumed.
107 *  If FALSE, then the FLOATING_POINT task attribute is followed.
108 */
109
110#define CPU_ALL_TASKS_ARE_FP     FALSE
111
112/*
113 *  Should the IDLE task have a floating point context?
114 *
115 *  If TRUE, then the IDLE task is created as a FLOATING_POINT task
116 *  and it has a floating point context which is switched in and out.
117 *  If FALSE, then the IDLE task does not have a floating point context.
118 */
119
120#define CPU_IDLE_TASK_IS_FP      FALSE
121
122/*
123 *  Should the saving of the floating point registers be deferred
124 *  until a context switch is made to another different floating point
125 *  task?
126 *
127 *  If TRUE, then the floating point context will not be stored until
128 *  necessary.  It will remain in the floating point registers and not
129 *  disturned until another floating point task is switched to.
130 *
131 *  If FALSE, then the floating point context is saved when a floating
132 *  point task is switched out and restored when the next floating point
133 *  task is restored.  The state of the floating point registers between
134 *  those two operations is not specified.
135 */
136
137#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
138
139#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
140
141/*
142 *  Does this port provide a CPU dependent IDLE task implementation?
143 *
144 *  If TRUE, then the routine _CPU_Thread_Idle_body
145 *  must be provided and is the default IDLE thread body instead of
146 *  _CPU_Thread_Idle_body.
147 *
148 *  If FALSE, then use the generic IDLE thread body if the BSP does
149 *  not provide one.
150 */
151
152#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
153
154/*
155 *  Does the stack grow up (toward higher addresses) or down
156 *  (toward lower addresses)?
157 *
158 *  If TRUE, then the grows upward.
159 *  If FALSE, then the grows toward smaller addresses.
160 *
161 *  The stack grows to lower addresses on the SPARC.
162 */
163
164#define CPU_STACK_GROWS_UP               FALSE
165
166/* FIXME: Is this the right value? */
167#define CPU_CACHE_LINE_BYTES 32
168
169/*
170 *  The following is the variable attribute used to force alignment
171 *  of critical data structures.  On some processors it may make
172 *  sense to have these aligned on tighter boundaries than
173 *  the minimum requirements of the compiler in order to have as
174 *  much of the critical data area as possible in a cache line.
175 *
176 *  The SPARC does not appear to have particularly strict alignment
177 *  requirements.  This value (16) was chosen to take advantages of caches.
178 *
179 *  SPARC 64 requirements on floating point alignment is at least 8,
180 *  and is 16 if quad-word fp instructions are available (e.g. LDQF).
181 */
182
183#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( 16 )
184
185/*
186 *  Define what is required to specify how the network to host conversion
187 *  routines are handled.
188 */
189
190#define CPU_BIG_ENDIAN                           TRUE
191#define CPU_LITTLE_ENDIAN                        FALSE
192
193/*
194 *  The following defines the number of bits actually used in the
195 *  interrupt field of the task mode.  How those bits map to the
196 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
197 *
198 *  The SPARC v9 has 16 interrupt levels in the PIL field of the PSR.
199 */
200
201#define CPU_MODES_INTERRUPT_MASK   0x0000000F
202
203#define CPU_MAXIMUM_PROCESSORS 32
204
205/*
206 *  This structure represents the organization of the minimum stack frame
207 *  for the SPARC.  More framing information is required in certain situaions
208 *  such as when there are a large number of out parameters or when the callee
209 *  must save floating point registers.
210 */
211
212#ifndef ASM
213
214typedef struct {
215  uint64_t    l0;
216  uint64_t    l1;
217  uint64_t    l2;
218  uint64_t    l3;
219  uint64_t    l4;
220  uint64_t    l5;
221  uint64_t    l6;
222  uint64_t    l7;
223  uint64_t    i0;
224  uint64_t    i1;
225  uint64_t    i2;
226  uint64_t    i3;
227  uint64_t    i4;
228  uint64_t    i5;
229  uint64_t    i6_fp;
230  uint64_t    i7;
231  void       *structure_return_address;
232  /*
233   *  The following are for the callee to save the register arguments in
234   *  should this be necessary.
235   */
236  uint64_t    saved_arg0;
237  uint64_t    saved_arg1;
238  uint64_t    saved_arg2;
239  uint64_t    saved_arg3;
240  uint64_t    saved_arg4;
241  uint64_t    saved_arg5;
242  uint64_t    pad0;
243} SPARC64_Minimum_stack_frame;
244
245#endif /* !ASM */
246
247#define CPU_STACK_FRAME_L0_OFFSET             0x00
248#define CPU_STACK_FRAME_L1_OFFSET             0x08
249#define CPU_STACK_FRAME_L2_OFFSET             0x10
250#define CPU_STACK_FRAME_L3_OFFSET             0x18
251#define CPU_STACK_FRAME_L4_OFFSET             0x20
252#define CPU_STACK_FRAME_L5_OFFSET             0x28
253#define CPU_STACK_FRAME_L6_OFFSET             0x30
254#define CPU_STACK_FRAME_L7_OFFSET             0x38
255#define CPU_STACK_FRAME_I0_OFFSET             0x40
256#define CPU_STACK_FRAME_I1_OFFSET             0x48
257#define CPU_STACK_FRAME_I2_OFFSET             0x50
258#define CPU_STACK_FRAME_I3_OFFSET             0x58
259#define CPU_STACK_FRAME_I4_OFFSET             0x60
260#define CPU_STACK_FRAME_I5_OFFSET             0x68
261#define CPU_STACK_FRAME_I6_FP_OFFSET          0x70
262#define CPU_STACK_FRAME_I7_OFFSET             0x78
263#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x80
264#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x88
265#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x90
266#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x98
267#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0xA0
268#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0xA8
269#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0xB0
270#define CPU_STACK_FRAME_PAD0_OFFSET           0xB8
271
272#define SPARC64_MINIMUM_STACK_FRAME_SIZE          0xC0
273
274/*
275 * Contexts
276 *
277 *  Generally there are 2 types of context to save.
278 *     1. Interrupt registers to save
279 *     2. Task level registers to save
280 *
281 *  This means we have the following 3 context items:
282 *     1. task level context stuff::  Context_Control
283 *     2. floating point task stuff:: Context_Control_fp
284 *     3. special interrupt level context :: Context_Control_interrupt
285 *
286 *  On the SPARC, we are relatively conservative in that we save most
287 *  of the CPU state in the context area.  The ET (enable trap) bit and
288 *  the CWP (current window pointer) fields of the PSR are considered
289 *  system wide resources and are not maintained on a per-thread basis.
290 */
291
292#ifndef ASM
293
294typedef struct {
295    uint64_t   g1;
296    uint64_t   g2;
297    uint64_t   g3;
298    uint64_t   g4;
299    uint64_t   g5;
300    uint64_t   g6;
301    uint64_t   g7;
302
303    uint64_t   l0;
304    uint64_t   l1;
305    uint64_t   l2;
306    uint64_t   l3;
307    uint64_t   l4;
308    uint64_t   l5;
309    uint64_t   l6;
310    uint64_t   l7;
311
312    uint64_t   i0;
313    uint64_t   i1;
314    uint64_t   i2;
315    uint64_t   i3;
316    uint64_t   i4;
317    uint64_t   i5;
318    uint64_t   i6_fp;
319    uint64_t   i7;
320
321    uint64_t   o0;
322    uint64_t   o1;
323    uint64_t   o2;
324    uint64_t   o3;
325    uint64_t   o4;
326    uint64_t   o5;
327    uint64_t   o6_sp;
328    uint64_t   o7;
329
330    uint32_t   isr_dispatch_disable;
331    uint32_t   pad;
332} Context_Control;
333
334#define _CPU_Context_Get_SP( _context ) \
335  (_context)->o6_sp
336
337#endif /* ASM */
338
339/*
340 *  Offsets of fields with Context_Control for assembly routines.
341 */
342
343#define G1_OFFSET    0x00
344#define G2_OFFSET    0x08
345#define G3_OFFSET    0x10
346#define G4_OFFSET    0x18
347#define G5_OFFSET    0x20
348#define G6_OFFSET    0x28
349#define G7_OFFSET    0x30
350
351#define L0_OFFSET    0x38
352#define L1_OFFSET    0x40
353#define L2_OFFSET    0x48
354#define L3_OFFSET    0x50
355#define L4_OFFSET    0x58
356#define L5_OFFSET    0x60
357#define L6_OFFSET    0x68
358#define L7_OFFSET    0x70
359
360#define I0_OFFSET    0x78
361#define I1_OFFSET    0x80
362#define I2_OFFSET    0x88
363#define I3_OFFSET    0x90
364#define I4_OFFSET    0x98
365#define I5_OFFSET    0xA0
366#define I6_FP_OFFSET    0xA8
367#define I7_OFFSET 0xB0
368
369#define O0_OFFSET    0xB8
370#define O1_OFFSET    0xC0
371#define O2_OFFSET    0xC8
372#define O3_OFFSET    0xD0
373#define O4_OFFSET    0xD8
374#define O5_OFFSET    0xE0
375#define O6_SP_OFFSET    0xE8
376#define O7_OFFSET 0xF0
377
378#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0xF8
379#define ISR_PAD_OFFSET 0xFC
380
381/*
382 *  The floating point context area.
383 */
384
385#ifndef ASM
386
387typedef struct {
388    double      f0;     /* f0-f1 */
389    double      f2;     /* f2-f3 */
390    double      f4;     /* f4-f5 */
391    double      f6;     /* f6-f7 */
392    double      f8;     /* f8-f9 */
393    double      f10;    /* f10-f11 */
394    double      f12;    /* f12-f13 */
395    double      f14;    /* f14-f15 */
396    double      f16;    /* f16-f17 */
397    double      f18;    /* f18-f19 */
398    double      f20;    /* f20-f21 */
399    double      f22;    /* f22-f23 */
400    double      f24;    /* f24-f25 */
401    double      f26;    /* f26-f27 */
402    double      f28;    /* f28-f29 */
403    double      f30;    /* f30-f31 */
404    double      f32;
405    double      f34;
406    double      f36;
407    double      f38;
408    double      f40;
409    double      f42;
410    double      f44;
411    double      f46;
412    double      f48;
413    double      f50;
414    double      f52;
415    double      f54;
416    double      f56;
417    double      f58;
418    double      f60;
419    double      f62;
420    uint64_t    fsr;
421} Context_Control_fp;
422
423#endif /* !ASM */
424
425/*
426 *  Offsets of fields with Context_Control_fp for assembly routines.
427 */
428
429#define FO_OFFSET    0x00
430#define F2_OFFSET    0x08
431#define F4_OFFSET    0x10
432#define F6_OFFSET    0x18
433#define F8_OFFSET    0x20
434#define F1O_OFFSET   0x28
435#define F12_OFFSET   0x30
436#define F14_OFFSET   0x38
437#define F16_OFFSET   0x40
438#define F18_OFFSET   0x48
439#define F2O_OFFSET   0x50
440#define F22_OFFSET   0x58
441#define F24_OFFSET   0x60
442#define F26_OFFSET   0x68
443#define F28_OFFSET   0x70
444#define F3O_OFFSET   0x78
445#define F32_OFFSET   0x80
446#define F34_OFFSET   0x88
447#define F36_OFFSET   0x90
448#define F38_OFFSET   0x98
449#define F4O_OFFSET   0xA0
450#define F42_OFFSET   0xA8
451#define F44_OFFSET   0xB0
452#define F46_OFFSET   0xB8
453#define F48_OFFSET   0xC0
454#define F5O_OFFSET   0xC8
455#define F52_OFFSET   0xD0
456#define F54_OFFSET   0xD8
457#define F56_OFFSET   0xE0
458#define F58_OFFSET   0xE8
459#define F6O_OFFSET   0xF0
460#define F62_OFFSET   0xF8
461#define FSR_OFFSET   0x100
462
463#define CONTEXT_CONTROL_FP_SIZE 0x108
464
465#ifndef ASM
466
467/*
468 *  Context saved on stack for an interrupt.
469 *
470 *  NOTE:  The tstate, tpc, and tnpc are saved in this structure
471 *         to allow resetting the TL while still being able to return
472 *         from a trap later.  The PIL is saved because
473 *         if this is an external interrupt, we will mask lower
474 *         priority interrupts until finishing. Even though the y register
475 *         is deprecated, gcc still uses it.
476 */
477
478typedef struct {
479  SPARC64_Minimum_stack_frame Stack_frame;
480  uint64_t                 tstate;
481  uint64_t                 tpc;
482  uint64_t                 tnpc;
483  uint64_t                 pil;
484  uint64_t                 y;
485  uint64_t                 g1;
486  uint64_t                 g2;
487  uint64_t                 g3;
488  uint64_t                 g4;
489  uint64_t                 g5;
490  uint64_t                 g6;
491  uint64_t                 g7;
492  uint64_t                 o0;
493  uint64_t                 o1;
494  uint64_t                 o2;
495  uint64_t                 o3;
496  uint64_t                 o4;
497  uint64_t                 o5;
498  uint64_t                 o6_sp;
499  uint64_t                 o7;
500  uint64_t                 tvec;
501} CPU_Interrupt_frame;
502
503#endif /* ASM */
504
505/*
506 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
507 */
508
509#define ISF_TSTATE_OFFSET      SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x00
510#define ISF_TPC_OFFSET         SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x08
511#define ISF_TNPC_OFFSET        SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x10
512#define ISF_PIL_OFFSET         SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x18
513#define ISF_Y_OFFSET           SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x20
514#define ISF_G1_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x28
515#define ISF_G2_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x30
516#define ISF_G3_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x38
517#define ISF_G4_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x40
518#define ISF_G5_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x48
519#define ISF_G6_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x50
520#define ISF_G7_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x58
521#define ISF_O0_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x60
522#define ISF_O1_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x68
523#define ISF_O2_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x70
524#define ISF_O3_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x78
525#define ISF_O4_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x80
526#define ISF_O5_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x88
527#define ISF_O6_SP_OFFSET       SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x90
528#define ISF_O7_OFFSET          SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x98
529#define ISF_TVEC_OFFSET        SPARC64_MINIMUM_STACK_FRAME_SIZE + 0xA0
530
531#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE SPARC64_MINIMUM_STACK_FRAME_SIZE + 0xA8
532#ifndef ASM
533/*
534 *  This variable is contains the initialize context for the FP unit.
535 *  It is filled in by _CPU_Initialize and copied into the task's FP
536 *  context area during _CPU_Context_Initialize.
537 */
538
539extern Context_Control_fp _CPU_Null_fp_context;
540
541/*
542 *  This flag is context switched with each thread.  It indicates
543 *  that THIS thread has an _ISR_Dispatch stack frame on its stack.
544 *  By using this flag, we can avoid nesting more interrupt dispatching
545 *  attempts on a previously interrupted thread's stack.
546 */
547
548extern volatile uint32_t _CPU_ISR_Dispatch_disable;
549
550/*
551 *  The following type defines an entry in the SPARC's trap table.
552 *
553 *  NOTE: The instructions chosen are RTEMS dependent although one is
554 *        obligated to use two of the four instructions to perform a
555 *        long jump.  The other instructions load one register with the
556 *        trap type (a.k.a. vector) and another with the psr.
557 */
558/* For SPARC V9, we must use 6 of these instructions to perform a long
559 * jump, because the _handler value is now 64-bits. We also need to store
560 * temporary values in the global register set at this trap level. Because
561 * the handler runs at TL > 0 with GL > 0, it should be OK to use g2 and g3
562 * to pass parameters to ISR_Handler.
563 *
564 * The instruction sequence is now more like:
565 *      rdpr %tstate, %g4
566 *      setx _handler, %g2, %g3
567 *      jmp %g3+0
568 *      mov _vector, %g2
569 */
570typedef struct {
571  uint32_t     rdpr_tstate_g4;                  /* rdpr  %tstate, %g4        */
572  uint32_t     sethi_of_hh_handler_to_g2;       /* sethi %hh(_handler), %g2  */
573  uint32_t     or_g2_hm_handler_to_g2;          /* or %l3, %hm(_handler), %g2 */
574  uint32_t     sllx_g2_by_32_to_g2;             /* sllx   %g2, 32, %g2 */
575  uint32_t     sethi_of_handler_to_g3;          /* sethi %hi(_handler), %g3  */
576  uint32_t     or_g3_g2_to_g3;                  /* or     %g3, %g2, %g3 */
577  uint32_t     jmp_to_low_of_handler_plus_g3;   /* jmp   %g3 + %lo(_handler) */
578  uint32_t     mov_vector_g2;                   /* mov   _vector, %g2        */
579} CPU_Trap_table_entry;
580
581/*
582 *  This is the set of opcodes for the instructions loaded into a trap
583 *  table entry.  The routine which installs a handler is responsible
584 *  for filling in the fields for the _handler address and the _vector
585 *  trap type.
586 *
587 *  The constants following this structure are masks for the fields which
588 *  must be filled in when the handler is installed.
589 */
590
591extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
592
593/*
594 *  The size of the floating point context area.
595 */
596
597#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
598
599#endif
600
601/*
602 *  Amount of extra stack (above minimum stack size) required by
603 *  MPCI receive server thread.  Remember that in a multiprocessor
604 *  system this thread must exist and be able to process all directives.
605 */
606
607#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
608
609/*
610 *  This defines the number of entries in the ISR_Vector_table managed
611 *  by the executive.
612 *
613 *  On the SPARC, there are really only 256 vectors.  However, the executive
614 *  has no easy, fast, reliable way to determine which traps are synchronous
615 *  and which are asynchronous.  By default, synchronous traps return to the
616 *  instruction which caused the interrupt.  So if you install a software
617 *  trap handler as an executive interrupt handler (which is desirable since
618 *  RTEMS takes care of window and register issues), then the executive needs
619 *  to know that the return address is to the trap rather than the instruction
620 *  following the trap.
621 *
622 *  So vectors 0 through 255 are treated as regular asynchronous traps which
623 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
624 *  by the executive to be synchronous and to require that the return address
625 *  be fudged.
626 *
627 *  If you use this mechanism to install a trap handler which must reexecute
628 *  the instruction which caused the trap, then it should be installed as
629 *  an asynchronous trap.  This will avoid the executive changing the return
630 *  address.
631 */
632/* On SPARC v9, there are 512 vectors. The same philosophy applies to
633 * vector installation and use, we just provide a larger table.
634 */
635#define CPU_INTERRUPT_NUMBER_OF_VECTORS     512
636#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 1023
637
638#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x200
639#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
640#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 512 )
641
642#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 512)
643
644/*
645 *  This is defined if the port has a special way to report the ISR nesting
646 *  level.  Most ports maintain the variable _ISR_Nest_level.
647 */
648
649#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
650
651/*
652 *  Should be large enough to run all tests.  This ensures
653 *  that a "reasonable" small application should not have any problems.
654 *
655 *  This appears to be a fairly generous number for the SPARC since
656 *  represents a call depth of about 20 routines based on the minimum
657 *  stack frame.
658 */
659
660#define CPU_STACK_MINIMUM_SIZE  (1024*8)
661
662#define CPU_SIZEOF_POINTER 8
663
664/*
665 *  CPU's worst alignment requirement for data types on a byte boundary.  This
666 *  alignment does not take into account the requirements for the stack.
667 *
668 *  On the SPARC, this is required for double word loads and stores.
669 *
670 *  Note: quad-word loads/stores need alignment of 16, but currently supported
671 *  architectures do not provide HW implemented quad-word operations.
672 */
673
674#define CPU_ALIGNMENT      8
675
676/*
677 *  This number corresponds to the byte alignment requirement for the
678 *  heap handler.  This alignment requirement may be stricter than that
679 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
680 *  common for the heap to follow the same alignment requirement as
681 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
682 *  then this should be set to CPU_ALIGNMENT.
683 *
684 *  NOTE:  This does not have to be a power of 2.  It does have to
685 *         be greater or equal to than CPU_ALIGNMENT.
686 */
687
688#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
689
690/*
691 *  This number corresponds to the byte alignment requirement for memory
692 *  buffers allocated by the partition manager.  This alignment requirement
693 *  may be stricter than that for the data types alignment specified by
694 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
695 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
696 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
697 *
698 *  NOTE:  This does not have to be a power of 2.  It does have to
699 *         be greater or equal to than CPU_ALIGNMENT.
700 */
701
702#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
703
704/*
705 *  This number corresponds to the byte alignment requirement for the
706 *  stack.  This alignment requirement may be stricter than that for the
707 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
708 *  is strict enough for the stack, then this should be set to 0.
709 *
710 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
711 *
712 *  The alignment restrictions for the SPARC are not that strict but this
713 *  should unsure that the stack is always sufficiently alignment that the
714 *  window overflow, underflow, and flush routines can use double word loads
715 *  and stores.
716 */
717
718#define CPU_STACK_ALIGNMENT        16
719
720#ifndef ASM
721
722/*
723 *  ISR handler macros
724 */
725
726/*
727 *  Support routine to initialize the RTEMS vector table after it is allocated.
728 */
729
730#define _CPU_Initialize_vectors()
731
732/*
733 *  Disable all interrupts for a critical section.  The previous
734 *  level is returned in _level.
735 */
736
737 #define _CPU_ISR_Disable( _level ) \
738  (_level) = sparc_disable_interrupts()
739
740/*
741 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
742 *  This indicates the end of a critical section.  The parameter
743 *  _level is not modified.
744 */
745
746#define _CPU_ISR_Enable( _level ) \
747  sparc_enable_interrupts( _level )
748
749/*
750 *  This temporarily restores the interrupt to _level before immediately
751 *  disabling them again.  This is used to divide long critical
752 *  sections into two or more parts.  The parameter _level is not
753 *  modified.
754 */
755
756#define _CPU_ISR_Flash( _level ) \
757   sparc_flash_interrupts( _level )
758
759RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
760{
761  return ( level & SPARC_PSTATE_IE_MASK ) != 0;
762}
763
764/*
765 *  Map interrupt level in task mode onto the hardware that the CPU
766 *  actually provides.  Currently, interrupt levels which do not
767 *  map onto the CPU in a straight fashion are undefined.
768 */
769
770#define _CPU_ISR_Set_level( _newlevel ) \
771   sparc_enable_interrupts( _newlevel)
772
773uint32_t   _CPU_ISR_Get_level( void );
774
775/* end of ISR handler macros */
776
777/* Context handler macros */
778
779/*
780 *  Initialize the context to a state suitable for starting a
781 *  task after a context restore operation.  Generally, this
782 *  involves:
783 *
784 *     - setting a starting address
785 *     - preparing the stack
786 *     - preparing the stack and frame pointers
787 *     - setting the proper interrupt level in the context
788 *     - initializing the floating point context
789 *
790 *  NOTE:  Implemented as a subroutine for the SPARC port.
791 */
792
793void _CPU_Context_Initialize(
794  Context_Control  *the_context,
795  void         *stack_base,
796  uint32_t          size,
797  uint32_t          new_level,
798  void             *entry_point,
799  bool              is_fp,
800  void             *tls_area
801);
802
803/*
804 *  This macro is invoked from _Thread_Handler to do whatever CPU
805 *  specific magic is required that must be done in the context of
806 *  the thread when it starts.
807 *
808 *  On the SPARC, this is setting the frame pointer so GDB is happy.
809 *  Make GDB stop unwinding at _Thread_Handler, previous register window
810 *  Frame pointer is 0 and calling address must be a function with starting
811 *  with a SAVE instruction. If return address is leaf-function (no SAVE)
812 *  GDB will not look at prev reg window fp.
813 *
814 *  _Thread_Handler is known to start with SAVE.
815 */
816
817#define _CPU_Context_Initialization_at_thread_begin() \
818  do { \
819    __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
820  } while (0)
821
822/*
823 *  This routine is responsible for somehow restarting the currently
824 *  executing task.
825 *
826 *  On the SPARC, this is is relatively painless but requires a small
827 *  amount of wrapper code before using the regular restore code in
828 *  of the context switch.
829 */
830
831#define _CPU_Context_Restart_self( _the_context ) \
832   _CPU_Context_restore( (_the_context) );
833
834/*
835 *  The FP context area for the SPARC is a simple structure and nothing
836 *  special is required to find the "starting load point"
837 */
838
839#define _CPU_Context_Fp_start( _base, _offset ) \
840   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
841
842/*
843 *  This routine initializes the FP context area passed to it to.
844 *
845 *  The SPARC allows us to use the simple initialization model
846 *  in which an "initial" FP context was saved into _CPU_Null_fp_context
847 *  at CPU initialization and it is simply copied into the destination
848 *  context.
849 */
850
851#define _CPU_Context_Initialize_fp( _destination ) \
852  do { \
853   *(*(_destination)) = _CPU_Null_fp_context; \
854  } while (0)
855
856/* end of Context handler macros */
857
858/* Fatal Error manager macros */
859
860/*
861 *  This routine copies _error into a known place -- typically a stack
862 *  location or a register, optionally disables interrupts, and
863 *  halts/stops the CPU.
864 */
865
866#define _CPU_Fatal_halt( _source, _error ) \
867  do { \
868    uint32_t   level; \
869    \
870    level = sparc_disable_interrupts(); \
871    __asm__ volatile ( "mov  %0, %%g1 " : "=r" (level) : "0" (level) ); \
872    while (1); /* loop forever */ \
873  } while (0)
874
875/* end of Fatal Error manager macros */
876
877/* Bitfield handler macros */
878
879/*
880 *  The SPARC port uses the generic C algorithm for bitfield scan if the
881 *  CPU model does not have a scan instruction.
882 */
883
884#if ( SPARC_HAS_BITSCAN == 0 )
885#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
886#else
887#error "scan instruction not currently supported by RTEMS!!"
888#endif
889
890/* end of Bitfield handler macros */
891
892/* Priority handler handler macros */
893
894/*
895 *  The SPARC port uses the generic C algorithm for bitfield scan if the
896 *  CPU model does not have a scan instruction.
897 */
898
899#if ( SPARC_HAS_BITSCAN == 1 )
900#error "scan instruction not currently supported by RTEMS!!"
901#endif
902
903/* end of Priority handler macros */
904
905/* functions */
906
907/*
908 *  _CPU_Initialize
909 *
910 *  This routine performs CPU dependent initialization.
911 */
912
913void _CPU_Initialize(void);
914
915/*
916 *  _CPU_ISR_install_raw_handler
917 *
918 *  This routine installs new_handler to be directly called from the trap
919 *  table.
920 */
921
922void _CPU_ISR_install_raw_handler(
923  uint32_t    vector,
924  proc_ptr    new_handler,
925  proc_ptr   *old_handler
926);
927
928/*
929 *  _CPU_ISR_install_vector
930 *
931 *  This routine installs an interrupt vector.
932 */
933
934void _CPU_ISR_install_vector(
935  uint64_t    vector,
936  proc_ptr    new_handler,
937  proc_ptr   *old_handler
938);
939
940#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
941
942/*
943 *  _CPU_Thread_Idle_body
944 *
945 *  Some SPARC implementations have low power, sleep, or idle modes.  This
946 *  tries to take advantage of those models.
947 */
948
949void *_CPU_Thread_Idle_body( uintptr_t ignored );
950
951#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
952
953/*
954 *  _CPU_Context_switch
955 *
956 *  This routine switches from the run context to the heir context.
957 */
958
959void _CPU_Context_switch(
960  Context_Control  *run,
961  Context_Control  *heir
962);
963
964/*
965 *  _CPU_Context_restore
966 *
967 *  This routine is generally used only to restart self in an
968 *  efficient manner.
969 */
970
971void _CPU_Context_restore(
972  Context_Control *new_context
973) RTEMS_NO_RETURN;
974
975/*
976 *  _CPU_Context_save_fp
977 *
978 *  This routine saves the floating point context passed to it.
979 */
980
981void _CPU_Context_save_fp(
982  Context_Control_fp **fp_context_ptr
983);
984
985/*
986 *  _CPU_Context_restore_fp
987 *
988 *  This routine restores the floating point context passed to it.
989 */
990
991void _CPU_Context_restore_fp(
992  Context_Control_fp **fp_context_ptr
993);
994
995static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
996{
997  /* TODO */
998}
999
1000static inline void _CPU_Context_validate( uintptr_t pattern )
1001{
1002  while (1) {
1003    /* TODO */
1004  }
1005}
1006
1007/* FIXME */
1008typedef CPU_Interrupt_frame CPU_Exception_frame;
1009
1010void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1011
1012/*
1013 *  CPU_swap_u32
1014 *
1015 *  The following routine swaps the endian format of an unsigned int.
1016 *  It must be static because it is referenced indirectly.
1017 *
1018 *  This version will work on any processor, but if you come across a better
1019 *  way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
1020 *  entity as shown below is not any more efficient on the SPARC.
1021 *
1022 *     swap least significant two bytes with 16-bit rotate
1023 *     swap upper and lower 16-bits
1024 *     swap most significant two bytes with 16-bit rotate
1025 *
1026 *  It is not obvious how the SPARC can do significantly better than the
1027 *  generic code.  gcc 2.7.0 only generates about 12 instructions for the
1028 *  following code at optimization level four (i.e. -O4).
1029 */
1030
1031static inline uint32_t CPU_swap_u32(
1032  uint32_t value
1033)
1034{
1035  uint32_t   byte1, byte2, byte3, byte4, swapped;
1036
1037  byte4 = (value >> 24) & 0xff;
1038  byte3 = (value >> 16) & 0xff;
1039  byte2 = (value >> 8)  & 0xff;
1040  byte1 =  value        & 0xff;
1041
1042  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1043  return( swapped );
1044}
1045
1046#define CPU_swap_u16( value ) \
1047  (((value&0xff) << 8) | ((value >> 8)&0xff))
1048
1049typedef uint32_t CPU_Counter_ticks;
1050
1051CPU_Counter_ticks _CPU_Counter_read( void );
1052
1053static inline CPU_Counter_ticks _CPU_Counter_difference(
1054  CPU_Counter_ticks second,
1055  CPU_Counter_ticks first
1056)
1057{
1058  return second - first;
1059}
1060
1061#endif /* ASM */
1062
1063#ifdef __cplusplus
1064}
1065#endif
1066
1067#endif
Note: See TracBrowser for help on using the repository browser.