source: rtems/cpukit/score/cpu/sparc64/rtems/score/cpu.h @ 51dc9a61

5
Last change on this file since 51dc9a61 was 51dc9a61, checked in by Sebastian Huber <sebastian.huber@…>, on 02/03/16 at 10:57:29

sparc64: Avoid SCORE_EXTERN

Update #2559.

  • Property mode set to 100644
File size: 30.3 KB
Line 
1/**
2 * @file
3 *
4 * @brief SPARC64 CPU Department Source
5 *
6 * This include file contains information pertaining to the port of
7 * the executive to the SPARC64 processor.
8 */
9
10/*
11 *
12 *
13 *  COPYRIGHT (c) 1989-2006. On-Line Applications Research Corporation (OAR).
14 *
15 *  This file is based on the SPARC cpu.h file. Modifications are made
16 *  to support the SPARC64 processor.
17 *  COPYRIGHT (c) 2010. Gedare Bloom.
18 *
19 *  The license and distribution terms for this file may be
20 *  found in the file LICENSE in this distribution or at
21 *  http://www.rtems.org/license/LICENSE.
22 */
23
24#ifndef _RTEMS_SCORE_CPU_H
25#define _RTEMS_SCORE_CPU_H
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31#include <rtems/score/types.h>
32#include <rtems/score/sparc64.h>
33
34/* conditional compilation parameters */
35
36/*
37 *  Should the calls to _Thread_Enable_dispatch be inlined?
38 *
39 *  If TRUE, then they are inlined.
40 *  If FALSE, then a subroutine call is made.
41 */
42
43#define CPU_INLINE_ENABLE_DISPATCH       TRUE
44
45/*
46 *  Does the executive manage a dedicated interrupt stack in software?
47 *
48 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
49 *  If FALSE, nothing is done.
50 *
51 *  The SPARC does not have a dedicated HW interrupt stack and one has
52 *  been implemented in SW.
53 */
54
55#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
56
57/*
58 *  Does the CPU follow the simple vectored interrupt model?
59 *
60 *  If TRUE, then RTEMS allocates the vector table it internally manages.
61 *  If FALSE, then the BSP is assumed to allocate and manage the vector
62 *  table
63 *
64 *  SPARC Specific Information:
65 *
66 *  XXX document implementation including references if appropriate
67 */
68#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
69
70/*
71 *  Does this CPU have hardware support for a dedicated interrupt stack?
72 *
73 *  If TRUE, then it must be installed during initialization.
74 *  If FALSE, then no installation is performed.
75 *
76 *  The SPARC does not have a dedicated HW interrupt stack.
77 */
78
79#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
80
81/*
82 *  Do we allocate a dedicated interrupt stack in the Interrupt Manager?
83 *
84 *  If TRUE, then the memory is allocated during initialization.
85 *  If FALSE, then the memory is allocated during initialization.
86 */
87
88#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
89
90/*
91 *  Does the RTEMS invoke the user's ISR with the vector number and
92 *  a pointer to the saved interrupt frame (1) or just the vector
93 *  number (0)?
94 */
95
96#define CPU_ISR_PASSES_FRAME_POINTER 0
97
98/*
99 *  Does the CPU have hardware floating point?
100 *
101 *  If TRUE, then the FLOATING_POINT task attribute is supported.
102 *  If FALSE, then the FLOATING_POINT task attribute is ignored.
103 */
104
105#if ( SPARC_HAS_FPU == 1 )
106#define CPU_HARDWARE_FP     TRUE
107#else
108#define CPU_HARDWARE_FP     FALSE
109#endif
110#define CPU_SOFTWARE_FP     FALSE
111
112/*
113 *  Are all tasks FLOATING_POINT tasks implicitly?
114 *
115 *  If TRUE, then the FLOATING_POINT task attribute is assumed.
116 *  If FALSE, then the FLOATING_POINT task attribute is followed.
117 */
118
119#define CPU_ALL_TASKS_ARE_FP     FALSE
120
121/*
122 *  Should the IDLE task have a floating point context?
123 *
124 *  If TRUE, then the IDLE task is created as a FLOATING_POINT task
125 *  and it has a floating point context which is switched in and out.
126 *  If FALSE, then the IDLE task does not have a floating point context.
127 */
128
129#define CPU_IDLE_TASK_IS_FP      FALSE
130
131/*
132 *  Should the saving of the floating point registers be deferred
133 *  until a context switch is made to another different floating point
134 *  task?
135 *
136 *  If TRUE, then the floating point context will not be stored until
137 *  necessary.  It will remain in the floating point registers and not
138 *  disturned until another floating point task is switched to.
139 *
140 *  If FALSE, then the floating point context is saved when a floating
141 *  point task is switched out and restored when the next floating point
142 *  task is restored.  The state of the floating point registers between
143 *  those two operations is not specified.
144 */
145
146#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
147
148/*
149 *  Does this port provide a CPU dependent IDLE task implementation?
150 *
151 *  If TRUE, then the routine _CPU_Thread_Idle_body
152 *  must be provided and is the default IDLE thread body instead of
153 *  _CPU_Thread_Idle_body.
154 *
155 *  If FALSE, then use the generic IDLE thread body if the BSP does
156 *  not provide one.
157 */
158
159#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
160
161/*
162 *  Does the stack grow up (toward higher addresses) or down
163 *  (toward lower addresses)?
164 *
165 *  If TRUE, then the grows upward.
166 *  If FALSE, then the grows toward smaller addresses.
167 *
168 *  The stack grows to lower addresses on the SPARC.
169 */
170
171#define CPU_STACK_GROWS_UP               FALSE
172
173/* FIXME: Is this the right value? */
174#define CPU_CACHE_LINE_BYTES 32
175
176/*
177 *  The following is the variable attribute used to force alignment
178 *  of critical data structures.  On some processors it may make
179 *  sense to have these aligned on tighter boundaries than
180 *  the minimum requirements of the compiler in order to have as
181 *  much of the critical data area as possible in a cache line.
182 *
183 *  The SPARC does not appear to have particularly strict alignment
184 *  requirements.  This value (16) was chosen to take advantages of caches.
185 *
186 *  SPARC 64 requirements on floating point alignment is at least 8,
187 *  and is 16 if quad-word fp instructions are available (e.g. LDQF).
188 */
189
190#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( 16 )
191
192/*
193 *  Define what is required to specify how the network to host conversion
194 *  routines are handled.
195 */
196
197#define CPU_BIG_ENDIAN                           TRUE
198#define CPU_LITTLE_ENDIAN                        FALSE
199
200/*
201 *  The following defines the number of bits actually used in the
202 *  interrupt field of the task mode.  How those bits map to the
203 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
204 *
205 *  The SPARC v9 has 16 interrupt levels in the PIL field of the PSR.
206 */
207
208#define CPU_MODES_INTERRUPT_MASK   0x0000000F
209
210#define CPU_PER_CPU_CONTROL_SIZE 0
211
212/*
213 *  This structure represents the organization of the minimum stack frame
214 *  for the SPARC.  More framing information is required in certain situaions
215 *  such as when there are a large number of out parameters or when the callee
216 *  must save floating point registers.
217 */
218
219#ifndef ASM
220
221typedef struct {
222  /* There is no CPU specific per-CPU state */
223} CPU_Per_CPU_control;
224
225typedef struct {
226  uint64_t    l0;
227  uint64_t    l1;
228  uint64_t    l2;
229  uint64_t    l3;
230  uint64_t    l4;
231  uint64_t    l5;
232  uint64_t    l6;
233  uint64_t    l7;
234  uint64_t    i0;
235  uint64_t    i1;
236  uint64_t    i2;
237  uint64_t    i3;
238  uint64_t    i4;
239  uint64_t    i5;
240  uint64_t    i6_fp;
241  uint64_t    i7;
242  void       *structure_return_address;
243  /*
244   *  The following are for the callee to save the register arguments in
245   *  should this be necessary.
246   */
247  uint64_t    saved_arg0;
248  uint64_t    saved_arg1;
249  uint64_t    saved_arg2;
250  uint64_t    saved_arg3;
251  uint64_t    saved_arg4;
252  uint64_t    saved_arg5;
253  uint64_t    pad0;
254}  CPU_Minimum_stack_frame;
255
256#endif /* !ASM */
257
258#define CPU_STACK_FRAME_L0_OFFSET             0x00
259#define CPU_STACK_FRAME_L1_OFFSET             0x08
260#define CPU_STACK_FRAME_L2_OFFSET             0x10
261#define CPU_STACK_FRAME_L3_OFFSET             0x18
262#define CPU_STACK_FRAME_L4_OFFSET             0x20
263#define CPU_STACK_FRAME_L5_OFFSET             0x28
264#define CPU_STACK_FRAME_L6_OFFSET             0x30
265#define CPU_STACK_FRAME_L7_OFFSET             0x38
266#define CPU_STACK_FRAME_I0_OFFSET             0x40
267#define CPU_STACK_FRAME_I1_OFFSET             0x48
268#define CPU_STACK_FRAME_I2_OFFSET             0x50
269#define CPU_STACK_FRAME_I3_OFFSET             0x58
270#define CPU_STACK_FRAME_I4_OFFSET             0x60
271#define CPU_STACK_FRAME_I5_OFFSET             0x68
272#define CPU_STACK_FRAME_I6_FP_OFFSET          0x70
273#define CPU_STACK_FRAME_I7_OFFSET             0x78
274#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x80
275#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x88
276#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x90
277#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x98
278#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0xA0
279#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0xA8
280#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0xB0
281#define CPU_STACK_FRAME_PAD0_OFFSET           0xB8
282
283#define CPU_MINIMUM_STACK_FRAME_SIZE          0xC0
284
285/*
286 * Contexts
287 *
288 *  Generally there are 2 types of context to save.
289 *     1. Interrupt registers to save
290 *     2. Task level registers to save
291 *
292 *  This means we have the following 3 context items:
293 *     1. task level context stuff::  Context_Control
294 *     2. floating point task stuff:: Context_Control_fp
295 *     3. special interrupt level context :: Context_Control_interrupt
296 *
297 *  On the SPARC, we are relatively conservative in that we save most
298 *  of the CPU state in the context area.  The ET (enable trap) bit and
299 *  the CWP (current window pointer) fields of the PSR are considered
300 *  system wide resources and are not maintained on a per-thread basis.
301 */
302
303#ifndef ASM
304
305typedef struct {
306    uint64_t   g1;
307    uint64_t   g2;
308    uint64_t   g3;
309    uint64_t   g4;
310    uint64_t   g5;
311    uint64_t   g6;
312    uint64_t   g7;
313
314    uint64_t   l0;
315    uint64_t   l1;
316    uint64_t   l2;
317    uint64_t   l3;
318    uint64_t   l4;
319    uint64_t   l5;
320    uint64_t   l6;
321    uint64_t   l7;
322
323    uint64_t   i0;
324    uint64_t   i1;
325    uint64_t   i2;
326    uint64_t   i3;
327    uint64_t   i4;
328    uint64_t   i5;
329    uint64_t   i6_fp;
330    uint64_t   i7;
331
332    uint64_t   o0;
333    uint64_t   o1;
334    uint64_t   o2;
335    uint64_t   o3;
336    uint64_t   o4;
337    uint64_t   o5;
338    uint64_t   o6_sp;
339    uint64_t   o7;
340
341    uint32_t   isr_dispatch_disable;
342    uint32_t   pad;
343} Context_Control;
344
345#define _CPU_Context_Get_SP( _context ) \
346  (_context)->o6_sp
347
348#endif /* ASM */
349
350/*
351 *  Offsets of fields with Context_Control for assembly routines.
352 */
353
354#define G1_OFFSET    0x00
355#define G2_OFFSET    0x08
356#define G3_OFFSET    0x10
357#define G4_OFFSET    0x18
358#define G5_OFFSET    0x20
359#define G6_OFFSET    0x28
360#define G7_OFFSET    0x30
361
362#define L0_OFFSET    0x38
363#define L1_OFFSET    0x40
364#define L2_OFFSET    0x48
365#define L3_OFFSET    0x50
366#define L4_OFFSET    0x58
367#define L5_OFFSET    0x60
368#define L6_OFFSET    0x68
369#define L7_OFFSET    0x70
370
371#define I0_OFFSET    0x78
372#define I1_OFFSET    0x80
373#define I2_OFFSET    0x88
374#define I3_OFFSET    0x90
375#define I4_OFFSET    0x98
376#define I5_OFFSET    0xA0
377#define I6_FP_OFFSET    0xA8
378#define I7_OFFSET 0xB0
379
380#define O0_OFFSET    0xB8
381#define O1_OFFSET    0xC0
382#define O2_OFFSET    0xC8
383#define O3_OFFSET    0xD0
384#define O4_OFFSET    0xD8
385#define O5_OFFSET    0xE0
386#define O6_SP_OFFSET    0xE8
387#define O7_OFFSET 0xF0
388
389#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0xF8
390#define ISR_PAD_OFFSET 0xFC
391
392/*
393 *  The floating point context area.
394 */
395
396#ifndef ASM
397
398typedef struct {
399    double      f0;     /* f0-f1 */
400    double      f2;     /* f2-f3 */
401    double      f4;     /* f4-f5 */
402    double      f6;     /* f6-f7 */
403    double      f8;     /* f8-f9 */
404    double      f10;    /* f10-f11 */
405    double      f12;    /* f12-f13 */
406    double      f14;    /* f14-f15 */
407    double      f16;    /* f16-f17 */
408    double      f18;    /* f18-f19 */
409    double      f20;    /* f20-f21 */
410    double      f22;    /* f22-f23 */
411    double      f24;    /* f24-f25 */
412    double      f26;    /* f26-f27 */
413    double      f28;    /* f28-f29 */
414    double      f30;    /* f30-f31 */
415    double      f32;
416    double      f34;
417    double      f36;
418    double      f38;
419    double      f40;
420    double      f42;
421    double      f44;
422    double      f46;
423    double      f48;
424    double      f50;
425    double      f52;
426    double      f54;
427    double      f56;
428    double      f58;
429    double      f60;
430    double      f62;
431    uint64_t    fsr;
432} Context_Control_fp;
433
434#endif /* !ASM */
435
436/*
437 *  Offsets of fields with Context_Control_fp for assembly routines.
438 */
439
440#define FO_OFFSET    0x00
441#define F2_OFFSET    0x08
442#define F4_OFFSET    0x10
443#define F6_OFFSET    0x18
444#define F8_OFFSET    0x20
445#define F1O_OFFSET   0x28
446#define F12_OFFSET   0x30
447#define F14_OFFSET   0x38
448#define F16_OFFSET   0x40
449#define F18_OFFSET   0x48
450#define F2O_OFFSET   0x50
451#define F22_OFFSET   0x58
452#define F24_OFFSET   0x60
453#define F26_OFFSET   0x68
454#define F28_OFFSET   0x70
455#define F3O_OFFSET   0x78
456#define F32_OFFSET   0x80
457#define F34_OFFSET   0x88
458#define F36_OFFSET   0x90
459#define F38_OFFSET   0x98
460#define F4O_OFFSET   0xA0
461#define F42_OFFSET   0xA8
462#define F44_OFFSET   0xB0
463#define F46_OFFSET   0xB8
464#define F48_OFFSET   0xC0
465#define F5O_OFFSET   0xC8
466#define F52_OFFSET   0xD0
467#define F54_OFFSET   0xD8
468#define F56_OFFSET   0xE0
469#define F58_OFFSET   0xE8
470#define F6O_OFFSET   0xF0
471#define F62_OFFSET   0xF8
472#define FSR_OFFSET   0x100
473
474#define CONTEXT_CONTROL_FP_SIZE 0x108
475
476#ifndef ASM
477
478/*
479 *  Context saved on stack for an interrupt.
480 *
481 *  NOTE:  The tstate, tpc, and tnpc are saved in this structure
482 *         to allow resetting the TL while still being able to return
483 *         from a trap later.  The PIL is saved because
484 *         if this is an external interrupt, we will mask lower
485 *         priority interrupts until finishing. Even though the y register
486 *         is deprecated, gcc still uses it.
487 */
488
489typedef struct {
490  CPU_Minimum_stack_frame  Stack_frame;
491  uint64_t                 tstate;
492  uint64_t                 tpc;
493  uint64_t                 tnpc;
494  uint64_t                 pil;
495  uint64_t                 y;
496  uint64_t                 g1;
497  uint64_t                 g2;
498  uint64_t                 g3;
499  uint64_t                 g4;
500  uint64_t                 g5;
501  uint64_t                 g6;
502  uint64_t                 g7;
503  uint64_t                 o0;
504  uint64_t                 o1;
505  uint64_t                 o2;
506  uint64_t                 o3;
507  uint64_t                 o4;
508  uint64_t                 o5;
509  uint64_t                 o6_sp;
510  uint64_t                 o7;
511  uint64_t                 tvec;
512} CPU_Interrupt_frame;
513
514#endif /* ASM */
515
516/*
517 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
518 */
519
520#define ISF_TSTATE_OFFSET      CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
521#define ISF_TPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
522#define ISF_TNPC_OFFSET        CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
523#define ISF_PIL_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
524#define ISF_Y_OFFSET           CPU_MINIMUM_STACK_FRAME_SIZE + 0x20
525#define ISF_G1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
526#define ISF_G2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
527#define ISF_G3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
528#define ISF_G4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
529#define ISF_G5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
530#define ISF_G6_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x50
531#define ISF_G7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x58
532#define ISF_O0_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x60
533#define ISF_O1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x68
534#define ISF_O2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x70
535#define ISF_O3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x78
536#define ISF_O4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x80
537#define ISF_O5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x88
538#define ISF_O6_SP_OFFSET       CPU_MINIMUM_STACK_FRAME_SIZE + 0x90
539#define ISF_O7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x98
540#define ISF_TVEC_OFFSET        CPU_MINIMUM_STACK_FRAME_SIZE + 0xA0
541
542#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE CPU_MINIMUM_STACK_FRAME_SIZE + 0xA8
543#ifndef ASM
544/*
545 *  This variable is contains the initialize context for the FP unit.
546 *  It is filled in by _CPU_Initialize and copied into the task's FP
547 *  context area during _CPU_Context_Initialize.
548 */
549
550extern Context_Control_fp _CPU_Null_fp_context;
551
552/*
553 *  This flag is context switched with each thread.  It indicates
554 *  that THIS thread has an _ISR_Dispatch stack frame on its stack.
555 *  By using this flag, we can avoid nesting more interrupt dispatching
556 *  attempts on a previously interrupted thread's stack.
557 */
558
559extern volatile uint32_t _CPU_ISR_Dispatch_disable;
560
561/*
562 *  The following type defines an entry in the SPARC's trap table.
563 *
564 *  NOTE: The instructions chosen are RTEMS dependent although one is
565 *        obligated to use two of the four instructions to perform a
566 *        long jump.  The other instructions load one register with the
567 *        trap type (a.k.a. vector) and another with the psr.
568 */
569/* For SPARC V9, we must use 6 of these instructions to perform a long
570 * jump, because the _handler value is now 64-bits. We also need to store
571 * temporary values in the global register set at this trap level. Because
572 * the handler runs at TL > 0 with GL > 0, it should be OK to use g2 and g3
573 * to pass parameters to ISR_Handler.
574 *
575 * The instruction sequence is now more like:
576 *      rdpr %tstate, %g4
577 *      setx _handler, %g2, %g3
578 *      jmp %g3+0
579 *      mov _vector, %g2
580 */
581typedef struct {
582  uint32_t     rdpr_tstate_g4;                  /* rdpr  %tstate, %g4        */
583  uint32_t     sethi_of_hh_handler_to_g2;       /* sethi %hh(_handler), %g2  */
584  uint32_t     or_g2_hm_handler_to_g2;          /* or %l3, %hm(_handler), %g2 */
585  uint32_t     sllx_g2_by_32_to_g2;             /* sllx   %g2, 32, %g2 */
586  uint32_t     sethi_of_handler_to_g3;          /* sethi %hi(_handler), %g3  */
587  uint32_t     or_g3_g2_to_g3;                  /* or     %g3, %g2, %g3 */
588  uint32_t     jmp_to_low_of_handler_plus_g3;   /* jmp   %g3 + %lo(_handler) */
589  uint32_t     mov_vector_g2;                   /* mov   _vector, %g2        */
590} CPU_Trap_table_entry;
591
592/*
593 *  This is the set of opcodes for the instructions loaded into a trap
594 *  table entry.  The routine which installs a handler is responsible
595 *  for filling in the fields for the _handler address and the _vector
596 *  trap type.
597 *
598 *  The constants following this structure are masks for the fields which
599 *  must be filled in when the handler is installed.
600 */
601
602extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
603
604/*
605 *  The size of the floating point context area.
606 */
607
608#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
609
610#endif
611
612/*
613 *  Amount of extra stack (above minimum stack size) required by
614 *  MPCI receive server thread.  Remember that in a multiprocessor
615 *  system this thread must exist and be able to process all directives.
616 */
617
618#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
619
620/*
621 *  This defines the number of entries in the ISR_Vector_table managed
622 *  by the executive.
623 *
624 *  On the SPARC, there are really only 256 vectors.  However, the executive
625 *  has no easy, fast, reliable way to determine which traps are synchronous
626 *  and which are asynchronous.  By default, synchronous traps return to the
627 *  instruction which caused the interrupt.  So if you install a software
628 *  trap handler as an executive interrupt handler (which is desirable since
629 *  RTEMS takes care of window and register issues), then the executive needs
630 *  to know that the return address is to the trap rather than the instruction
631 *  following the trap.
632 *
633 *  So vectors 0 through 255 are treated as regular asynchronous traps which
634 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
635 *  by the executive to be synchronous and to require that the return address
636 *  be fudged.
637 *
638 *  If you use this mechanism to install a trap handler which must reexecute
639 *  the instruction which caused the trap, then it should be installed as
640 *  an asynchronous trap.  This will avoid the executive changing the return
641 *  address.
642 */
643/* On SPARC v9, there are 512 vectors. The same philosophy applies to
644 * vector installation and use, we just provide a larger table.
645 */
646#define CPU_INTERRUPT_NUMBER_OF_VECTORS     512
647#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 1023
648
649#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x200
650#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
651#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 512 )
652
653#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 512)
654
655/*
656 *  This is defined if the port has a special way to report the ISR nesting
657 *  level.  Most ports maintain the variable _ISR_Nest_level.
658 */
659
660#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
661
662/*
663 *  Should be large enough to run all tests.  This ensures
664 *  that a "reasonable" small application should not have any problems.
665 *
666 *  This appears to be a fairly generous number for the SPARC since
667 *  represents a call depth of about 20 routines based on the minimum
668 *  stack frame.
669 */
670
671#define CPU_STACK_MINIMUM_SIZE  (1024*8)
672
673#define CPU_SIZEOF_POINTER 8
674
675/*
676 *  CPU's worst alignment requirement for data types on a byte boundary.  This
677 *  alignment does not take into account the requirements for the stack.
678 *
679 *  On the SPARC, this is required for double word loads and stores.
680 *
681 *  Note: quad-word loads/stores need alignment of 16, but currently supported
682 *  architectures do not provide HW implemented quad-word operations.
683 */
684
685#define CPU_ALIGNMENT      8
686
687/*
688 *  This number corresponds to the byte alignment requirement for the
689 *  heap handler.  This alignment requirement may be stricter than that
690 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
691 *  common for the heap to follow the same alignment requirement as
692 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
693 *  then this should be set to CPU_ALIGNMENT.
694 *
695 *  NOTE:  This does not have to be a power of 2.  It does have to
696 *         be greater or equal to than CPU_ALIGNMENT.
697 */
698
699#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
700
701/*
702 *  This number corresponds to the byte alignment requirement for memory
703 *  buffers allocated by the partition manager.  This alignment requirement
704 *  may be stricter than that for the data types alignment specified by
705 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
706 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
707 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
708 *
709 *  NOTE:  This does not have to be a power of 2.  It does have to
710 *         be greater or equal to than CPU_ALIGNMENT.
711 */
712
713#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
714
715/*
716 *  This number corresponds to the byte alignment requirement for the
717 *  stack.  This alignment requirement may be stricter than that for the
718 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
719 *  is strict enough for the stack, then this should be set to 0.
720 *
721 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
722 *
723 *  The alignment restrictions for the SPARC are not that strict but this
724 *  should unsure that the stack is always sufficiently alignment that the
725 *  window overflow, underflow, and flush routines can use double word loads
726 *  and stores.
727 */
728
729#define CPU_STACK_ALIGNMENT        16
730
731#ifndef ASM
732
733/*
734 *  ISR handler macros
735 */
736
737/*
738 *  Support routine to initialize the RTEMS vector table after it is allocated.
739 */
740
741#define _CPU_Initialize_vectors()
742
743/*
744 *  Disable all interrupts for a critical section.  The previous
745 *  level is returned in _level.
746 */
747
748 #define _CPU_ISR_Disable( _level ) \
749  (_level) = sparc_disable_interrupts()
750
751/*
752 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
753 *  This indicates the end of a critical section.  The parameter
754 *  _level is not modified.
755 */
756
757#define _CPU_ISR_Enable( _level ) \
758  sparc_enable_interrupts( _level )
759
760/*
761 *  This temporarily restores the interrupt to _level before immediately
762 *  disabling them again.  This is used to divide long critical
763 *  sections into two or more parts.  The parameter _level is not
764 *  modified.
765 */
766
767#define _CPU_ISR_Flash( _level ) \
768   sparc_flash_interrupts( _level )
769
770/*
771 *  Map interrupt level in task mode onto the hardware that the CPU
772 *  actually provides.  Currently, interrupt levels which do not
773 *  map onto the CPU in a straight fashion are undefined.
774 */
775
776#define _CPU_ISR_Set_level( _newlevel ) \
777   sparc_enable_interrupts( _newlevel)
778
779uint32_t   _CPU_ISR_Get_level( void );
780
781/* end of ISR handler macros */
782
783/* Context handler macros */
784
785/*
786 *  Initialize the context to a state suitable for starting a
787 *  task after a context restore operation.  Generally, this
788 *  involves:
789 *
790 *     - setting a starting address
791 *     - preparing the stack
792 *     - preparing the stack and frame pointers
793 *     - setting the proper interrupt level in the context
794 *     - initializing the floating point context
795 *
796 *  NOTE:  Implemented as a subroutine for the SPARC port.
797 */
798
799void _CPU_Context_Initialize(
800  Context_Control  *the_context,
801  void         *stack_base,
802  uint32_t          size,
803  uint32_t          new_level,
804  void             *entry_point,
805  bool              is_fp,
806  void             *tls_area
807);
808
809/*
810 *  This macro is invoked from _Thread_Handler to do whatever CPU
811 *  specific magic is required that must be done in the context of
812 *  the thread when it starts.
813 *
814 *  On the SPARC, this is setting the frame pointer so GDB is happy.
815 *  Make GDB stop unwinding at _Thread_Handler, previous register window
816 *  Frame pointer is 0 and calling address must be a function with starting
817 *  with a SAVE instruction. If return address is leaf-function (no SAVE)
818 *  GDB will not look at prev reg window fp.
819 *
820 *  _Thread_Handler is known to start with SAVE.
821 */
822
823#define _CPU_Context_Initialization_at_thread_begin() \
824  do { \
825    __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
826  } while (0)
827
828/*
829 *  This routine is responsible for somehow restarting the currently
830 *  executing task.
831 *
832 *  On the SPARC, this is is relatively painless but requires a small
833 *  amount of wrapper code before using the regular restore code in
834 *  of the context switch.
835 */
836
837#define _CPU_Context_Restart_self( _the_context ) \
838   _CPU_Context_restore( (_the_context) );
839
840/*
841 *  The FP context area for the SPARC is a simple structure and nothing
842 *  special is required to find the "starting load point"
843 */
844
845#define _CPU_Context_Fp_start( _base, _offset ) \
846   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
847
848/*
849 *  This routine initializes the FP context area passed to it to.
850 *
851 *  The SPARC allows us to use the simple initialization model
852 *  in which an "initial" FP context was saved into _CPU_Null_fp_context
853 *  at CPU initialization and it is simply copied into the destination
854 *  context.
855 */
856
857#define _CPU_Context_Initialize_fp( _destination ) \
858  do { \
859   *(*(_destination)) = _CPU_Null_fp_context; \
860  } while (0)
861
862/* end of Context handler macros */
863
864/* Fatal Error manager macros */
865
866/*
867 *  This routine copies _error into a known place -- typically a stack
868 *  location or a register, optionally disables interrupts, and
869 *  halts/stops the CPU.
870 */
871
872#define _CPU_Fatal_halt( _source, _error ) \
873  do { \
874    uint32_t   level; \
875    \
876    level = sparc_disable_interrupts(); \
877    __asm__ volatile ( "mov  %0, %%g1 " : "=r" (level) : "0" (level) ); \
878    while (1); /* loop forever */ \
879  } while (0)
880
881/* end of Fatal Error manager macros */
882
883/* Bitfield handler macros */
884
885/*
886 *  The SPARC port uses the generic C algorithm for bitfield scan if the
887 *  CPU model does not have a scan instruction.
888 */
889
890#if ( SPARC_HAS_BITSCAN == 0 )
891#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
892#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
893#else
894#error "scan instruction not currently supported by RTEMS!!"
895#endif
896
897/* end of Bitfield handler macros */
898
899/* Priority handler handler macros */
900
901/*
902 *  The SPARC port uses the generic C algorithm for bitfield scan if the
903 *  CPU model does not have a scan instruction.
904 */
905
906#if ( SPARC_HAS_BITSCAN == 1 )
907#error "scan instruction not currently supported by RTEMS!!"
908#endif
909
910/* end of Priority handler macros */
911
912/* functions */
913
914/*
915 *  _CPU_Initialize
916 *
917 *  This routine performs CPU dependent initialization.
918 */
919
920void _CPU_Initialize(void);
921
922/*
923 *  _CPU_ISR_install_raw_handler
924 *
925 *  This routine installs new_handler to be directly called from the trap
926 *  table.
927 */
928
929void _CPU_ISR_install_raw_handler(
930  uint32_t    vector,
931  proc_ptr    new_handler,
932  proc_ptr   *old_handler
933);
934
935/*
936 *  _CPU_ISR_install_vector
937 *
938 *  This routine installs an interrupt vector.
939 */
940
941void _CPU_ISR_install_vector(
942  uint64_t    vector,
943  proc_ptr    new_handler,
944  proc_ptr   *old_handler
945);
946
947#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
948
949/*
950 *  _CPU_Thread_Idle_body
951 *
952 *  Some SPARC implementations have low power, sleep, or idle modes.  This
953 *  tries to take advantage of those models.
954 */
955
956void *_CPU_Thread_Idle_body( uintptr_t ignored );
957
958#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
959
960/*
961 *  _CPU_Context_switch
962 *
963 *  This routine switches from the run context to the heir context.
964 */
965
966void _CPU_Context_switch(
967  Context_Control  *run,
968  Context_Control  *heir
969);
970
971/*
972 *  _CPU_Context_restore
973 *
974 *  This routine is generally used only to restart self in an
975 *  efficient manner.
976 */
977
978void _CPU_Context_restore(
979  Context_Control *new_context
980) RTEMS_NO_RETURN;
981
982/*
983 *  _CPU_Context_save_fp
984 *
985 *  This routine saves the floating point context passed to it.
986 */
987
988void _CPU_Context_save_fp(
989  Context_Control_fp **fp_context_ptr
990);
991
992/*
993 *  _CPU_Context_restore_fp
994 *
995 *  This routine restores the floating point context passed to it.
996 */
997
998void _CPU_Context_restore_fp(
999  Context_Control_fp **fp_context_ptr
1000);
1001
1002static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
1003{
1004  /* TODO */
1005}
1006
1007static inline void _CPU_Context_validate( uintptr_t pattern )
1008{
1009  while (1) {
1010    /* TODO */
1011  }
1012}
1013
1014/* FIXME */
1015typedef CPU_Interrupt_frame CPU_Exception_frame;
1016
1017void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1018
1019/*
1020 *  CPU_swap_u32
1021 *
1022 *  The following routine swaps the endian format of an unsigned int.
1023 *  It must be static because it is referenced indirectly.
1024 *
1025 *  This version will work on any processor, but if you come across a better
1026 *  way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
1027 *  entity as shown below is not any more efficient on the SPARC.
1028 *
1029 *     swap least significant two bytes with 16-bit rotate
1030 *     swap upper and lower 16-bits
1031 *     swap most significant two bytes with 16-bit rotate
1032 *
1033 *  It is not obvious how the SPARC can do significantly better than the
1034 *  generic code.  gcc 2.7.0 only generates about 12 instructions for the
1035 *  following code at optimization level four (i.e. -O4).
1036 */
1037
1038static inline uint32_t CPU_swap_u32(
1039  uint32_t value
1040)
1041{
1042  uint32_t   byte1, byte2, byte3, byte4, swapped;
1043
1044  byte4 = (value >> 24) & 0xff;
1045  byte3 = (value >> 16) & 0xff;
1046  byte2 = (value >> 8)  & 0xff;
1047  byte1 =  value        & 0xff;
1048
1049  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1050  return( swapped );
1051}
1052
1053#define CPU_swap_u16( value ) \
1054  (((value&0xff) << 8) | ((value >> 8)&0xff))
1055
1056typedef uint32_t CPU_Counter_ticks;
1057
1058CPU_Counter_ticks _CPU_Counter_read( void );
1059
1060static inline CPU_Counter_ticks _CPU_Counter_difference(
1061  CPU_Counter_ticks second,
1062  CPU_Counter_ticks first
1063)
1064{
1065  return second - first;
1066}
1067
1068#endif /* ASM */
1069
1070#ifdef __cplusplus
1071}
1072#endif
1073
1074#endif
Note: See TracBrowser for help on using the repository browser.