source: rtems/cpukit/score/cpu/sparc64/rtems/score/cpu.h @ 143696a

5
Last change on this file since 143696a was 143696a, checked in by Sebastian Huber <sebastian.huber@…>, on 10/16/15 at 06:15:03

basedefs.h: Add and use RTEMS_NO_RETURN

  • Property mode set to 100644
File size: 30.4 KB
Line 
1/**
2 * @file
3 *
4 * @brief SPARC64 CPU Department Source
5 *
6 * This include file contains information pertaining to the port of
7 * the executive to the SPARC64 processor.
8 */
9
10/*
11 *
12 *
13 *  COPYRIGHT (c) 1989-2006. On-Line Applications Research Corporation (OAR).
14 *
15 *  This file is based on the SPARC cpu.h file. Modifications are made
16 *  to support the SPARC64 processor.
17 *  COPYRIGHT (c) 2010. Gedare Bloom.
18 *
19 *  The license and distribution terms for this file may be
20 *  found in the file LICENSE in this distribution or at
21 *  http://www.rtems.org/license/LICENSE.
22 */
23
24#ifndef _RTEMS_SCORE_CPU_H
25#define _RTEMS_SCORE_CPU_H
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31#include <rtems/score/types.h>
32#include <rtems/score/sparc64.h>
33
34/* conditional compilation parameters */
35
36/*
37 *  Should the calls to _Thread_Enable_dispatch be inlined?
38 *
39 *  If TRUE, then they are inlined.
40 *  If FALSE, then a subroutine call is made.
41 */
42
43#define CPU_INLINE_ENABLE_DISPATCH       TRUE
44
45/*
46 *  Does the executive manage a dedicated interrupt stack in software?
47 *
48 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
49 *  If FALSE, nothing is done.
50 *
51 *  The SPARC does not have a dedicated HW interrupt stack and one has
52 *  been implemented in SW.
53 */
54
55#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
56
57/*
58 *  Does the CPU follow the simple vectored interrupt model?
59 *
60 *  If TRUE, then RTEMS allocates the vector table it internally manages.
61 *  If FALSE, then the BSP is assumed to allocate and manage the vector
62 *  table
63 *
64 *  SPARC Specific Information:
65 *
66 *  XXX document implementation including references if appropriate
67 */
68#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
69
70/*
71 *  Does this CPU have hardware support for a dedicated interrupt stack?
72 *
73 *  If TRUE, then it must be installed during initialization.
74 *  If FALSE, then no installation is performed.
75 *
76 *  The SPARC does not have a dedicated HW interrupt stack.
77 */
78
79#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
80
81/*
82 *  Do we allocate a dedicated interrupt stack in the Interrupt Manager?
83 *
84 *  If TRUE, then the memory is allocated during initialization.
85 *  If FALSE, then the memory is allocated during initialization.
86 */
87
88#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
89
90/*
91 *  Does the RTEMS invoke the user's ISR with the vector number and
92 *  a pointer to the saved interrupt frame (1) or just the vector
93 *  number (0)?
94 */
95
96#define CPU_ISR_PASSES_FRAME_POINTER 0
97
98/*
99 *  Does the CPU have hardware floating point?
100 *
101 *  If TRUE, then the FLOATING_POINT task attribute is supported.
102 *  If FALSE, then the FLOATING_POINT task attribute is ignored.
103 */
104
105#if ( SPARC_HAS_FPU == 1 )
106#define CPU_HARDWARE_FP     TRUE
107#else
108#define CPU_HARDWARE_FP     FALSE
109#endif
110#define CPU_SOFTWARE_FP     FALSE
111
112/*
113 *  Are all tasks FLOATING_POINT tasks implicitly?
114 *
115 *  If TRUE, then the FLOATING_POINT task attribute is assumed.
116 *  If FALSE, then the FLOATING_POINT task attribute is followed.
117 */
118
119#define CPU_ALL_TASKS_ARE_FP     FALSE
120
121/*
122 *  Should the IDLE task have a floating point context?
123 *
124 *  If TRUE, then the IDLE task is created as a FLOATING_POINT task
125 *  and it has a floating point context which is switched in and out.
126 *  If FALSE, then the IDLE task does not have a floating point context.
127 */
128
129#define CPU_IDLE_TASK_IS_FP      FALSE
130
131/*
132 *  Should the saving of the floating point registers be deferred
133 *  until a context switch is made to another different floating point
134 *  task?
135 *
136 *  If TRUE, then the floating point context will not be stored until
137 *  necessary.  It will remain in the floating point registers and not
138 *  disturned until another floating point task is switched to.
139 *
140 *  If FALSE, then the floating point context is saved when a floating
141 *  point task is switched out and restored when the next floating point
142 *  task is restored.  The state of the floating point registers between
143 *  those two operations is not specified.
144 */
145
146#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
147
148/*
149 *  Does this port provide a CPU dependent IDLE task implementation?
150 *
151 *  If TRUE, then the routine _CPU_Thread_Idle_body
152 *  must be provided and is the default IDLE thread body instead of
153 *  _CPU_Thread_Idle_body.
154 *
155 *  If FALSE, then use the generic IDLE thread body if the BSP does
156 *  not provide one.
157 */
158
159#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
160
161/*
162 *  Does the stack grow up (toward higher addresses) or down
163 *  (toward lower addresses)?
164 *
165 *  If TRUE, then the grows upward.
166 *  If FALSE, then the grows toward smaller addresses.
167 *
168 *  The stack grows to lower addresses on the SPARC.
169 */
170
171#define CPU_STACK_GROWS_UP               FALSE
172
173/*
174 *  The following is the variable attribute used to force alignment
175 *  of critical data structures.  On some processors it may make
176 *  sense to have these aligned on tighter boundaries than
177 *  the minimum requirements of the compiler in order to have as
178 *  much of the critical data area as possible in a cache line.
179 *
180 *  The SPARC does not appear to have particularly strict alignment
181 *  requirements.  This value (16) was chosen to take advantages of caches.
182 *
183 *  SPARC 64 requirements on floating point alignment is at least 8,
184 *  and is 16 if quad-word fp instructions are available (e.g. LDQF).
185 */
186
187#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (16)))
188
189#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
190
191/*
192 *  Define what is required to specify how the network to host conversion
193 *  routines are handled.
194 */
195
196#define CPU_BIG_ENDIAN                           TRUE
197#define CPU_LITTLE_ENDIAN                        FALSE
198
199/*
200 *  The following defines the number of bits actually used in the
201 *  interrupt field of the task mode.  How those bits map to the
202 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
203 *
204 *  The SPARC v9 has 16 interrupt levels in the PIL field of the PSR.
205 */
206
207#define CPU_MODES_INTERRUPT_MASK   0x0000000F
208
209#define CPU_PER_CPU_CONTROL_SIZE 0
210
211/*
212 *  This structure represents the organization of the minimum stack frame
213 *  for the SPARC.  More framing information is required in certain situaions
214 *  such as when there are a large number of out parameters or when the callee
215 *  must save floating point registers.
216 */
217
218#ifndef ASM
219
220typedef struct {
221  /* There is no CPU specific per-CPU state */
222} CPU_Per_CPU_control;
223
224typedef struct {
225  uint64_t    l0;
226  uint64_t    l1;
227  uint64_t    l2;
228  uint64_t    l3;
229  uint64_t    l4;
230  uint64_t    l5;
231  uint64_t    l6;
232  uint64_t    l7;
233  uint64_t    i0;
234  uint64_t    i1;
235  uint64_t    i2;
236  uint64_t    i3;
237  uint64_t    i4;
238  uint64_t    i5;
239  uint64_t    i6_fp;
240  uint64_t    i7;
241  void       *structure_return_address;
242  /*
243   *  The following are for the callee to save the register arguments in
244   *  should this be necessary.
245   */
246  uint64_t    saved_arg0;
247  uint64_t    saved_arg1;
248  uint64_t    saved_arg2;
249  uint64_t    saved_arg3;
250  uint64_t    saved_arg4;
251  uint64_t    saved_arg5;
252  uint64_t    pad0;
253}  CPU_Minimum_stack_frame;
254
255#endif /* !ASM */
256
257#define CPU_STACK_FRAME_L0_OFFSET             0x00
258#define CPU_STACK_FRAME_L1_OFFSET             0x08
259#define CPU_STACK_FRAME_L2_OFFSET             0x10
260#define CPU_STACK_FRAME_L3_OFFSET             0x18
261#define CPU_STACK_FRAME_L4_OFFSET             0x20
262#define CPU_STACK_FRAME_L5_OFFSET             0x28
263#define CPU_STACK_FRAME_L6_OFFSET             0x30
264#define CPU_STACK_FRAME_L7_OFFSET             0x38
265#define CPU_STACK_FRAME_I0_OFFSET             0x40
266#define CPU_STACK_FRAME_I1_OFFSET             0x48
267#define CPU_STACK_FRAME_I2_OFFSET             0x50
268#define CPU_STACK_FRAME_I3_OFFSET             0x58
269#define CPU_STACK_FRAME_I4_OFFSET             0x60
270#define CPU_STACK_FRAME_I5_OFFSET             0x68
271#define CPU_STACK_FRAME_I6_FP_OFFSET          0x70
272#define CPU_STACK_FRAME_I7_OFFSET             0x78
273#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x80
274#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x88
275#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x90
276#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x98
277#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0xA0
278#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0xA8
279#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0xB0
280#define CPU_STACK_FRAME_PAD0_OFFSET           0xB8
281
282#define CPU_MINIMUM_STACK_FRAME_SIZE          0xC0
283
284/*
285 * Contexts
286 *
287 *  Generally there are 2 types of context to save.
288 *     1. Interrupt registers to save
289 *     2. Task level registers to save
290 *
291 *  This means we have the following 3 context items:
292 *     1. task level context stuff::  Context_Control
293 *     2. floating point task stuff:: Context_Control_fp
294 *     3. special interrupt level context :: Context_Control_interrupt
295 *
296 *  On the SPARC, we are relatively conservative in that we save most
297 *  of the CPU state in the context area.  The ET (enable trap) bit and
298 *  the CWP (current window pointer) fields of the PSR are considered
299 *  system wide resources and are not maintained on a per-thread basis.
300 */
301
302#ifndef ASM
303
304typedef struct {
305    uint64_t   g1;
306    uint64_t   g2;
307    uint64_t   g3;
308    uint64_t   g4;
309    uint64_t   g5;
310    uint64_t   g6;
311    uint64_t   g7;
312
313    uint64_t   l0;
314    uint64_t   l1;
315    uint64_t   l2;
316    uint64_t   l3;
317    uint64_t   l4;
318    uint64_t   l5;
319    uint64_t   l6;
320    uint64_t   l7;
321
322    uint64_t   i0;
323    uint64_t   i1;
324    uint64_t   i2;
325    uint64_t   i3;
326    uint64_t   i4;
327    uint64_t   i5;
328    uint64_t   i6_fp;
329    uint64_t   i7;
330
331    uint64_t   o0;
332    uint64_t   o1;
333    uint64_t   o2;
334    uint64_t   o3;
335    uint64_t   o4;
336    uint64_t   o5;
337    uint64_t   o6_sp;
338    uint64_t   o7;
339
340    uint32_t   isr_dispatch_disable;
341    uint32_t   pad;
342} Context_Control;
343
344#define _CPU_Context_Get_SP( _context ) \
345  (_context)->o6_sp
346
347#endif /* ASM */
348
349/*
350 *  Offsets of fields with Context_Control for assembly routines.
351 */
352
353#define G1_OFFSET    0x00
354#define G2_OFFSET    0x08
355#define G3_OFFSET    0x10
356#define G4_OFFSET    0x18
357#define G5_OFFSET    0x20
358#define G6_OFFSET    0x28
359#define G7_OFFSET    0x30
360
361#define L0_OFFSET    0x38
362#define L1_OFFSET    0x40
363#define L2_OFFSET    0x48
364#define L3_OFFSET    0x50
365#define L4_OFFSET    0x58
366#define L5_OFFSET    0x60
367#define L6_OFFSET    0x68
368#define L7_OFFSET    0x70
369
370#define I0_OFFSET    0x78
371#define I1_OFFSET    0x80
372#define I2_OFFSET    0x88
373#define I3_OFFSET    0x90
374#define I4_OFFSET    0x98
375#define I5_OFFSET    0xA0
376#define I6_FP_OFFSET    0xA8
377#define I7_OFFSET 0xB0
378
379#define O0_OFFSET    0xB8
380#define O1_OFFSET    0xC0
381#define O2_OFFSET    0xC8
382#define O3_OFFSET    0xD0
383#define O4_OFFSET    0xD8
384#define O5_OFFSET    0xE0
385#define O6_SP_OFFSET    0xE8
386#define O7_OFFSET 0xF0
387
388#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0xF8
389#define ISR_PAD_OFFSET 0xFC
390
391/*
392 *  The floating point context area.
393 */
394
395#ifndef ASM
396
397typedef struct {
398    double      f0;     /* f0-f1 */
399    double      f2;     /* f2-f3 */
400    double      f4;     /* f4-f5 */
401    double      f6;     /* f6-f7 */
402    double      f8;     /* f8-f9 */
403    double      f10;    /* f10-f11 */
404    double      f12;    /* f12-f13 */
405    double      f14;    /* f14-f15 */
406    double      f16;    /* f16-f17 */
407    double      f18;    /* f18-f19 */
408    double      f20;    /* f20-f21 */
409    double      f22;    /* f22-f23 */
410    double      f24;    /* f24-f25 */
411    double      f26;    /* f26-f27 */
412    double      f28;    /* f28-f29 */
413    double      f30;    /* f30-f31 */
414    double      f32;
415    double      f34;
416    double      f36;
417    double      f38;
418    double      f40;
419    double      f42;
420    double      f44;
421    double      f46;
422    double      f48;
423    double      f50;
424    double      f52;
425    double      f54;
426    double      f56;
427    double      f58;
428    double      f60;
429    double      f62;
430    uint64_t    fsr;
431} Context_Control_fp;
432
433#endif /* !ASM */
434
435/*
436 *  Offsets of fields with Context_Control_fp for assembly routines.
437 */
438
439#define FO_OFFSET    0x00
440#define F2_OFFSET    0x08
441#define F4_OFFSET    0x10
442#define F6_OFFSET    0x18
443#define F8_OFFSET    0x20
444#define F1O_OFFSET   0x28
445#define F12_OFFSET   0x30
446#define F14_OFFSET   0x38
447#define F16_OFFSET   0x40
448#define F18_OFFSET   0x48
449#define F2O_OFFSET   0x50
450#define F22_OFFSET   0x58
451#define F24_OFFSET   0x60
452#define F26_OFFSET   0x68
453#define F28_OFFSET   0x70
454#define F3O_OFFSET   0x78
455#define F32_OFFSET   0x80
456#define F34_OFFSET   0x88
457#define F36_OFFSET   0x90
458#define F38_OFFSET   0x98
459#define F4O_OFFSET   0xA0
460#define F42_OFFSET   0xA8
461#define F44_OFFSET   0xB0
462#define F46_OFFSET   0xB8
463#define F48_OFFSET   0xC0
464#define F5O_OFFSET   0xC8
465#define F52_OFFSET   0xD0
466#define F54_OFFSET   0xD8
467#define F56_OFFSET   0xE0
468#define F58_OFFSET   0xE8
469#define F6O_OFFSET   0xF0
470#define F62_OFFSET   0xF8
471#define FSR_OFFSET   0x100
472
473#define CONTEXT_CONTROL_FP_SIZE 0x108
474
475#ifndef ASM
476
477/*
478 *  Context saved on stack for an interrupt.
479 *
480 *  NOTE:  The tstate, tpc, and tnpc are saved in this structure
481 *         to allow resetting the TL while still being able to return
482 *         from a trap later.  The PIL is saved because
483 *         if this is an external interrupt, we will mask lower
484 *         priority interrupts until finishing. Even though the y register
485 *         is deprecated, gcc still uses it.
486 */
487
488typedef struct {
489  CPU_Minimum_stack_frame  Stack_frame;
490  uint64_t                 tstate;
491  uint64_t                 tpc;
492  uint64_t                 tnpc;
493  uint64_t                 pil;
494  uint64_t                 y;
495  uint64_t                 g1;
496  uint64_t                 g2;
497  uint64_t                 g3;
498  uint64_t                 g4;
499  uint64_t                 g5;
500  uint64_t                 g6;
501  uint64_t                 g7;
502  uint64_t                 o0;
503  uint64_t                 o1;
504  uint64_t                 o2;
505  uint64_t                 o3;
506  uint64_t                 o4;
507  uint64_t                 o5;
508  uint64_t                 o6_sp;
509  uint64_t                 o7;
510  uint64_t                 tvec;
511} CPU_Interrupt_frame;
512
513#endif /* ASM */
514
515/*
516 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
517 */
518
519#define ISF_TSTATE_OFFSET      CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
520#define ISF_TPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
521#define ISF_TNPC_OFFSET        CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
522#define ISF_PIL_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
523#define ISF_Y_OFFSET           CPU_MINIMUM_STACK_FRAME_SIZE + 0x20
524#define ISF_G1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
525#define ISF_G2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
526#define ISF_G3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
527#define ISF_G4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
528#define ISF_G5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
529#define ISF_G6_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x50
530#define ISF_G7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x58
531#define ISF_O0_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x60
532#define ISF_O1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x68
533#define ISF_O2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x70
534#define ISF_O3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x78
535#define ISF_O4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x80
536#define ISF_O5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x88
537#define ISF_O6_SP_OFFSET       CPU_MINIMUM_STACK_FRAME_SIZE + 0x90
538#define ISF_O7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x98
539#define ISF_TVEC_OFFSET        CPU_MINIMUM_STACK_FRAME_SIZE + 0xA0
540
541#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE CPU_MINIMUM_STACK_FRAME_SIZE + 0xA8
542#ifndef ASM
543/*
544 *  This variable is contains the initialize context for the FP unit.
545 *  It is filled in by _CPU_Initialize and copied into the task's FP
546 *  context area during _CPU_Context_Initialize.
547 */
548
549SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context CPU_STRUCTURE_ALIGNMENT;
550
551/*
552 *  This flag is context switched with each thread.  It indicates
553 *  that THIS thread has an _ISR_Dispatch stack frame on its stack.
554 *  By using this flag, we can avoid nesting more interrupt dispatching
555 *  attempts on a previously interrupted thread's stack.
556 */
557
558SCORE_EXTERN volatile uint32_t _CPU_ISR_Dispatch_disable;
559
560/*
561 *  The following type defines an entry in the SPARC's trap table.
562 *
563 *  NOTE: The instructions chosen are RTEMS dependent although one is
564 *        obligated to use two of the four instructions to perform a
565 *        long jump.  The other instructions load one register with the
566 *        trap type (a.k.a. vector) and another with the psr.
567 */
568/* For SPARC V9, we must use 6 of these instructions to perform a long
569 * jump, because the _handler value is now 64-bits. We also need to store
570 * temporary values in the global register set at this trap level. Because
571 * the handler runs at TL > 0 with GL > 0, it should be OK to use g2 and g3
572 * to pass parameters to ISR_Handler.
573 *
574 * The instruction sequence is now more like:
575 *      rdpr %tstate, %g4
576 *      setx _handler, %g2, %g3
577 *      jmp %g3+0
578 *      mov _vector, %g2
579 */
580typedef struct {
581  uint32_t     rdpr_tstate_g4;                  /* rdpr  %tstate, %g4        */
582  uint32_t     sethi_of_hh_handler_to_g2;       /* sethi %hh(_handler), %g2  */
583  uint32_t     or_g2_hm_handler_to_g2;          /* or %l3, %hm(_handler), %g2 */
584  uint32_t     sllx_g2_by_32_to_g2;             /* sllx   %g2, 32, %g2 */
585  uint32_t     sethi_of_handler_to_g3;          /* sethi %hi(_handler), %g3  */
586  uint32_t     or_g3_g2_to_g3;                  /* or     %g3, %g2, %g3 */
587  uint32_t     jmp_to_low_of_handler_plus_g3;   /* jmp   %g3 + %lo(_handler) */
588  uint32_t     mov_vector_g2;                   /* mov   _vector, %g2        */
589} CPU_Trap_table_entry;
590
591/*
592 *  This is the set of opcodes for the instructions loaded into a trap
593 *  table entry.  The routine which installs a handler is responsible
594 *  for filling in the fields for the _handler address and the _vector
595 *  trap type.
596 *
597 *  The constants following this structure are masks for the fields which
598 *  must be filled in when the handler is installed.
599 */
600
601extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
602
603/*
604 *  The size of the floating point context area.
605 */
606
607#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
608
609#endif
610
611/*
612 *  Amount of extra stack (above minimum stack size) required by
613 *  MPCI receive server thread.  Remember that in a multiprocessor
614 *  system this thread must exist and be able to process all directives.
615 */
616
617#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
618
619/*
620 *  This defines the number of entries in the ISR_Vector_table managed
621 *  by the executive.
622 *
623 *  On the SPARC, there are really only 256 vectors.  However, the executive
624 *  has no easy, fast, reliable way to determine which traps are synchronous
625 *  and which are asynchronous.  By default, synchronous traps return to the
626 *  instruction which caused the interrupt.  So if you install a software
627 *  trap handler as an executive interrupt handler (which is desirable since
628 *  RTEMS takes care of window and register issues), then the executive needs
629 *  to know that the return address is to the trap rather than the instruction
630 *  following the trap.
631 *
632 *  So vectors 0 through 255 are treated as regular asynchronous traps which
633 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
634 *  by the executive to be synchronous and to require that the return address
635 *  be fudged.
636 *
637 *  If you use this mechanism to install a trap handler which must reexecute
638 *  the instruction which caused the trap, then it should be installed as
639 *  an asynchronous trap.  This will avoid the executive changing the return
640 *  address.
641 */
642/* On SPARC v9, there are 512 vectors. The same philosophy applies to
643 * vector installation and use, we just provide a larger table.
644 */
645#define CPU_INTERRUPT_NUMBER_OF_VECTORS     512
646#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 1023
647
648#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x200
649#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
650#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 512 )
651
652#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 512)
653
654/*
655 *  This is defined if the port has a special way to report the ISR nesting
656 *  level.  Most ports maintain the variable _ISR_Nest_level.
657 */
658
659#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
660
661/*
662 *  Should be large enough to run all tests.  This ensures
663 *  that a "reasonable" small application should not have any problems.
664 *
665 *  This appears to be a fairly generous number for the SPARC since
666 *  represents a call depth of about 20 routines based on the minimum
667 *  stack frame.
668 */
669
670#define CPU_STACK_MINIMUM_SIZE  (1024*8)
671
672#define CPU_SIZEOF_POINTER 8
673
674/*
675 *  CPU's worst alignment requirement for data types on a byte boundary.  This
676 *  alignment does not take into account the requirements for the stack.
677 *
678 *  On the SPARC, this is required for double word loads and stores.
679 *
680 *  Note: quad-word loads/stores need alignment of 16, but currently supported
681 *  architectures do not provide HW implemented quad-word operations.
682 */
683
684#define CPU_ALIGNMENT      8
685
686/*
687 *  This number corresponds to the byte alignment requirement for the
688 *  heap handler.  This alignment requirement may be stricter than that
689 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
690 *  common for the heap to follow the same alignment requirement as
691 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
692 *  then this should be set to CPU_ALIGNMENT.
693 *
694 *  NOTE:  This does not have to be a power of 2.  It does have to
695 *         be greater or equal to than CPU_ALIGNMENT.
696 */
697
698#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
699
700/*
701 *  This number corresponds to the byte alignment requirement for memory
702 *  buffers allocated by the partition manager.  This alignment requirement
703 *  may be stricter than that for the data types alignment specified by
704 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
705 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
706 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
707 *
708 *  NOTE:  This does not have to be a power of 2.  It does have to
709 *         be greater or equal to than CPU_ALIGNMENT.
710 */
711
712#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
713
714/*
715 *  This number corresponds to the byte alignment requirement for the
716 *  stack.  This alignment requirement may be stricter than that for the
717 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
718 *  is strict enough for the stack, then this should be set to 0.
719 *
720 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
721 *
722 *  The alignment restrictions for the SPARC are not that strict but this
723 *  should unsure that the stack is always sufficiently alignment that the
724 *  window overflow, underflow, and flush routines can use double word loads
725 *  and stores.
726 */
727
728#define CPU_STACK_ALIGNMENT        16
729
730#ifndef ASM
731
732/*
733 *  ISR handler macros
734 */
735
736/*
737 *  Support routine to initialize the RTEMS vector table after it is allocated.
738 */
739
740#define _CPU_Initialize_vectors()
741
742/*
743 *  Disable all interrupts for a critical section.  The previous
744 *  level is returned in _level.
745 */
746
747 #define _CPU_ISR_Disable( _level ) \
748  (_level) = sparc_disable_interrupts()
749
750/*
751 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
752 *  This indicates the end of a critical section.  The parameter
753 *  _level is not modified.
754 */
755
756#define _CPU_ISR_Enable( _level ) \
757  sparc_enable_interrupts( _level )
758
759/*
760 *  This temporarily restores the interrupt to _level before immediately
761 *  disabling them again.  This is used to divide long critical
762 *  sections into two or more parts.  The parameter _level is not
763 *  modified.
764 */
765
766#define _CPU_ISR_Flash( _level ) \
767   sparc_flash_interrupts( _level )
768
769/*
770 *  Map interrupt level in task mode onto the hardware that the CPU
771 *  actually provides.  Currently, interrupt levels which do not
772 *  map onto the CPU in a straight fashion are undefined.
773 */
774
775#define _CPU_ISR_Set_level( _newlevel ) \
776   sparc_enable_interrupts( _newlevel)
777
778uint32_t   _CPU_ISR_Get_level( void );
779
780/* end of ISR handler macros */
781
782/* Context handler macros */
783
784/*
785 *  Initialize the context to a state suitable for starting a
786 *  task after a context restore operation.  Generally, this
787 *  involves:
788 *
789 *     - setting a starting address
790 *     - preparing the stack
791 *     - preparing the stack and frame pointers
792 *     - setting the proper interrupt level in the context
793 *     - initializing the floating point context
794 *
795 *  NOTE:  Implemented as a subroutine for the SPARC port.
796 */
797
798void _CPU_Context_Initialize(
799  Context_Control  *the_context,
800  void         *stack_base,
801  uint32_t          size,
802  uint32_t          new_level,
803  void             *entry_point,
804  bool              is_fp,
805  void             *tls_area
806);
807
808/*
809 *  This macro is invoked from _Thread_Handler to do whatever CPU
810 *  specific magic is required that must be done in the context of
811 *  the thread when it starts.
812 *
813 *  On the SPARC, this is setting the frame pointer so GDB is happy.
814 *  Make GDB stop unwinding at _Thread_Handler, previous register window
815 *  Frame pointer is 0 and calling address must be a function with starting
816 *  with a SAVE instruction. If return address is leaf-function (no SAVE)
817 *  GDB will not look at prev reg window fp.
818 *
819 *  _Thread_Handler is known to start with SAVE.
820 */
821
822#define _CPU_Context_Initialization_at_thread_begin() \
823  do { \
824    __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
825  } while (0)
826
827/*
828 *  This routine is responsible for somehow restarting the currently
829 *  executing task.
830 *
831 *  On the SPARC, this is is relatively painless but requires a small
832 *  amount of wrapper code before using the regular restore code in
833 *  of the context switch.
834 */
835
836#define _CPU_Context_Restart_self( _the_context ) \
837   _CPU_Context_restore( (_the_context) );
838
839/*
840 *  The FP context area for the SPARC is a simple structure and nothing
841 *  special is required to find the "starting load point"
842 */
843
844#define _CPU_Context_Fp_start( _base, _offset ) \
845   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
846
847/*
848 *  This routine initializes the FP context area passed to it to.
849 *
850 *  The SPARC allows us to use the simple initialization model
851 *  in which an "initial" FP context was saved into _CPU_Null_fp_context
852 *  at CPU initialization and it is simply copied into the destination
853 *  context.
854 */
855
856#define _CPU_Context_Initialize_fp( _destination ) \
857  do { \
858   *(*(_destination)) = _CPU_Null_fp_context; \
859  } while (0)
860
861/* end of Context handler macros */
862
863/* Fatal Error manager macros */
864
865/*
866 *  This routine copies _error into a known place -- typically a stack
867 *  location or a register, optionally disables interrupts, and
868 *  halts/stops the CPU.
869 */
870
871#define _CPU_Fatal_halt( _source, _error ) \
872  do { \
873    uint32_t   level; \
874    \
875    level = sparc_disable_interrupts(); \
876    __asm__ volatile ( "mov  %0, %%g1 " : "=r" (level) : "0" (level) ); \
877    while (1); /* loop forever */ \
878  } while (0)
879
880/* end of Fatal Error manager macros */
881
882/* Bitfield handler macros */
883
884/*
885 *  The SPARC port uses the generic C algorithm for bitfield scan if the
886 *  CPU model does not have a scan instruction.
887 */
888
889#if ( SPARC_HAS_BITSCAN == 0 )
890#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
891#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
892#else
893#error "scan instruction not currently supported by RTEMS!!"
894#endif
895
896/* end of Bitfield handler macros */
897
898/* Priority handler handler macros */
899
900/*
901 *  The SPARC port uses the generic C algorithm for bitfield scan if the
902 *  CPU model does not have a scan instruction.
903 */
904
905#if ( SPARC_HAS_BITSCAN == 1 )
906#error "scan instruction not currently supported by RTEMS!!"
907#endif
908
909/* end of Priority handler macros */
910
911/* functions */
912
913/*
914 *  _CPU_Initialize
915 *
916 *  This routine performs CPU dependent initialization.
917 */
918
919void _CPU_Initialize(void);
920
921/*
922 *  _CPU_ISR_install_raw_handler
923 *
924 *  This routine installs new_handler to be directly called from the trap
925 *  table.
926 */
927
928void _CPU_ISR_install_raw_handler(
929  uint32_t    vector,
930  proc_ptr    new_handler,
931  proc_ptr   *old_handler
932);
933
934/*
935 *  _CPU_ISR_install_vector
936 *
937 *  This routine installs an interrupt vector.
938 */
939
940void _CPU_ISR_install_vector(
941  uint64_t    vector,
942  proc_ptr    new_handler,
943  proc_ptr   *old_handler
944);
945
946#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
947
948/*
949 *  _CPU_Thread_Idle_body
950 *
951 *  Some SPARC implementations have low power, sleep, or idle modes.  This
952 *  tries to take advantage of those models.
953 */
954
955void *_CPU_Thread_Idle_body( uintptr_t ignored );
956
957#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
958
959/*
960 *  _CPU_Context_switch
961 *
962 *  This routine switches from the run context to the heir context.
963 */
964
965void _CPU_Context_switch(
966  Context_Control  *run,
967  Context_Control  *heir
968);
969
970/*
971 *  _CPU_Context_restore
972 *
973 *  This routine is generally used only to restart self in an
974 *  efficient manner.
975 */
976
977void _CPU_Context_restore(
978  Context_Control *new_context
979) RTEMS_NO_RETURN;
980
981/*
982 *  _CPU_Context_save_fp
983 *
984 *  This routine saves the floating point context passed to it.
985 */
986
987void _CPU_Context_save_fp(
988  Context_Control_fp **fp_context_ptr
989);
990
991/*
992 *  _CPU_Context_restore_fp
993 *
994 *  This routine restores the floating point context passed to it.
995 */
996
997void _CPU_Context_restore_fp(
998  Context_Control_fp **fp_context_ptr
999);
1000
1001static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
1002{
1003  /* TODO */
1004}
1005
1006static inline void _CPU_Context_validate( uintptr_t pattern )
1007{
1008  while (1) {
1009    /* TODO */
1010  }
1011}
1012
1013/* FIXME */
1014typedef CPU_Interrupt_frame CPU_Exception_frame;
1015
1016void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1017
1018/*
1019 *  CPU_swap_u32
1020 *
1021 *  The following routine swaps the endian format of an unsigned int.
1022 *  It must be static because it is referenced indirectly.
1023 *
1024 *  This version will work on any processor, but if you come across a better
1025 *  way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
1026 *  entity as shown below is not any more efficient on the SPARC.
1027 *
1028 *     swap least significant two bytes with 16-bit rotate
1029 *     swap upper and lower 16-bits
1030 *     swap most significant two bytes with 16-bit rotate
1031 *
1032 *  It is not obvious how the SPARC can do significantly better than the
1033 *  generic code.  gcc 2.7.0 only generates about 12 instructions for the
1034 *  following code at optimization level four (i.e. -O4).
1035 */
1036
1037static inline uint32_t CPU_swap_u32(
1038  uint32_t value
1039)
1040{
1041  uint32_t   byte1, byte2, byte3, byte4, swapped;
1042
1043  byte4 = (value >> 24) & 0xff;
1044  byte3 = (value >> 16) & 0xff;
1045  byte2 = (value >> 8)  & 0xff;
1046  byte1 =  value        & 0xff;
1047
1048  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1049  return( swapped );
1050}
1051
1052#define CPU_swap_u16( value ) \
1053  (((value&0xff) << 8) | ((value >> 8)&0xff))
1054
1055typedef uint32_t CPU_Counter_ticks;
1056
1057CPU_Counter_ticks _CPU_Counter_read( void );
1058
1059static inline CPU_Counter_ticks _CPU_Counter_difference(
1060  CPU_Counter_ticks second,
1061  CPU_Counter_ticks first
1062)
1063{
1064  return second - first;
1065}
1066
1067#endif /* ASM */
1068
1069#ifdef __cplusplus
1070}
1071#endif
1072
1073#endif
Note: See TracBrowser for help on using the repository browser.