1 | /** |
---|
2 | * @file |
---|
3 | * |
---|
4 | * @brief SPARC64 CPU Department Source |
---|
5 | * |
---|
6 | * This include file contains information pertaining to the port of |
---|
7 | * the executive to the SPARC64 processor. |
---|
8 | */ |
---|
9 | |
---|
10 | /* |
---|
11 | * |
---|
12 | * |
---|
13 | * COPYRIGHT (c) 1989-2006. On-Line Applications Research Corporation (OAR). |
---|
14 | * |
---|
15 | * This file is based on the SPARC cpu.h file. Modifications are made |
---|
16 | * to support the SPARC64 processor. |
---|
17 | * COPYRIGHT (c) 2010. Gedare Bloom. |
---|
18 | * |
---|
19 | * The license and distribution terms for this file may be |
---|
20 | * found in the file LICENSE in this distribution or at |
---|
21 | * http://www.rtems.org/license/LICENSE. |
---|
22 | */ |
---|
23 | |
---|
24 | #ifndef _RTEMS_SCORE_CPU_H |
---|
25 | #define _RTEMS_SCORE_CPU_H |
---|
26 | |
---|
27 | #ifdef __cplusplus |
---|
28 | extern "C" { |
---|
29 | #endif |
---|
30 | |
---|
31 | #include <rtems/score/basedefs.h> |
---|
32 | #include <rtems/score/sparc64.h> |
---|
33 | |
---|
34 | /* conditional compilation parameters */ |
---|
35 | |
---|
36 | /* |
---|
37 | * Does the executive manage a dedicated interrupt stack in software? |
---|
38 | * |
---|
39 | * If TRUE, then a stack is allocated in _ISR_Handler_initialization. |
---|
40 | * If FALSE, nothing is done. |
---|
41 | * |
---|
42 | * The SPARC does not have a dedicated HW interrupt stack and one has |
---|
43 | * been implemented in SW. |
---|
44 | */ |
---|
45 | |
---|
46 | #define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE |
---|
47 | |
---|
48 | /* |
---|
49 | * Does the CPU follow the simple vectored interrupt model? |
---|
50 | * |
---|
51 | * If TRUE, then RTEMS allocates the vector table it internally manages. |
---|
52 | * If FALSE, then the BSP is assumed to allocate and manage the vector |
---|
53 | * table |
---|
54 | * |
---|
55 | * SPARC Specific Information: |
---|
56 | * |
---|
57 | * XXX document implementation including references if appropriate |
---|
58 | */ |
---|
59 | #define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE |
---|
60 | |
---|
61 | /* |
---|
62 | * Does this CPU have hardware support for a dedicated interrupt stack? |
---|
63 | * |
---|
64 | * If TRUE, then it must be installed during initialization. |
---|
65 | * If FALSE, then no installation is performed. |
---|
66 | * |
---|
67 | * The SPARC does not have a dedicated HW interrupt stack. |
---|
68 | */ |
---|
69 | |
---|
70 | #define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE |
---|
71 | |
---|
72 | /* |
---|
73 | * Do we allocate a dedicated interrupt stack in the Interrupt Manager? |
---|
74 | * |
---|
75 | * If TRUE, then the memory is allocated during initialization. |
---|
76 | * If FALSE, then the memory is allocated during initialization. |
---|
77 | */ |
---|
78 | |
---|
79 | #define CPU_ALLOCATE_INTERRUPT_STACK TRUE |
---|
80 | |
---|
81 | /* |
---|
82 | * Does the RTEMS invoke the user's ISR with the vector number and |
---|
83 | * a pointer to the saved interrupt frame (1) or just the vector |
---|
84 | * number (0)? |
---|
85 | */ |
---|
86 | |
---|
87 | #define CPU_ISR_PASSES_FRAME_POINTER FALSE |
---|
88 | |
---|
89 | /* |
---|
90 | * Does the CPU have hardware floating point? |
---|
91 | * |
---|
92 | * If TRUE, then the FLOATING_POINT task attribute is supported. |
---|
93 | * If FALSE, then the FLOATING_POINT task attribute is ignored. |
---|
94 | */ |
---|
95 | |
---|
96 | #if ( SPARC_HAS_FPU == 1 ) |
---|
97 | #define CPU_HARDWARE_FP TRUE |
---|
98 | #else |
---|
99 | #define CPU_HARDWARE_FP FALSE |
---|
100 | #endif |
---|
101 | #define CPU_SOFTWARE_FP FALSE |
---|
102 | |
---|
103 | /* |
---|
104 | * Are all tasks FLOATING_POINT tasks implicitly? |
---|
105 | * |
---|
106 | * If TRUE, then the FLOATING_POINT task attribute is assumed. |
---|
107 | * If FALSE, then the FLOATING_POINT task attribute is followed. |
---|
108 | */ |
---|
109 | |
---|
110 | #define CPU_ALL_TASKS_ARE_FP FALSE |
---|
111 | |
---|
112 | /* |
---|
113 | * Should the IDLE task have a floating point context? |
---|
114 | * |
---|
115 | * If TRUE, then the IDLE task is created as a FLOATING_POINT task |
---|
116 | * and it has a floating point context which is switched in and out. |
---|
117 | * If FALSE, then the IDLE task does not have a floating point context. |
---|
118 | */ |
---|
119 | |
---|
120 | #define CPU_IDLE_TASK_IS_FP FALSE |
---|
121 | |
---|
122 | /* |
---|
123 | * Should the saving of the floating point registers be deferred |
---|
124 | * until a context switch is made to another different floating point |
---|
125 | * task? |
---|
126 | * |
---|
127 | * If TRUE, then the floating point context will not be stored until |
---|
128 | * necessary. It will remain in the floating point registers and not |
---|
129 | * disturned until another floating point task is switched to. |
---|
130 | * |
---|
131 | * If FALSE, then the floating point context is saved when a floating |
---|
132 | * point task is switched out and restored when the next floating point |
---|
133 | * task is restored. The state of the floating point registers between |
---|
134 | * those two operations is not specified. |
---|
135 | */ |
---|
136 | |
---|
137 | #define CPU_USE_DEFERRED_FP_SWITCH TRUE |
---|
138 | |
---|
139 | #define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE |
---|
140 | |
---|
141 | /* |
---|
142 | * Does this port provide a CPU dependent IDLE task implementation? |
---|
143 | * |
---|
144 | * If TRUE, then the routine _CPU_Thread_Idle_body |
---|
145 | * must be provided and is the default IDLE thread body instead of |
---|
146 | * _CPU_Thread_Idle_body. |
---|
147 | * |
---|
148 | * If FALSE, then use the generic IDLE thread body if the BSP does |
---|
149 | * not provide one. |
---|
150 | */ |
---|
151 | |
---|
152 | #define CPU_PROVIDES_IDLE_THREAD_BODY FALSE |
---|
153 | |
---|
154 | /* |
---|
155 | * Does the stack grow up (toward higher addresses) or down |
---|
156 | * (toward lower addresses)? |
---|
157 | * |
---|
158 | * If TRUE, then the grows upward. |
---|
159 | * If FALSE, then the grows toward smaller addresses. |
---|
160 | * |
---|
161 | * The stack grows to lower addresses on the SPARC. |
---|
162 | */ |
---|
163 | |
---|
164 | #define CPU_STACK_GROWS_UP FALSE |
---|
165 | |
---|
166 | /* FIXME: Is this the right value? */ |
---|
167 | #define CPU_CACHE_LINE_BYTES 32 |
---|
168 | |
---|
169 | /* |
---|
170 | * The following is the variable attribute used to force alignment |
---|
171 | * of critical data structures. On some processors it may make |
---|
172 | * sense to have these aligned on tighter boundaries than |
---|
173 | * the minimum requirements of the compiler in order to have as |
---|
174 | * much of the critical data area as possible in a cache line. |
---|
175 | * |
---|
176 | * The SPARC does not appear to have particularly strict alignment |
---|
177 | * requirements. This value (16) was chosen to take advantages of caches. |
---|
178 | * |
---|
179 | * SPARC 64 requirements on floating point alignment is at least 8, |
---|
180 | * and is 16 if quad-word fp instructions are available (e.g. LDQF). |
---|
181 | */ |
---|
182 | |
---|
183 | #define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( 16 ) |
---|
184 | |
---|
185 | /* |
---|
186 | * The following defines the number of bits actually used in the |
---|
187 | * interrupt field of the task mode. How those bits map to the |
---|
188 | * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level(). |
---|
189 | * |
---|
190 | * The SPARC v9 has 16 interrupt levels in the PIL field of the PSR. |
---|
191 | */ |
---|
192 | |
---|
193 | #define CPU_MODES_INTERRUPT_MASK 0x0000000F |
---|
194 | |
---|
195 | #define CPU_MAXIMUM_PROCESSORS 32 |
---|
196 | |
---|
197 | /* |
---|
198 | * This structure represents the organization of the minimum stack frame |
---|
199 | * for the SPARC. More framing information is required in certain situaions |
---|
200 | * such as when there are a large number of out parameters or when the callee |
---|
201 | * must save floating point registers. |
---|
202 | */ |
---|
203 | |
---|
204 | #ifndef ASM |
---|
205 | |
---|
206 | typedef struct { |
---|
207 | uint64_t l0; |
---|
208 | uint64_t l1; |
---|
209 | uint64_t l2; |
---|
210 | uint64_t l3; |
---|
211 | uint64_t l4; |
---|
212 | uint64_t l5; |
---|
213 | uint64_t l6; |
---|
214 | uint64_t l7; |
---|
215 | uint64_t i0; |
---|
216 | uint64_t i1; |
---|
217 | uint64_t i2; |
---|
218 | uint64_t i3; |
---|
219 | uint64_t i4; |
---|
220 | uint64_t i5; |
---|
221 | uint64_t i6_fp; |
---|
222 | uint64_t i7; |
---|
223 | void *structure_return_address; |
---|
224 | /* |
---|
225 | * The following are for the callee to save the register arguments in |
---|
226 | * should this be necessary. |
---|
227 | */ |
---|
228 | uint64_t saved_arg0; |
---|
229 | uint64_t saved_arg1; |
---|
230 | uint64_t saved_arg2; |
---|
231 | uint64_t saved_arg3; |
---|
232 | uint64_t saved_arg4; |
---|
233 | uint64_t saved_arg5; |
---|
234 | uint64_t pad0; |
---|
235 | } SPARC64_Minimum_stack_frame; |
---|
236 | |
---|
237 | #endif /* !ASM */ |
---|
238 | |
---|
239 | #define CPU_STACK_FRAME_L0_OFFSET 0x00 |
---|
240 | #define CPU_STACK_FRAME_L1_OFFSET 0x08 |
---|
241 | #define CPU_STACK_FRAME_L2_OFFSET 0x10 |
---|
242 | #define CPU_STACK_FRAME_L3_OFFSET 0x18 |
---|
243 | #define CPU_STACK_FRAME_L4_OFFSET 0x20 |
---|
244 | #define CPU_STACK_FRAME_L5_OFFSET 0x28 |
---|
245 | #define CPU_STACK_FRAME_L6_OFFSET 0x30 |
---|
246 | #define CPU_STACK_FRAME_L7_OFFSET 0x38 |
---|
247 | #define CPU_STACK_FRAME_I0_OFFSET 0x40 |
---|
248 | #define CPU_STACK_FRAME_I1_OFFSET 0x48 |
---|
249 | #define CPU_STACK_FRAME_I2_OFFSET 0x50 |
---|
250 | #define CPU_STACK_FRAME_I3_OFFSET 0x58 |
---|
251 | #define CPU_STACK_FRAME_I4_OFFSET 0x60 |
---|
252 | #define CPU_STACK_FRAME_I5_OFFSET 0x68 |
---|
253 | #define CPU_STACK_FRAME_I6_FP_OFFSET 0x70 |
---|
254 | #define CPU_STACK_FRAME_I7_OFFSET 0x78 |
---|
255 | #define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET 0x80 |
---|
256 | #define CPU_STACK_FRAME_SAVED_ARG0_OFFSET 0x88 |
---|
257 | #define CPU_STACK_FRAME_SAVED_ARG1_OFFSET 0x90 |
---|
258 | #define CPU_STACK_FRAME_SAVED_ARG2_OFFSET 0x98 |
---|
259 | #define CPU_STACK_FRAME_SAVED_ARG3_OFFSET 0xA0 |
---|
260 | #define CPU_STACK_FRAME_SAVED_ARG4_OFFSET 0xA8 |
---|
261 | #define CPU_STACK_FRAME_SAVED_ARG5_OFFSET 0xB0 |
---|
262 | #define CPU_STACK_FRAME_PAD0_OFFSET 0xB8 |
---|
263 | |
---|
264 | #define SPARC64_MINIMUM_STACK_FRAME_SIZE 0xC0 |
---|
265 | |
---|
266 | /* |
---|
267 | * Contexts |
---|
268 | * |
---|
269 | * Generally there are 2 types of context to save. |
---|
270 | * 1. Interrupt registers to save |
---|
271 | * 2. Task level registers to save |
---|
272 | * |
---|
273 | * This means we have the following 3 context items: |
---|
274 | * 1. task level context stuff:: Context_Control |
---|
275 | * 2. floating point task stuff:: Context_Control_fp |
---|
276 | * 3. special interrupt level context :: Context_Control_interrupt |
---|
277 | * |
---|
278 | * On the SPARC, we are relatively conservative in that we save most |
---|
279 | * of the CPU state in the context area. The ET (enable trap) bit and |
---|
280 | * the CWP (current window pointer) fields of the PSR are considered |
---|
281 | * system wide resources and are not maintained on a per-thread basis. |
---|
282 | */ |
---|
283 | |
---|
284 | #ifndef ASM |
---|
285 | |
---|
286 | typedef struct { |
---|
287 | uint64_t g1; |
---|
288 | uint64_t g2; |
---|
289 | uint64_t g3; |
---|
290 | uint64_t g4; |
---|
291 | uint64_t g5; |
---|
292 | uint64_t g6; |
---|
293 | uint64_t g7; |
---|
294 | |
---|
295 | uint64_t l0; |
---|
296 | uint64_t l1; |
---|
297 | uint64_t l2; |
---|
298 | uint64_t l3; |
---|
299 | uint64_t l4; |
---|
300 | uint64_t l5; |
---|
301 | uint64_t l6; |
---|
302 | uint64_t l7; |
---|
303 | |
---|
304 | uint64_t i0; |
---|
305 | uint64_t i1; |
---|
306 | uint64_t i2; |
---|
307 | uint64_t i3; |
---|
308 | uint64_t i4; |
---|
309 | uint64_t i5; |
---|
310 | uint64_t i6_fp; |
---|
311 | uint64_t i7; |
---|
312 | |
---|
313 | uint64_t o0; |
---|
314 | uint64_t o1; |
---|
315 | uint64_t o2; |
---|
316 | uint64_t o3; |
---|
317 | uint64_t o4; |
---|
318 | uint64_t o5; |
---|
319 | uint64_t o6_sp; |
---|
320 | uint64_t o7; |
---|
321 | |
---|
322 | uint32_t isr_dispatch_disable; |
---|
323 | uint32_t pad; |
---|
324 | } Context_Control; |
---|
325 | |
---|
326 | #define _CPU_Context_Get_SP( _context ) \ |
---|
327 | (_context)->o6_sp |
---|
328 | |
---|
329 | #endif /* ASM */ |
---|
330 | |
---|
331 | /* |
---|
332 | * Offsets of fields with Context_Control for assembly routines. |
---|
333 | */ |
---|
334 | |
---|
335 | #define G1_OFFSET 0x00 |
---|
336 | #define G2_OFFSET 0x08 |
---|
337 | #define G3_OFFSET 0x10 |
---|
338 | #define G4_OFFSET 0x18 |
---|
339 | #define G5_OFFSET 0x20 |
---|
340 | #define G6_OFFSET 0x28 |
---|
341 | #define G7_OFFSET 0x30 |
---|
342 | |
---|
343 | #define L0_OFFSET 0x38 |
---|
344 | #define L1_OFFSET 0x40 |
---|
345 | #define L2_OFFSET 0x48 |
---|
346 | #define L3_OFFSET 0x50 |
---|
347 | #define L4_OFFSET 0x58 |
---|
348 | #define L5_OFFSET 0x60 |
---|
349 | #define L6_OFFSET 0x68 |
---|
350 | #define L7_OFFSET 0x70 |
---|
351 | |
---|
352 | #define I0_OFFSET 0x78 |
---|
353 | #define I1_OFFSET 0x80 |
---|
354 | #define I2_OFFSET 0x88 |
---|
355 | #define I3_OFFSET 0x90 |
---|
356 | #define I4_OFFSET 0x98 |
---|
357 | #define I5_OFFSET 0xA0 |
---|
358 | #define I6_FP_OFFSET 0xA8 |
---|
359 | #define I7_OFFSET 0xB0 |
---|
360 | |
---|
361 | #define O0_OFFSET 0xB8 |
---|
362 | #define O1_OFFSET 0xC0 |
---|
363 | #define O2_OFFSET 0xC8 |
---|
364 | #define O3_OFFSET 0xD0 |
---|
365 | #define O4_OFFSET 0xD8 |
---|
366 | #define O5_OFFSET 0xE0 |
---|
367 | #define O6_SP_OFFSET 0xE8 |
---|
368 | #define O7_OFFSET 0xF0 |
---|
369 | |
---|
370 | #define ISR_DISPATCH_DISABLE_STACK_OFFSET 0xF8 |
---|
371 | #define ISR_PAD_OFFSET 0xFC |
---|
372 | |
---|
373 | /* |
---|
374 | * The floating point context area. |
---|
375 | */ |
---|
376 | |
---|
377 | #ifndef ASM |
---|
378 | |
---|
379 | typedef struct { |
---|
380 | double f0; /* f0-f1 */ |
---|
381 | double f2; /* f2-f3 */ |
---|
382 | double f4; /* f4-f5 */ |
---|
383 | double f6; /* f6-f7 */ |
---|
384 | double f8; /* f8-f9 */ |
---|
385 | double f10; /* f10-f11 */ |
---|
386 | double f12; /* f12-f13 */ |
---|
387 | double f14; /* f14-f15 */ |
---|
388 | double f16; /* f16-f17 */ |
---|
389 | double f18; /* f18-f19 */ |
---|
390 | double f20; /* f20-f21 */ |
---|
391 | double f22; /* f22-f23 */ |
---|
392 | double f24; /* f24-f25 */ |
---|
393 | double f26; /* f26-f27 */ |
---|
394 | double f28; /* f28-f29 */ |
---|
395 | double f30; /* f30-f31 */ |
---|
396 | double f32; |
---|
397 | double f34; |
---|
398 | double f36; |
---|
399 | double f38; |
---|
400 | double f40; |
---|
401 | double f42; |
---|
402 | double f44; |
---|
403 | double f46; |
---|
404 | double f48; |
---|
405 | double f50; |
---|
406 | double f52; |
---|
407 | double f54; |
---|
408 | double f56; |
---|
409 | double f58; |
---|
410 | double f60; |
---|
411 | double f62; |
---|
412 | uint64_t fsr; |
---|
413 | } Context_Control_fp; |
---|
414 | |
---|
415 | #endif /* !ASM */ |
---|
416 | |
---|
417 | /* |
---|
418 | * Offsets of fields with Context_Control_fp for assembly routines. |
---|
419 | */ |
---|
420 | |
---|
421 | #define FO_OFFSET 0x00 |
---|
422 | #define F2_OFFSET 0x08 |
---|
423 | #define F4_OFFSET 0x10 |
---|
424 | #define F6_OFFSET 0x18 |
---|
425 | #define F8_OFFSET 0x20 |
---|
426 | #define F1O_OFFSET 0x28 |
---|
427 | #define F12_OFFSET 0x30 |
---|
428 | #define F14_OFFSET 0x38 |
---|
429 | #define F16_OFFSET 0x40 |
---|
430 | #define F18_OFFSET 0x48 |
---|
431 | #define F2O_OFFSET 0x50 |
---|
432 | #define F22_OFFSET 0x58 |
---|
433 | #define F24_OFFSET 0x60 |
---|
434 | #define F26_OFFSET 0x68 |
---|
435 | #define F28_OFFSET 0x70 |
---|
436 | #define F3O_OFFSET 0x78 |
---|
437 | #define F32_OFFSET 0x80 |
---|
438 | #define F34_OFFSET 0x88 |
---|
439 | #define F36_OFFSET 0x90 |
---|
440 | #define F38_OFFSET 0x98 |
---|
441 | #define F4O_OFFSET 0xA0 |
---|
442 | #define F42_OFFSET 0xA8 |
---|
443 | #define F44_OFFSET 0xB0 |
---|
444 | #define F46_OFFSET 0xB8 |
---|
445 | #define F48_OFFSET 0xC0 |
---|
446 | #define F5O_OFFSET 0xC8 |
---|
447 | #define F52_OFFSET 0xD0 |
---|
448 | #define F54_OFFSET 0xD8 |
---|
449 | #define F56_OFFSET 0xE0 |
---|
450 | #define F58_OFFSET 0xE8 |
---|
451 | #define F6O_OFFSET 0xF0 |
---|
452 | #define F62_OFFSET 0xF8 |
---|
453 | #define FSR_OFFSET 0x100 |
---|
454 | |
---|
455 | #define CONTEXT_CONTROL_FP_SIZE 0x108 |
---|
456 | |
---|
457 | #ifndef ASM |
---|
458 | |
---|
459 | /* |
---|
460 | * Context saved on stack for an interrupt. |
---|
461 | * |
---|
462 | * NOTE: The tstate, tpc, and tnpc are saved in this structure |
---|
463 | * to allow resetting the TL while still being able to return |
---|
464 | * from a trap later. The PIL is saved because |
---|
465 | * if this is an external interrupt, we will mask lower |
---|
466 | * priority interrupts until finishing. Even though the y register |
---|
467 | * is deprecated, gcc still uses it. |
---|
468 | */ |
---|
469 | |
---|
470 | typedef struct { |
---|
471 | SPARC64_Minimum_stack_frame Stack_frame; |
---|
472 | uint64_t tstate; |
---|
473 | uint64_t tpc; |
---|
474 | uint64_t tnpc; |
---|
475 | uint64_t pil; |
---|
476 | uint64_t y; |
---|
477 | uint64_t g1; |
---|
478 | uint64_t g2; |
---|
479 | uint64_t g3; |
---|
480 | uint64_t g4; |
---|
481 | uint64_t g5; |
---|
482 | uint64_t g6; |
---|
483 | uint64_t g7; |
---|
484 | uint64_t o0; |
---|
485 | uint64_t o1; |
---|
486 | uint64_t o2; |
---|
487 | uint64_t o3; |
---|
488 | uint64_t o4; |
---|
489 | uint64_t o5; |
---|
490 | uint64_t o6_sp; |
---|
491 | uint64_t o7; |
---|
492 | uint64_t tvec; |
---|
493 | } CPU_Interrupt_frame; |
---|
494 | |
---|
495 | #endif /* ASM */ |
---|
496 | |
---|
497 | /* |
---|
498 | * Offsets of fields with CPU_Interrupt_frame for assembly routines. |
---|
499 | */ |
---|
500 | |
---|
501 | #define ISF_TSTATE_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x00 |
---|
502 | #define ISF_TPC_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x08 |
---|
503 | #define ISF_TNPC_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x10 |
---|
504 | #define ISF_PIL_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x18 |
---|
505 | #define ISF_Y_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x20 |
---|
506 | #define ISF_G1_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x28 |
---|
507 | #define ISF_G2_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x30 |
---|
508 | #define ISF_G3_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x38 |
---|
509 | #define ISF_G4_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x40 |
---|
510 | #define ISF_G5_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x48 |
---|
511 | #define ISF_G6_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x50 |
---|
512 | #define ISF_G7_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x58 |
---|
513 | #define ISF_O0_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x60 |
---|
514 | #define ISF_O1_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x68 |
---|
515 | #define ISF_O2_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x70 |
---|
516 | #define ISF_O3_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x78 |
---|
517 | #define ISF_O4_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x80 |
---|
518 | #define ISF_O5_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x88 |
---|
519 | #define ISF_O6_SP_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x90 |
---|
520 | #define ISF_O7_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0x98 |
---|
521 | #define ISF_TVEC_OFFSET SPARC64_MINIMUM_STACK_FRAME_SIZE + 0xA0 |
---|
522 | |
---|
523 | #define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE SPARC64_MINIMUM_STACK_FRAME_SIZE + 0xA8 |
---|
524 | #ifndef ASM |
---|
525 | /* |
---|
526 | * This variable is contains the initialize context for the FP unit. |
---|
527 | * It is filled in by _CPU_Initialize and copied into the task's FP |
---|
528 | * context area during _CPU_Context_Initialize. |
---|
529 | */ |
---|
530 | |
---|
531 | extern Context_Control_fp _CPU_Null_fp_context; |
---|
532 | |
---|
533 | /* |
---|
534 | * This flag is context switched with each thread. It indicates |
---|
535 | * that THIS thread has an _ISR_Dispatch stack frame on its stack. |
---|
536 | * By using this flag, we can avoid nesting more interrupt dispatching |
---|
537 | * attempts on a previously interrupted thread's stack. |
---|
538 | */ |
---|
539 | |
---|
540 | extern volatile uint32_t _CPU_ISR_Dispatch_disable; |
---|
541 | |
---|
542 | /* |
---|
543 | * The following type defines an entry in the SPARC's trap table. |
---|
544 | * |
---|
545 | * NOTE: The instructions chosen are RTEMS dependent although one is |
---|
546 | * obligated to use two of the four instructions to perform a |
---|
547 | * long jump. The other instructions load one register with the |
---|
548 | * trap type (a.k.a. vector) and another with the psr. |
---|
549 | */ |
---|
550 | /* For SPARC V9, we must use 6 of these instructions to perform a long |
---|
551 | * jump, because the _handler value is now 64-bits. We also need to store |
---|
552 | * temporary values in the global register set at this trap level. Because |
---|
553 | * the handler runs at TL > 0 with GL > 0, it should be OK to use g2 and g3 |
---|
554 | * to pass parameters to ISR_Handler. |
---|
555 | * |
---|
556 | * The instruction sequence is now more like: |
---|
557 | * rdpr %tstate, %g4 |
---|
558 | * setx _handler, %g2, %g3 |
---|
559 | * jmp %g3+0 |
---|
560 | * mov _vector, %g2 |
---|
561 | */ |
---|
562 | typedef struct { |
---|
563 | uint32_t rdpr_tstate_g4; /* rdpr %tstate, %g4 */ |
---|
564 | uint32_t sethi_of_hh_handler_to_g2; /* sethi %hh(_handler), %g2 */ |
---|
565 | uint32_t or_g2_hm_handler_to_g2; /* or %l3, %hm(_handler), %g2 */ |
---|
566 | uint32_t sllx_g2_by_32_to_g2; /* sllx %g2, 32, %g2 */ |
---|
567 | uint32_t sethi_of_handler_to_g3; /* sethi %hi(_handler), %g3 */ |
---|
568 | uint32_t or_g3_g2_to_g3; /* or %g3, %g2, %g3 */ |
---|
569 | uint32_t jmp_to_low_of_handler_plus_g3; /* jmp %g3 + %lo(_handler) */ |
---|
570 | uint32_t mov_vector_g2; /* mov _vector, %g2 */ |
---|
571 | } CPU_Trap_table_entry; |
---|
572 | |
---|
573 | /* |
---|
574 | * This is the set of opcodes for the instructions loaded into a trap |
---|
575 | * table entry. The routine which installs a handler is responsible |
---|
576 | * for filling in the fields for the _handler address and the _vector |
---|
577 | * trap type. |
---|
578 | * |
---|
579 | * The constants following this structure are masks for the fields which |
---|
580 | * must be filled in when the handler is installed. |
---|
581 | */ |
---|
582 | |
---|
583 | extern const CPU_Trap_table_entry _CPU_Trap_slot_template; |
---|
584 | |
---|
585 | /* |
---|
586 | * The size of the floating point context area. |
---|
587 | */ |
---|
588 | |
---|
589 | #define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) |
---|
590 | |
---|
591 | #endif |
---|
592 | |
---|
593 | /* |
---|
594 | * Amount of extra stack (above minimum stack size) required by |
---|
595 | * MPCI receive server thread. Remember that in a multiprocessor |
---|
596 | * system this thread must exist and be able to process all directives. |
---|
597 | */ |
---|
598 | |
---|
599 | #define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024 |
---|
600 | |
---|
601 | /* |
---|
602 | * This defines the number of entries in the ISR_Vector_table managed |
---|
603 | * by the executive. |
---|
604 | * |
---|
605 | * On the SPARC, there are really only 256 vectors. However, the executive |
---|
606 | * has no easy, fast, reliable way to determine which traps are synchronous |
---|
607 | * and which are asynchronous. By default, synchronous traps return to the |
---|
608 | * instruction which caused the interrupt. So if you install a software |
---|
609 | * trap handler as an executive interrupt handler (which is desirable since |
---|
610 | * RTEMS takes care of window and register issues), then the executive needs |
---|
611 | * to know that the return address is to the trap rather than the instruction |
---|
612 | * following the trap. |
---|
613 | * |
---|
614 | * So vectors 0 through 255 are treated as regular asynchronous traps which |
---|
615 | * provide the "correct" return address. Vectors 256 through 512 are assumed |
---|
616 | * by the executive to be synchronous and to require that the return address |
---|
617 | * be fudged. |
---|
618 | * |
---|
619 | * If you use this mechanism to install a trap handler which must reexecute |
---|
620 | * the instruction which caused the trap, then it should be installed as |
---|
621 | * an asynchronous trap. This will avoid the executive changing the return |
---|
622 | * address. |
---|
623 | */ |
---|
624 | /* On SPARC v9, there are 512 vectors. The same philosophy applies to |
---|
625 | * vector installation and use, we just provide a larger table. |
---|
626 | */ |
---|
627 | #define CPU_INTERRUPT_NUMBER_OF_VECTORS 512 |
---|
628 | #define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 1023 |
---|
629 | |
---|
630 | #define SPARC_SYNCHRONOUS_TRAP_BIT_MASK 0x200 |
---|
631 | #define SPARC_ASYNCHRONOUS_TRAP( _trap ) (_trap) |
---|
632 | #define SPARC_SYNCHRONOUS_TRAP( _trap ) ((_trap) + 512 ) |
---|
633 | |
---|
634 | #define SPARC_REAL_TRAP_NUMBER( _trap ) ((_trap) % 512) |
---|
635 | |
---|
636 | /* |
---|
637 | * This is defined if the port has a special way to report the ISR nesting |
---|
638 | * level. Most ports maintain the variable _ISR_Nest_level. |
---|
639 | */ |
---|
640 | |
---|
641 | #define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE |
---|
642 | |
---|
643 | /* |
---|
644 | * Should be large enough to run all tests. This ensures |
---|
645 | * that a "reasonable" small application should not have any problems. |
---|
646 | * |
---|
647 | * This appears to be a fairly generous number for the SPARC since |
---|
648 | * represents a call depth of about 20 routines based on the minimum |
---|
649 | * stack frame. |
---|
650 | */ |
---|
651 | |
---|
652 | #define CPU_STACK_MINIMUM_SIZE (1024*8) |
---|
653 | |
---|
654 | #define CPU_SIZEOF_POINTER 8 |
---|
655 | |
---|
656 | /* |
---|
657 | * CPU's worst alignment requirement for data types on a byte boundary. This |
---|
658 | * alignment does not take into account the requirements for the stack. |
---|
659 | * |
---|
660 | * On the SPARC, this is required for double word loads and stores. |
---|
661 | * |
---|
662 | * Note: quad-word loads/stores need alignment of 16, but currently supported |
---|
663 | * architectures do not provide HW implemented quad-word operations. |
---|
664 | */ |
---|
665 | |
---|
666 | #define CPU_ALIGNMENT 8 |
---|
667 | |
---|
668 | /* |
---|
669 | * This number corresponds to the byte alignment requirement for the |
---|
670 | * heap handler. This alignment requirement may be stricter than that |
---|
671 | * for the data types alignment specified by CPU_ALIGNMENT. It is |
---|
672 | * common for the heap to follow the same alignment requirement as |
---|
673 | * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, |
---|
674 | * then this should be set to CPU_ALIGNMENT. |
---|
675 | * |
---|
676 | * NOTE: This does not have to be a power of 2. It does have to |
---|
677 | * be greater or equal to than CPU_ALIGNMENT. |
---|
678 | */ |
---|
679 | |
---|
680 | #define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT |
---|
681 | |
---|
682 | /* |
---|
683 | * This number corresponds to the byte alignment requirement for memory |
---|
684 | * buffers allocated by the partition manager. This alignment requirement |
---|
685 | * may be stricter than that for the data types alignment specified by |
---|
686 | * CPU_ALIGNMENT. It is common for the partition to follow the same |
---|
687 | * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict |
---|
688 | * enough for the partition, then this should be set to CPU_ALIGNMENT. |
---|
689 | * |
---|
690 | * NOTE: This does not have to be a power of 2. It does have to |
---|
691 | * be greater or equal to than CPU_ALIGNMENT. |
---|
692 | */ |
---|
693 | |
---|
694 | #define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT |
---|
695 | |
---|
696 | /* |
---|
697 | * This number corresponds to the byte alignment requirement for the |
---|
698 | * stack. This alignment requirement may be stricter than that for the |
---|
699 | * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT |
---|
700 | * is strict enough for the stack, then this should be set to 0. |
---|
701 | * |
---|
702 | * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT. |
---|
703 | * |
---|
704 | * The alignment restrictions for the SPARC are not that strict but this |
---|
705 | * should unsure that the stack is always sufficiently alignment that the |
---|
706 | * window overflow, underflow, and flush routines can use double word loads |
---|
707 | * and stores. |
---|
708 | */ |
---|
709 | |
---|
710 | #define CPU_STACK_ALIGNMENT 16 |
---|
711 | |
---|
712 | #ifndef ASM |
---|
713 | |
---|
714 | /* |
---|
715 | * ISR handler macros |
---|
716 | */ |
---|
717 | |
---|
718 | /* |
---|
719 | * Support routine to initialize the RTEMS vector table after it is allocated. |
---|
720 | */ |
---|
721 | |
---|
722 | #define _CPU_Initialize_vectors() |
---|
723 | |
---|
724 | /* |
---|
725 | * Disable all interrupts for a critical section. The previous |
---|
726 | * level is returned in _level. |
---|
727 | */ |
---|
728 | |
---|
729 | #define _CPU_ISR_Disable( _level ) \ |
---|
730 | (_level) = sparc_disable_interrupts() |
---|
731 | |
---|
732 | /* |
---|
733 | * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). |
---|
734 | * This indicates the end of a critical section. The parameter |
---|
735 | * _level is not modified. |
---|
736 | */ |
---|
737 | |
---|
738 | #define _CPU_ISR_Enable( _level ) \ |
---|
739 | sparc_enable_interrupts( _level ) |
---|
740 | |
---|
741 | /* |
---|
742 | * This temporarily restores the interrupt to _level before immediately |
---|
743 | * disabling them again. This is used to divide long critical |
---|
744 | * sections into two or more parts. The parameter _level is not |
---|
745 | * modified. |
---|
746 | */ |
---|
747 | |
---|
748 | #define _CPU_ISR_Flash( _level ) \ |
---|
749 | sparc_flash_interrupts( _level ) |
---|
750 | |
---|
751 | RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level ) |
---|
752 | { |
---|
753 | return ( level & SPARC_PSTATE_IE_MASK ) != 0; |
---|
754 | } |
---|
755 | |
---|
756 | /* |
---|
757 | * Map interrupt level in task mode onto the hardware that the CPU |
---|
758 | * actually provides. Currently, interrupt levels which do not |
---|
759 | * map onto the CPU in a straight fashion are undefined. |
---|
760 | */ |
---|
761 | |
---|
762 | #define _CPU_ISR_Set_level( _newlevel ) \ |
---|
763 | sparc_enable_interrupts( _newlevel) |
---|
764 | |
---|
765 | uint32_t _CPU_ISR_Get_level( void ); |
---|
766 | |
---|
767 | /* end of ISR handler macros */ |
---|
768 | |
---|
769 | /* Context handler macros */ |
---|
770 | |
---|
771 | /* |
---|
772 | * Initialize the context to a state suitable for starting a |
---|
773 | * task after a context restore operation. Generally, this |
---|
774 | * involves: |
---|
775 | * |
---|
776 | * - setting a starting address |
---|
777 | * - preparing the stack |
---|
778 | * - preparing the stack and frame pointers |
---|
779 | * - setting the proper interrupt level in the context |
---|
780 | * - initializing the floating point context |
---|
781 | * |
---|
782 | * NOTE: Implemented as a subroutine for the SPARC port. |
---|
783 | */ |
---|
784 | |
---|
785 | void _CPU_Context_Initialize( |
---|
786 | Context_Control *the_context, |
---|
787 | void *stack_base, |
---|
788 | uint32_t size, |
---|
789 | uint32_t new_level, |
---|
790 | void *entry_point, |
---|
791 | bool is_fp, |
---|
792 | void *tls_area |
---|
793 | ); |
---|
794 | |
---|
795 | /* |
---|
796 | * This macro is invoked from _Thread_Handler to do whatever CPU |
---|
797 | * specific magic is required that must be done in the context of |
---|
798 | * the thread when it starts. |
---|
799 | * |
---|
800 | * On the SPARC, this is setting the frame pointer so GDB is happy. |
---|
801 | * Make GDB stop unwinding at _Thread_Handler, previous register window |
---|
802 | * Frame pointer is 0 and calling address must be a function with starting |
---|
803 | * with a SAVE instruction. If return address is leaf-function (no SAVE) |
---|
804 | * GDB will not look at prev reg window fp. |
---|
805 | * |
---|
806 | * _Thread_Handler is known to start with SAVE. |
---|
807 | */ |
---|
808 | |
---|
809 | #define _CPU_Context_Initialization_at_thread_begin() \ |
---|
810 | do { \ |
---|
811 | __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \ |
---|
812 | } while (0) |
---|
813 | |
---|
814 | /* |
---|
815 | * This routine is responsible for somehow restarting the currently |
---|
816 | * executing task. |
---|
817 | * |
---|
818 | * On the SPARC, this is is relatively painless but requires a small |
---|
819 | * amount of wrapper code before using the regular restore code in |
---|
820 | * of the context switch. |
---|
821 | */ |
---|
822 | |
---|
823 | #define _CPU_Context_Restart_self( _the_context ) \ |
---|
824 | _CPU_Context_restore( (_the_context) ); |
---|
825 | |
---|
826 | /* |
---|
827 | * This routine initializes the FP context area passed to it to. |
---|
828 | * |
---|
829 | * The SPARC allows us to use the simple initialization model |
---|
830 | * in which an "initial" FP context was saved into _CPU_Null_fp_context |
---|
831 | * at CPU initialization and it is simply copied into the destination |
---|
832 | * context. |
---|
833 | */ |
---|
834 | |
---|
835 | #define _CPU_Context_Initialize_fp( _destination ) \ |
---|
836 | do { \ |
---|
837 | *(*(_destination)) = _CPU_Null_fp_context; \ |
---|
838 | } while (0) |
---|
839 | |
---|
840 | /* end of Context handler macros */ |
---|
841 | |
---|
842 | /* Fatal Error manager macros */ |
---|
843 | |
---|
844 | /* |
---|
845 | * This routine copies _error into a known place -- typically a stack |
---|
846 | * location or a register, optionally disables interrupts, and |
---|
847 | * halts/stops the CPU. |
---|
848 | */ |
---|
849 | |
---|
850 | #define _CPU_Fatal_halt( _source, _error ) \ |
---|
851 | do { \ |
---|
852 | uint32_t level; \ |
---|
853 | \ |
---|
854 | level = sparc_disable_interrupts(); \ |
---|
855 | __asm__ volatile ( "mov %0, %%g1 " : "=r" (level) : "0" (level) ); \ |
---|
856 | while (1); /* loop forever */ \ |
---|
857 | } while (0) |
---|
858 | |
---|
859 | /* end of Fatal Error manager macros */ |
---|
860 | |
---|
861 | /* Bitfield handler macros */ |
---|
862 | |
---|
863 | /* |
---|
864 | * The SPARC port uses the generic C algorithm for bitfield scan if the |
---|
865 | * CPU model does not have a scan instruction. |
---|
866 | */ |
---|
867 | |
---|
868 | #if ( SPARC_HAS_BITSCAN == 0 ) |
---|
869 | #define CPU_USE_GENERIC_BITFIELD_CODE TRUE |
---|
870 | #else |
---|
871 | #error "scan instruction not currently supported by RTEMS!!" |
---|
872 | #endif |
---|
873 | |
---|
874 | /* end of Bitfield handler macros */ |
---|
875 | |
---|
876 | /* Priority handler handler macros */ |
---|
877 | |
---|
878 | /* |
---|
879 | * The SPARC port uses the generic C algorithm for bitfield scan if the |
---|
880 | * CPU model does not have a scan instruction. |
---|
881 | */ |
---|
882 | |
---|
883 | #if ( SPARC_HAS_BITSCAN == 1 ) |
---|
884 | #error "scan instruction not currently supported by RTEMS!!" |
---|
885 | #endif |
---|
886 | |
---|
887 | /* end of Priority handler macros */ |
---|
888 | |
---|
889 | /* functions */ |
---|
890 | |
---|
891 | /* |
---|
892 | * _CPU_Initialize |
---|
893 | * |
---|
894 | * This routine performs CPU dependent initialization. |
---|
895 | */ |
---|
896 | |
---|
897 | void _CPU_Initialize(void); |
---|
898 | |
---|
899 | /* |
---|
900 | * _CPU_ISR_install_raw_handler |
---|
901 | * |
---|
902 | * This routine installs new_handler to be directly called from the trap |
---|
903 | * table. |
---|
904 | */ |
---|
905 | |
---|
906 | void _CPU_ISR_install_raw_handler( |
---|
907 | uint32_t vector, |
---|
908 | proc_ptr new_handler, |
---|
909 | proc_ptr *old_handler |
---|
910 | ); |
---|
911 | |
---|
912 | /* |
---|
913 | * _CPU_ISR_install_vector |
---|
914 | * |
---|
915 | * This routine installs an interrupt vector. |
---|
916 | */ |
---|
917 | |
---|
918 | void _CPU_ISR_install_vector( |
---|
919 | uint64_t vector, |
---|
920 | proc_ptr new_handler, |
---|
921 | proc_ptr *old_handler |
---|
922 | ); |
---|
923 | |
---|
924 | #if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE) |
---|
925 | |
---|
926 | /* |
---|
927 | * _CPU_Thread_Idle_body |
---|
928 | * |
---|
929 | * Some SPARC implementations have low power, sleep, or idle modes. This |
---|
930 | * tries to take advantage of those models. |
---|
931 | */ |
---|
932 | |
---|
933 | void *_CPU_Thread_Idle_body( uintptr_t ignored ); |
---|
934 | |
---|
935 | #endif /* CPU_PROVIDES_IDLE_THREAD_BODY */ |
---|
936 | |
---|
937 | /* |
---|
938 | * _CPU_Context_switch |
---|
939 | * |
---|
940 | * This routine switches from the run context to the heir context. |
---|
941 | */ |
---|
942 | |
---|
943 | void _CPU_Context_switch( |
---|
944 | Context_Control *run, |
---|
945 | Context_Control *heir |
---|
946 | ); |
---|
947 | |
---|
948 | /* |
---|
949 | * _CPU_Context_restore |
---|
950 | * |
---|
951 | * This routine is generally used only to restart self in an |
---|
952 | * efficient manner. |
---|
953 | */ |
---|
954 | |
---|
955 | void _CPU_Context_restore( |
---|
956 | Context_Control *new_context |
---|
957 | ) RTEMS_NO_RETURN; |
---|
958 | |
---|
959 | /* |
---|
960 | * _CPU_Context_save_fp |
---|
961 | * |
---|
962 | * This routine saves the floating point context passed to it. |
---|
963 | */ |
---|
964 | |
---|
965 | void _CPU_Context_save_fp( |
---|
966 | Context_Control_fp **fp_context_ptr |
---|
967 | ); |
---|
968 | |
---|
969 | /* |
---|
970 | * _CPU_Context_restore_fp |
---|
971 | * |
---|
972 | * This routine restores the floating point context passed to it. |
---|
973 | */ |
---|
974 | |
---|
975 | void _CPU_Context_restore_fp( |
---|
976 | Context_Control_fp **fp_context_ptr |
---|
977 | ); |
---|
978 | |
---|
979 | static inline void _CPU_Context_volatile_clobber( uintptr_t pattern ) |
---|
980 | { |
---|
981 | /* TODO */ |
---|
982 | } |
---|
983 | |
---|
984 | static inline void _CPU_Context_validate( uintptr_t pattern ) |
---|
985 | { |
---|
986 | while (1) { |
---|
987 | /* TODO */ |
---|
988 | } |
---|
989 | } |
---|
990 | |
---|
991 | /* FIXME */ |
---|
992 | typedef CPU_Interrupt_frame CPU_Exception_frame; |
---|
993 | |
---|
994 | void _CPU_Exception_frame_print( const CPU_Exception_frame *frame ); |
---|
995 | |
---|
996 | /* |
---|
997 | * CPU_swap_u32 |
---|
998 | * |
---|
999 | * The following routine swaps the endian format of an unsigned int. |
---|
1000 | * It must be static because it is referenced indirectly. |
---|
1001 | * |
---|
1002 | * This version will work on any processor, but if you come across a better |
---|
1003 | * way for the SPARC PLEASE use it. The most common way to swap a 32-bit |
---|
1004 | * entity as shown below is not any more efficient on the SPARC. |
---|
1005 | * |
---|
1006 | * swap least significant two bytes with 16-bit rotate |
---|
1007 | * swap upper and lower 16-bits |
---|
1008 | * swap most significant two bytes with 16-bit rotate |
---|
1009 | * |
---|
1010 | * It is not obvious how the SPARC can do significantly better than the |
---|
1011 | * generic code. gcc 2.7.0 only generates about 12 instructions for the |
---|
1012 | * following code at optimization level four (i.e. -O4). |
---|
1013 | */ |
---|
1014 | |
---|
1015 | static inline uint32_t CPU_swap_u32( |
---|
1016 | uint32_t value |
---|
1017 | ) |
---|
1018 | { |
---|
1019 | uint32_t byte1, byte2, byte3, byte4, swapped; |
---|
1020 | |
---|
1021 | byte4 = (value >> 24) & 0xff; |
---|
1022 | byte3 = (value >> 16) & 0xff; |
---|
1023 | byte2 = (value >> 8) & 0xff; |
---|
1024 | byte1 = value & 0xff; |
---|
1025 | |
---|
1026 | swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4; |
---|
1027 | return( swapped ); |
---|
1028 | } |
---|
1029 | |
---|
1030 | #define CPU_swap_u16( value ) \ |
---|
1031 | (((value&0xff) << 8) | ((value >> 8)&0xff)) |
---|
1032 | |
---|
1033 | typedef uint32_t CPU_Counter_ticks; |
---|
1034 | |
---|
1035 | CPU_Counter_ticks _CPU_Counter_read( void ); |
---|
1036 | |
---|
1037 | static inline CPU_Counter_ticks _CPU_Counter_difference( |
---|
1038 | CPU_Counter_ticks second, |
---|
1039 | CPU_Counter_ticks first |
---|
1040 | ) |
---|
1041 | { |
---|
1042 | return second - first; |
---|
1043 | } |
---|
1044 | |
---|
1045 | /** Type that can store a 32-bit integer or a pointer. */ |
---|
1046 | typedef uintptr_t CPU_Uint32ptr; |
---|
1047 | |
---|
1048 | #endif /* ASM */ |
---|
1049 | |
---|
1050 | #ifdef __cplusplus |
---|
1051 | } |
---|
1052 | #endif |
---|
1053 | |
---|
1054 | #endif |
---|