source: rtems/cpukit/score/cpu/sparc/rtems/score/cpu.h @ e09f8b08

4.115
Last change on this file since e09f8b08 was f82752a4, checked in by Daniel Hellstrom <daniel@…>, on 06/04/14 at 09:23:34

Let CPU/BSP Fatal handler have access to source

Without the source the error code does not say that much.
Let it be up to the CPU/BSP to determine the error code
reported on fatal shutdown.

This patch does not change the current behaviour, just
adds the option to handle the source of the fatal halt.

  • Property mode set to 100644
File size: 46.7 KB
Line 
1/**
2 * @file
3 *
4 * @brief SPARC CPU Department Source
5 *
6 * This include file contains information pertaining to the port of
7 * the executive to the SPARC processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/types.h>
27#include <rtems/score/sparc.h>
28
29/* conditional compilation parameters */
30
31/**
32 * Should the calls to _Thread_Enable_dispatch be inlined?
33 *
34 * - If TRUE, then they are inlined.
35 * - If FALSE, then a subroutine call is made.
36 *
37 * On this port, it is faster to inline _Thread_Enable_dispatch.
38 */
39#define CPU_INLINE_ENABLE_DISPATCH       TRUE
40
41/**
42 * Should the body of the search loops in _Thread_queue_Enqueue_priority
43 * be unrolled one time?  In unrolled each iteration of the loop examines
44 * two "nodes" on the chain being searched.  Otherwise, only one node
45 * is examined per iteration.
46 *
47 * - If TRUE, then the loops are unrolled.
48 * - If FALSE, then the loops are not unrolled.
49 *
50 * This parameter could go either way on the SPARC.  The interrupt flash
51 * code is relatively lengthy given the requirements for nops following
52 * writes to the psr.  But if the clock speed were high enough, this would
53 * not represent a great deal of time.
54 */
55#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
56
57/**
58 * Does the executive manage a dedicated interrupt stack in software?
59 *
60 * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
61 * If FALSE, nothing is done.
62 *
63 * The SPARC does not have a dedicated HW interrupt stack and one has
64 * been implemented in SW.
65 */
66#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
67
68/**
69 * Does the CPU follow the simple vectored interrupt model?
70 *
71 * - If TRUE, then RTEMS allocates the vector table it internally manages.
72 * - If FALSE, then the BSP is assumed to allocate and manage the vector
73 *   table
74 *
75 * THe SPARC is a simple vectored architecture.  Usually there is no
76 * PIC and the CPU directly vectors the interrupts.
77 */
78#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
79
80/**
81 * Does this CPU have hardware support for a dedicated interrupt stack?
82 *
83 * - If TRUE, then it must be installed during initialization.
84 * - If FALSE, then no installation is performed.
85 *
86 * The SPARC does not have a dedicated HW interrupt stack.
87 */
88#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
89
90/**
91 * Do we allocate a dedicated interrupt stack in the Interrupt Manager?
92 *
93 * - If TRUE, then the memory is allocated during initialization.
94 * - If FALSE, then the memory is allocated during initialization.
95 *
96 * The SPARC does not have hardware support for switching to a
97 * dedicated interrupt stack.  The port includes support for doing this
98 * in software.
99 *
100 */
101#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
102
103/**
104 * Does the RTEMS invoke the user's ISR with the vector number and
105 * a pointer to the saved interrupt frame (1) or just the vector
106 * number (0)?
107 *
108 * The SPARC port does not pass an Interrupt Stack Frame pointer to
109 * interrupt handlers.
110 */
111#define CPU_ISR_PASSES_FRAME_POINTER 0
112
113/**
114 * Does the CPU have hardware floating point?
115 *
116 * - If TRUE, then the FLOATING_POINT task attribute is supported.
117 * - If FALSE, then the FLOATING_POINT task attribute is ignored.
118 *
119 * This is set based upon the multilib settings.
120 */
121#if ( SPARC_HAS_FPU == 1 )
122  #define CPU_HARDWARE_FP     TRUE
123#else
124  #define CPU_HARDWARE_FP     FALSE
125#endif
126
127/**
128 * The SPARC GCC port does not have a software floating point library
129 * that requires RTEMS assistance.
130 */
131#define CPU_SOFTWARE_FP     FALSE
132
133/**
134 * Are all tasks FLOATING_POINT tasks implicitly?
135 *
136 * - If TRUE, then the FLOATING_POINT task attribute is assumed.
137 * - If FALSE, then the FLOATING_POINT task attribute is followed.
138 *
139 * The SPARC GCC port does not implicitly use floating point registers.
140 */
141#define CPU_ALL_TASKS_ARE_FP     FALSE
142
143/**
144 * Should the IDLE task have a floating point context?
145 *
146 * - If TRUE, then the IDLE task is created as a FLOATING_POINT task
147 *   and it has a floating point context which is switched in and out.
148 * - If FALSE, then the IDLE task does not have a floating point context.
149 *
150 * The IDLE task does not have to be floating point on the SPARC.
151 */
152#define CPU_IDLE_TASK_IS_FP      FALSE
153
154/**
155 * Should the saving of the floating point registers be deferred
156 * until a context switch is made to another different floating point
157 * task?
158 *
159 * - If TRUE, then the floating point context will not be stored until
160 * necessary.  It will remain in the floating point registers and not
161 * disturned until another floating point task is switched to.
162 *
163 * - If FALSE, then the floating point context is saved when a floating
164 * point task is switched out and restored when the next floating point
165 * task is restored.  The state of the floating point registers between
166 * those two operations is not specified.
167 *
168 * On the SPARC, we can disable the FPU for integer only tasks so
169 * it is safe to defer floating point context switches.
170 */
171#if defined(RTEMS_SMP)
172  #define CPU_USE_DEFERRED_FP_SWITCH FALSE
173#else
174  #define CPU_USE_DEFERRED_FP_SWITCH TRUE
175#endif
176
177/**
178 * Does this port provide a CPU dependent IDLE task implementation?
179 *
180 * - If TRUE, then the routine _CPU_Thread_Idle_body
181 * must be provided and is the default IDLE thread body instead of
182 * _CPU_Thread_Idle_body.
183 *
184 * - If FALSE, then use the generic IDLE thread body if the BSP does
185 * not provide one.
186 *
187 * The SPARC architecture does not have a low power or halt instruction.
188 * It is left to the BSP and/or CPU specific code to provide an IDLE
189 * thread body which is aware of low power modes.
190 */
191#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
192
193/**
194 * Does the stack grow up (toward higher addresses) or down
195 * (toward lower addresses)?
196 *
197 * - If TRUE, then the grows upward.
198 * - If FALSE, then the grows toward smaller addresses.
199 *
200 * The stack grows to lower addresses on the SPARC.
201 */
202#define CPU_STACK_GROWS_UP               FALSE
203
204/**
205 * The following is the variable attribute used to force alignment
206 * of critical data structures.  On some processors it may make
207 * sense to have these aligned on tighter boundaries than
208 * the minimum requirements of the compiler in order to have as
209 * much of the critical data area as possible in a cache line.
210 *
211 * The SPARC does not appear to have particularly strict alignment
212 * requirements.  This value was chosen to take advantages of caches.
213 */
214#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (32)))
215
216#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
217
218/**
219 * Define what is required to specify how the network to host conversion
220 * routines are handled.
221 *
222 * The SPARC is big endian.
223 */
224#define CPU_BIG_ENDIAN                           TRUE
225
226/**
227 * Define what is required to specify how the network to host conversion
228 * routines are handled.
229 *
230 * The SPARC is NOT little endian.
231 */
232#define CPU_LITTLE_ENDIAN                        FALSE
233
234/**
235 * The following defines the number of bits actually used in the
236 * interrupt field of the task mode.  How those bits map to the
237 * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
238 *
239 * The SPARC has 16 interrupt levels in the PIL field of the PSR.
240 */
241#define CPU_MODES_INTERRUPT_MASK   0x0000000F
242
243#ifndef ASM
244/**
245 * This structure represents the organization of the minimum stack frame
246 * for the SPARC.  More framing information is required in certain situaions
247 * such as when there are a large number of out parameters or when the callee
248 * must save floating point registers.
249 */
250typedef struct {
251  /** This is the offset of the l0 register. */
252  uint32_t    l0;
253  /** This is the offset of the l1 register. */
254  uint32_t    l1;
255  /** This is the offset of the l2 register. */
256  uint32_t    l2;
257  /** This is the offset of the l3 register. */
258  uint32_t    l3;
259  /** This is the offset of the l4 register. */
260  uint32_t    l4;
261  /** This is the offset of the l5 register. */
262  uint32_t    l5;
263  /** This is the offset of the l6 register. */
264  uint32_t    l6;
265  /** This is the offset of the l7 register. */
266  uint32_t    l7;
267  /** This is the offset of the l0 register. */
268  uint32_t    i0;
269  /** This is the offset of the i1 register. */
270  uint32_t    i1;
271  /** This is the offset of the i2 register. */
272  uint32_t    i2;
273  /** This is the offset of the i3 register. */
274  uint32_t    i3;
275  /** This is the offset of the i4 register. */
276  uint32_t    i4;
277  /** This is the offset of the i5 register. */
278  uint32_t    i5;
279  /** This is the offset of the i6 register. */
280  uint32_t    i6_fp;
281  /** This is the offset of the i7 register. */
282  uint32_t    i7;
283  /** This is the offset of the register used to return structures. */
284  void       *structure_return_address;
285
286  /*
287   * The following are for the callee to save the register arguments in
288   * should this be necessary.
289   */
290  /** This is the offset of the register for saved argument 0. */
291  uint32_t    saved_arg0;
292  /** This is the offset of the register for saved argument 1. */
293  uint32_t    saved_arg1;
294  /** This is the offset of the register for saved argument 2. */
295  uint32_t    saved_arg2;
296  /** This is the offset of the register for saved argument 3. */
297  uint32_t    saved_arg3;
298  /** This is the offset of the register for saved argument 4. */
299  uint32_t    saved_arg4;
300  /** This is the offset of the register for saved argument 5. */
301  uint32_t    saved_arg5;
302  /** This field pads the structure so ldd and std instructions can be used. */
303  uint32_t    pad0;
304}  CPU_Minimum_stack_frame;
305
306#endif /* ASM */
307
308/** This macro defines an offset into the stack frame for use in assembly. */
309#define CPU_STACK_FRAME_L0_OFFSET             0x00
310/** This macro defines an offset into the stack frame for use in assembly. */
311#define CPU_STACK_FRAME_L1_OFFSET             0x04
312/** This macro defines an offset into the stack frame for use in assembly. */
313#define CPU_STACK_FRAME_L2_OFFSET             0x08
314/** This macro defines an offset into the stack frame for use in assembly. */
315#define CPU_STACK_FRAME_L3_OFFSET             0x0c
316/** This macro defines an offset into the stack frame for use in assembly. */
317#define CPU_STACK_FRAME_L4_OFFSET             0x10
318/** This macro defines an offset into the stack frame for use in assembly. */
319#define CPU_STACK_FRAME_L5_OFFSET             0x14
320/** This macro defines an offset into the stack frame for use in assembly. */
321#define CPU_STACK_FRAME_L6_OFFSET             0x18
322/** This macro defines an offset into the stack frame for use in assembly. */
323#define CPU_STACK_FRAME_L7_OFFSET             0x1c
324/** This macro defines an offset into the stack frame for use in assembly. */
325#define CPU_STACK_FRAME_I0_OFFSET             0x20
326/** This macro defines an offset into the stack frame for use in assembly. */
327#define CPU_STACK_FRAME_I1_OFFSET             0x24
328/** This macro defines an offset into the stack frame for use in assembly. */
329#define CPU_STACK_FRAME_I2_OFFSET             0x28
330/** This macro defines an offset into the stack frame for use in assembly. */
331#define CPU_STACK_FRAME_I3_OFFSET             0x2c
332/** This macro defines an offset into the stack frame for use in assembly. */
333#define CPU_STACK_FRAME_I4_OFFSET             0x30
334/** This macro defines an offset into the stack frame for use in assembly. */
335#define CPU_STACK_FRAME_I5_OFFSET             0x34
336/** This macro defines an offset into the stack frame for use in assembly. */
337#define CPU_STACK_FRAME_I6_FP_OFFSET          0x38
338/** This macro defines an offset into the stack frame for use in assembly. */
339#define CPU_STACK_FRAME_I7_OFFSET             0x3c
340/** This macro defines an offset into the stack frame for use in assembly. */
341#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x40
342/** This macro defines an offset into the stack frame for use in assembly. */
343#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x44
344/** This macro defines an offset into the stack frame for use in assembly. */
345#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x48
346/** This macro defines an offset into the stack frame for use in assembly. */
347#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x4c
348/** This macro defines an offset into the stack frame for use in assembly. */
349#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0x50
350/** This macro defines an offset into the stack frame for use in assembly. */
351#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0x54
352/** This macro defines an offset into the stack frame for use in assembly. */
353#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0x58
354/** This macro defines an offset into the stack frame for use in assembly. */
355#define CPU_STACK_FRAME_PAD0_OFFSET           0x5c
356
357/** This defines the size of the minimum stack frame. */
358#define CPU_MINIMUM_STACK_FRAME_SIZE          0x60
359
360#define CPU_PER_CPU_CONTROL_SIZE 4
361
362/**
363 * @brief Offset of the CPU_Per_CPU_control::isr_dispatch_disable field
364 * relative to the Per_CPU_Control begin.
365 */
366#define SPARC_PER_CPU_ISR_DISPATCH_DISABLE 0
367
368/**
369 * @defgroup Contexts SPARC Context Structures
370 *
371 * @ingroup Score
372 *
373 * Generally there are 2 types of context to save.
374 *    + Interrupt registers to save
375 *    + Task level registers to save
376 *
377 * This means we have the following 3 context items:
378 *    + task level context stuff::  Context_Control
379 *    + floating point task stuff:: Context_Control_fp
380 *    + special interrupt level context :: Context_Control_interrupt
381 *
382 * On the SPARC, we are relatively conservative in that we save most
383 * of the CPU state in the context area.  The ET (enable trap) bit and
384 * the CWP (current window pointer) fields of the PSR are considered
385 * system wide resources and are not maintained on a per-thread basis.
386 */
387/**@{**/
388
389#ifndef ASM
390
391typedef struct {
392  /**
393   * This flag is context switched with each thread.  It indicates
394   * that THIS thread has an _ISR_Dispatch stack frame on its stack.
395   * By using this flag, we can avoid nesting more interrupt dispatching
396   * attempts on a previously interrupted thread's stack.
397   */
398  uint32_t isr_dispatch_disable;
399} CPU_Per_CPU_control;
400
401/**
402 * @brief SPARC basic context.
403 *
404 * This structure defines the non-volatile integer and processor state context
405 * for the SPARC architecture according to "SYSTEM V APPLICATION BINARY
406 * INTERFACE - SPARC Processor Supplement", Third Edition.
407 *
408 * The registers g2 through g4 are reserved for applications.  GCC uses them as
409 * volatile registers by default.  So they are treated like volatile registers
410 * in RTEMS as well.
411 *
412 * The register g6 contains the per-CPU control of the current processor.  It
413 * is an invariant of the processor context.  This register must not be saved
414 * and restored during context switches or interrupt services.
415 */
416typedef struct {
417  /** This will contain the contents of the g5 register. */
418  uint32_t   g5;
419  /** This will contain the contents of the g7 register. */
420  uint32_t   g7;
421
422  /**
423   * This will contain the contents of the l0 and l1 registers.
424   *
425   * Using a double l0_and_l1 will put everything in this structure on a double
426   * word boundary which allows us to use double word loads and stores safely
427   * in the context switch.
428   */
429  double     l0_and_l1;
430  /** This will contain the contents of the l2 register. */
431  uint32_t   l2;
432  /** This will contain the contents of the l3 register. */
433  uint32_t   l3;
434  /** This will contain the contents of the l4 register. */
435  uint32_t   l4;
436  /** This will contain the contents of the l5 registeer.*/
437  uint32_t   l5;
438  /** This will contain the contents of the l6 register. */
439  uint32_t   l6;
440  /** This will contain the contents of the l7 register. */
441  uint32_t   l7;
442
443  /** This will contain the contents of the i0 register. */
444  uint32_t   i0;
445  /** This will contain the contents of the i1 register. */
446  uint32_t   i1;
447  /** This will contain the contents of the i2 register. */
448  uint32_t   i2;
449  /** This will contain the contents of the i3 register. */
450  uint32_t   i3;
451  /** This will contain the contents of the i4 register. */
452  uint32_t   i4;
453  /** This will contain the contents of the i5 register. */
454  uint32_t   i5;
455  /** This will contain the contents of the i6 (e.g. frame pointer) register. */
456  uint32_t   i6_fp;
457  /** This will contain the contents of the i7 register. */
458  uint32_t   i7;
459
460  /** This will contain the contents of the o6 (e.g. frame pointer) register. */
461  uint32_t   o6_sp;
462  /**
463   * This will contain the contents of the o7 (e.g. address of CALL
464   * instruction) register.
465   */
466  uint32_t   o7;
467
468  /** This will contain the contents of the processor status register. */
469  uint32_t   psr;
470  /**
471   * This field is used to prevent heavy nesting of calls to _Thread_Dispatch
472   * on an interrupted  task's stack.  This is problematic on the slower
473   * SPARC CPU models at high interrupt rates.
474   */
475  uint32_t   isr_dispatch_disable;
476
477#if defined(RTEMS_SMP)
478  volatile uint32_t is_executing;
479#endif
480} Context_Control;
481
482/**
483 * This macro provides a CPU independent way for RTEMS to access the
484 * stack pointer in a context structure. The actual name and offset is
485 * CPU architecture dependent.
486 */
487#define _CPU_Context_Get_SP( _context ) \
488  (_context)->o6_sp
489
490#ifdef RTEMS_SMP
491  static inline bool _CPU_Context_Get_is_executing(
492    const Context_Control *context
493  )
494  {
495    return context->is_executing;
496  }
497
498  static inline void _CPU_Context_Set_is_executing(
499    Context_Control *context,
500    bool is_executing
501  )
502  {
503    context->is_executing = is_executing;
504  }
505#endif
506
507#endif /* ASM */
508
509/*
510 *  Offsets of fields with Context_Control for assembly routines.
511 */
512
513/** This macro defines an offset into the context for use in assembly. */
514#define G5_OFFSET    0x00
515/** This macro defines an offset into the context for use in assembly. */
516#define G7_OFFSET    0x04
517
518/** This macro defines an offset into the context for use in assembly. */
519#define L0_OFFSET    0x08
520/** This macro defines an offset into the context for use in assembly. */
521#define L1_OFFSET    0x0C
522/** This macro defines an offset into the context for use in assembly. */
523#define L2_OFFSET    0x10
524/** This macro defines an offset into the context for use in assembly. */
525#define L3_OFFSET    0x14
526/** This macro defines an offset into the context for use in assembly. */
527#define L4_OFFSET    0x18
528/** This macro defines an offset into the context for use in assembly. */
529#define L5_OFFSET    0x1C
530/** This macro defines an offset into the context for use in assembly. */
531#define L6_OFFSET    0x20
532/** This macro defines an offset into the context for use in assembly. */
533#define L7_OFFSET    0x24
534
535/** This macro defines an offset into the context for use in assembly. */
536#define I0_OFFSET    0x28
537/** This macro defines an offset into the context for use in assembly. */
538#define I1_OFFSET    0x2C
539/** This macro defines an offset into the context for use in assembly. */
540#define I2_OFFSET    0x30
541/** This macro defines an offset into the context for use in assembly. */
542#define I3_OFFSET    0x34
543/** This macro defines an offset into the context for use in assembly. */
544#define I4_OFFSET    0x38
545/** This macro defines an offset into the context for use in assembly. */
546#define I5_OFFSET    0x3C
547/** This macro defines an offset into the context for use in assembly. */
548#define I6_FP_OFFSET 0x40
549/** This macro defines an offset into the context for use in assembly. */
550#define I7_OFFSET    0x44
551
552/** This macro defines an offset into the context for use in assembly. */
553#define O6_SP_OFFSET 0x48
554/** This macro defines an offset into the context for use in assembly. */
555#define O7_OFFSET    0x4C
556
557/** This macro defines an offset into the context for use in assembly. */
558#define PSR_OFFSET   0x50
559/** This macro defines an offset into the context for use in assembly. */
560#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0x54
561
562#if defined(RTEMS_SMP)
563  #define SPARC_CONTEXT_CONTROL_IS_EXECUTING_OFFSET 0x58
564#endif
565
566/** This defines the size of the context area for use in assembly. */
567#define CONTEXT_CONTROL_SIZE 0x68
568
569#ifndef ASM
570/**
571 * @brief SPARC basic context.
572 *
573 * This structure defines floating point context area.
574 */
575typedef struct {
576  /** This will contain the contents of the f0 and f1 register. */
577  double      f0_f1;
578  /** This will contain the contents of the f2 and f3 register. */
579  double      f2_f3;
580  /** This will contain the contents of the f4 and f5 register. */
581  double      f4_f5;
582  /** This will contain the contents of the f6 and f7 register. */
583  double      f6_f7;
584  /** This will contain the contents of the f8 and f9 register. */
585  double      f8_f9;
586  /** This will contain the contents of the f10 and f11 register. */
587  double      f10_f11;
588  /** This will contain the contents of the f12 and f13 register. */
589  double      f12_f13;
590  /** This will contain the contents of the f14 and f15 register. */
591  double      f14_f15;
592  /** This will contain the contents of the f16 and f17 register. */
593  double      f16_f17;
594  /** This will contain the contents of the f18 and f19 register. */
595  double      f18_f19;
596  /** This will contain the contents of the f20 and f21 register. */
597  double      f20_f21;
598  /** This will contain the contents of the f22 and f23 register. */
599  double      f22_f23;
600  /** This will contain the contents of the f24 and f25 register. */
601  double      f24_f25;
602  /** This will contain the contents of the f26 and f27 register. */
603  double      f26_f27;
604  /** This will contain the contents of the f28 and f29 register. */
605  double      f28_f29;
606  /** This will contain the contents of the f30 and f31 register. */
607  double      f30_f31;
608  /** This will contain the contents of the floating point status register. */
609  uint32_t    fsr;
610} Context_Control_fp;
611
612#endif /* ASM */
613
614/*
615 *  Offsets of fields with Context_Control_fp for assembly routines.
616 */
617
618/** This macro defines an offset into the FPU context for use in assembly. */
619#define FO_F1_OFFSET     0x00
620/** This macro defines an offset into the FPU context for use in assembly. */
621#define F2_F3_OFFSET     0x08
622/** This macro defines an offset into the FPU context for use in assembly. */
623#define F4_F5_OFFSET     0x10
624/** This macro defines an offset into the FPU context for use in assembly. */
625#define F6_F7_OFFSET     0x18
626/** This macro defines an offset into the FPU context for use in assembly. */
627#define F8_F9_OFFSET     0x20
628/** This macro defines an offset into the FPU context for use in assembly. */
629#define F1O_F11_OFFSET   0x28
630/** This macro defines an offset into the FPU context for use in assembly. */
631#define F12_F13_OFFSET   0x30
632/** This macro defines an offset into the FPU context for use in assembly. */
633#define F14_F15_OFFSET   0x38
634/** This macro defines an offset into the FPU context for use in assembly. */
635#define F16_F17_OFFSET   0x40
636/** This macro defines an offset into the FPU context for use in assembly. */
637#define F18_F19_OFFSET   0x48
638/** This macro defines an offset into the FPU context for use in assembly. */
639#define F2O_F21_OFFSET   0x50
640/** This macro defines an offset into the FPU context for use in assembly. */
641#define F22_F23_OFFSET   0x58
642/** This macro defines an offset into the FPU context for use in assembly. */
643#define F24_F25_OFFSET   0x60
644/** This macro defines an offset into the FPU context for use in assembly. */
645#define F26_F27_OFFSET   0x68
646/** This macro defines an offset into the FPU context for use in assembly. */
647#define F28_F29_OFFSET   0x70
648/** This macro defines an offset into the FPU context for use in assembly. */
649#define F3O_F31_OFFSET   0x78
650/** This macro defines an offset into the FPU context for use in assembly. */
651#define FSR_OFFSET       0x80
652
653/** This defines the size of the FPU context area for use in assembly. */
654#define CONTEXT_CONTROL_FP_SIZE 0x84
655
656#ifndef ASM
657
658/** @} */
659
660/**
661 * @brief Interrupt stack frame (ISF).
662 *
663 * Context saved on stack for an interrupt.
664 *
665 * NOTE: The PSR, PC, and NPC are only saved in this structure for the
666 *       benefit of the user's handler.
667 */
668typedef struct {
669  /** On an interrupt, we must save the minimum stack frame. */
670  CPU_Minimum_stack_frame  Stack_frame;
671  /** This is the offset of the PSR on an ISF. */
672  uint32_t                 psr;
673  /** This is the offset of the XXX on an ISF. */
674  uint32_t                 pc;
675  /** This is the offset of the XXX on an ISF. */
676  uint32_t                 npc;
677  /** This is the offset of the g1 register on an ISF. */
678  uint32_t                 g1;
679  /** This is the offset of the g2 register on an ISF. */
680  uint32_t                 g2;
681  /** This is the offset of the g3 register on an ISF. */
682  uint32_t                 g3;
683  /** This is the offset of the g4 register on an ISF. */
684  uint32_t                 g4;
685  /** This is the offset of the g5 register on an ISF. */
686  uint32_t                 g5;
687  /** This is the offset is reserved for alignment on an ISF. */
688  uint32_t                 reserved_for_alignment;
689  /** This is the offset of the g7 register on an ISF. */
690  uint32_t                 g7;
691  /** This is the offset of the i0 register on an ISF. */
692  uint32_t                 i0;
693  /** This is the offset of the i1 register on an ISF. */
694  uint32_t                 i1;
695  /** This is the offset of the i2 register on an ISF. */
696  uint32_t                 i2;
697  /** This is the offset of the i3 register on an ISF. */
698  uint32_t                 i3;
699  /** This is the offset of the i4 register on an ISF. */
700  uint32_t                 i4;
701  /** This is the offset of the i5 register on an ISF. */
702  uint32_t                 i5;
703  /** This is the offset of the i6 register on an ISF. */
704  uint32_t                 i6_fp;
705  /** This is the offset of the i7 register on an ISF. */
706  uint32_t                 i7;
707  /** This is the offset of the y register on an ISF. */
708  uint32_t                 y;
709  /** This is the offset of the tpc register on an ISF. */
710  uint32_t                 tpc;
711} CPU_Interrupt_frame;
712
713#endif /* ASM */
714
715/*
716 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
717 */
718
719/** This macro defines an offset into the ISF for use in assembly. */
720#define ISF_STACK_FRAME_OFFSET 0x00
721/** This macro defines an offset into the ISF for use in assembly. */
722#define ISF_PSR_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
723/** This macro defines an offset into the ISF for use in assembly. */
724#define ISF_PC_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x04
725/** This macro defines an offset into the ISF for use in assembly. */
726#define ISF_NPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
727/** This macro defines an offset into the ISF for use in assembly. */
728#define ISF_G1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x0c
729/** This macro defines an offset into the ISF for use in assembly. */
730#define ISF_G2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
731/** This macro defines an offset into the ISF for use in assembly. */
732#define ISF_G3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x14
733/** This macro defines an offset into the ISF for use in assembly. */
734#define ISF_G4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
735/** This macro defines an offset into the ISF for use in assembly. */
736#define ISF_G5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x1c
737/** This macro defines an offset into the ISF for use in assembly. */
738#define ISF_G7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x24
739/** This macro defines an offset into the ISF for use in assembly. */
740#define ISF_I0_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
741/** This macro defines an offset into the ISF for use in assembly. */
742#define ISF_I1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x2c
743/** This macro defines an offset into the ISF for use in assembly. */
744#define ISF_I2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
745/** This macro defines an offset into the ISF for use in assembly. */
746#define ISF_I3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x34
747/** This macro defines an offset into the ISF for use in assembly. */
748#define ISF_I4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
749/** This macro defines an offset into the ISF for use in assembly. */
750#define ISF_I5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x3c
751/** This macro defines an offset into the ISF for use in assembly. */
752#define ISF_I6_FP_OFFSET       CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
753/** This macro defines an offset into the ISF for use in assembly. */
754#define ISF_I7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x44
755/** This macro defines an offset into the ISF for use in assembly. */
756#define ISF_Y_OFFSET           CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
757/** This macro defines an offset into the ISF for use in assembly. */
758#define ISF_TPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x4c
759
760/** This defines the size of the ISF area for use in assembly. */
761#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE \
762        CPU_MINIMUM_STACK_FRAME_SIZE + 0x50
763
764#ifndef ASM
765/**
766 * This variable is contains the initialize context for the FP unit.
767 * It is filled in by _CPU_Initialize and copied into the task's FP
768 * context area during _CPU_Context_Initialize.
769 */
770SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context CPU_STRUCTURE_ALIGNMENT;
771
772/**
773 * The following type defines an entry in the SPARC's trap table.
774 *
775 * NOTE: The instructions chosen are RTEMS dependent although one is
776 *       obligated to use two of the four instructions to perform a
777 *       long jump.  The other instructions load one register with the
778 *       trap type (a.k.a. vector) and another with the psr.
779 */
780typedef struct {
781  /** This will contain a "mov %psr, %l0" instruction. */
782  uint32_t     mov_psr_l0;
783  /** This will contain a "sethi %hi(_handler), %l4" instruction. */
784  uint32_t     sethi_of_handler_to_l4;
785  /** This will contain a "jmp %l4 + %lo(_handler)" instruction. */
786  uint32_t     jmp_to_low_of_handler_plus_l4;
787  /** This will contain a " mov _vector, %l3" instruction. */
788  uint32_t     mov_vector_l3;
789} CPU_Trap_table_entry;
790
791/**
792 * This is the set of opcodes for the instructions loaded into a trap
793 * table entry.  The routine which installs a handler is responsible
794 * for filling in the fields for the _handler address and the _vector
795 * trap type.
796 *
797 * The constants following this structure are masks for the fields which
798 * must be filled in when the handler is installed.
799 */
800extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
801
802/**
803 * The size of the floating point context area.
804 */
805#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
806
807#endif
808
809/**
810 * Amount of extra stack (above minimum stack size) required by
811 * MPCI receive server thread.  Remember that in a multiprocessor
812 * system this thread must exist and be able to process all directives.
813 */
814#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
815
816/**
817 * This defines the number of entries in the ISR_Vector_table managed
818 * by the executive.
819 *
820 * On the SPARC, there are really only 256 vectors.  However, the executive
821 * has no easy, fast, reliable way to determine which traps are synchronous
822 * and which are asynchronous.  By default, synchronous traps return to the
823 * instruction which caused the interrupt.  So if you install a software
824 * trap handler as an executive interrupt handler (which is desirable since
825 * RTEMS takes care of window and register issues), then the executive needs
826 * to know that the return address is to the trap rather than the instruction
827 * following the trap.
828 *
829 * So vectors 0 through 255 are treated as regular asynchronous traps which
830 * provide the "correct" return address.  Vectors 256 through 512 are assumed
831 * by the executive to be synchronous and to require that the return address
832 * be fudged.
833 *
834 * If you use this mechanism to install a trap handler which must reexecute
835 * the instruction which caused the trap, then it should be installed as
836 * an asynchronous trap.  This will avoid the executive changing the return
837 * address.
838 */
839#define CPU_INTERRUPT_NUMBER_OF_VECTORS     256
840
841/**
842 * The SPARC has 256 vectors but the port treats 256-512 as synchronous
843 * traps.
844 */
845#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 511
846
847/**
848 * This is the bit step in a vector number to indicate it is being installed
849 * as a synchronous trap.
850 */
851#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x100
852
853/**
854 * This macro indicates that @a _trap as an asynchronous trap.
855 */
856#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
857
858/**
859 * This macro indicates that @a _trap as a synchronous trap.
860 */
861#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 256 )
862
863/**
864 * This macro returns the real hardware vector number associated with @a _trap.
865 */
866#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 256)
867
868/**
869 * This is defined if the port has a special way to report the ISR nesting
870 * level.  Most ports maintain the variable _ISR_Nest_level.
871 */
872#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
873
874/**
875 * Should be large enough to run all tests.  This ensures
876 * that a "reasonable" small application should not have any problems.
877 *
878 * This appears to be a fairly generous number for the SPARC since
879 * represents a call depth of about 20 routines based on the minimum
880 * stack frame.
881 */
882#define CPU_STACK_MINIMUM_SIZE  (1024*4)
883
884/**
885 * What is the size of a pointer on this architecture?
886 */
887#define CPU_SIZEOF_POINTER 4
888
889/**
890 * CPU's worst alignment requirement for data types on a byte boundary.  This
891 * alignment does not take into account the requirements for the stack.
892 *
893 * On the SPARC, this is required for double word loads and stores.
894 */
895#define CPU_ALIGNMENT      8
896
897/**
898 * This number corresponds to the byte alignment requirement for the
899 * heap handler.  This alignment requirement may be stricter than that
900 * for the data types alignment specified by CPU_ALIGNMENT.  It is
901 * common for the heap to follow the same alignment requirement as
902 * CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
903 * then this should be set to CPU_ALIGNMENT.
904 *
905 * NOTE:  This does not have to be a power of 2.  It does have to
906 *        be greater or equal to than CPU_ALIGNMENT.
907 */
908#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
909
910/**
911 * This number corresponds to the byte alignment requirement for memory
912 * buffers allocated by the partition manager.  This alignment requirement
913 * may be stricter than that for the data types alignment specified by
914 * CPU_ALIGNMENT.  It is common for the partition to follow the same
915 * alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
916 * enough for the partition, then this should be set to CPU_ALIGNMENT.
917 *
918 * NOTE:  This does not have to be a power of 2.  It does have to
919 *        be greater or equal to than CPU_ALIGNMENT.
920 */
921#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
922
923/**
924 * This number corresponds to the byte alignment requirement for the
925 * stack.  This alignment requirement may be stricter than that for the
926 * data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
927 * is strict enough for the stack, then this should be set to 0.
928 *
929 * NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
930 *
931 * The alignment restrictions for the SPARC are not that strict but this
932 * should unsure that the stack is always sufficiently alignment that the
933 * window overflow, underflow, and flush routines can use double word loads
934 * and stores.
935 */
936#define CPU_STACK_ALIGNMENT        16
937
938#ifndef ASM
939
940/*
941 *  ISR handler macros
942 */
943
944/**
945 * Support routine to initialize the RTEMS vector table after it is allocated.
946 */
947#define _CPU_Initialize_vectors()
948
949/**
950 * Disable all interrupts for a critical section.  The previous
951 * level is returned in _level.
952 */
953#define _CPU_ISR_Disable( _level ) \
954  (_level) = sparc_disable_interrupts()
955
956/**
957 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
958 * This indicates the end of a critical section.  The parameter
959 * _level is not modified.
960 */
961#define _CPU_ISR_Enable( _level ) \
962  sparc_enable_interrupts( _level )
963
964/**
965 * This temporarily restores the interrupt to _level before immediately
966 * disabling them again.  This is used to divide long critical
967 * sections into two or more parts.  The parameter _level is not
968 * modified.
969 */
970#define _CPU_ISR_Flash( _level ) \
971  sparc_flash_interrupts( _level )
972
973/**
974 * Map interrupt level in task mode onto the hardware that the CPU
975 * actually provides.  Currently, interrupt levels which do not
976 * map onto the CPU in a straight fashion are undefined.
977 */
978#define _CPU_ISR_Set_level( _newlevel ) \
979   sparc_enable_interrupts( _newlevel << 8)
980
981/**
982 * @brief Obtain the current interrupt disable level.
983 *
984 * This method is invoked to return the current interrupt disable level.
985 *
986 * @return This method returns the current interrupt disable level.
987 */
988uint32_t   _CPU_ISR_Get_level( void );
989
990/* end of ISR handler macros */
991
992/* Context handler macros */
993
994/**
995 * Initialize the context to a state suitable for starting a
996 * task after a context restore operation.  Generally, this
997 * involves:
998 *
999 * - setting a starting address
1000 * - preparing the stack
1001 * - preparing the stack and frame pointers
1002 * - setting the proper interrupt level in the context
1003 * - initializing the floating point context
1004 *
1005 * @param[in] the_context points to the context area
1006 * @param[in] stack_base is the low address of the allocated stack area
1007 * @param[in] size is the size of the stack area in bytes
1008 * @param[in] new_level is the interrupt level for the task
1009 * @param[in] entry_point is the task's entry point
1010 * @param[in] is_fp is set to TRUE if the task is a floating point task
1011 * @param[in] tls_area is the thread-local storage (TLS) area
1012 *
1013 * NOTE:  Implemented as a subroutine for the SPARC port.
1014 */
1015void _CPU_Context_Initialize(
1016  Context_Control  *the_context,
1017  uint32_t         *stack_base,
1018  uint32_t          size,
1019  uint32_t          new_level,
1020  void             *entry_point,
1021  bool              is_fp,
1022  void             *tls_area
1023);
1024
1025/**
1026 * This macro is invoked from _Thread_Handler to do whatever CPU
1027 * specific magic is required that must be done in the context of
1028 * the thread when it starts.
1029 *
1030 * On the SPARC, this is setting the frame pointer so GDB is happy.
1031 * Make GDB stop unwinding at _Thread_Handler, previous register window
1032 * Frame pointer is 0 and calling address must be a function with starting
1033 * with a SAVE instruction. If return address is leaf-function (no SAVE)
1034 * GDB will not look at prev reg window fp.
1035 *
1036 * _Thread_Handler is known to start with SAVE.
1037 */
1038#define _CPU_Context_Initialization_at_thread_begin() \
1039  do { \
1040    __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
1041  } while (0)
1042
1043/**
1044 * This routine is responsible for somehow restarting the currently
1045 * executing task.
1046 *
1047 * On the SPARC, this is is relatively painless but requires a small
1048 * amount of wrapper code before using the regular restore code in
1049 * of the context switch.
1050 */
1051#define _CPU_Context_Restart_self( _the_context ) \
1052   _CPU_Context_restore( (_the_context) );
1053
1054/**
1055 * The FP context area for the SPARC is a simple structure and nothing
1056 * special is required to find the "starting load point"
1057 */
1058#define _CPU_Context_Fp_start( _base, _offset ) \
1059   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
1060
1061/**
1062 * This routine initializes the FP context area passed to it to.
1063 *
1064 * The SPARC allows us to use the simple initialization model
1065 * in which an "initial" FP context was saved into _CPU_Null_fp_context
1066 * at CPU initialization and it is simply copied into the destination
1067 * context.
1068 */
1069#define _CPU_Context_Initialize_fp( _destination ) \
1070  do { \
1071   *(*(_destination)) = _CPU_Null_fp_context; \
1072  } while (0)
1073
1074/* end of Context handler macros */
1075
1076/* Fatal Error manager macros */
1077
1078/**
1079 * This routine copies _error into a known place -- typically a stack
1080 * location or a register, optionally disables interrupts, and
1081 * halts/stops the CPU.
1082 */
1083#define _CPU_Fatal_halt( _source, _error ) \
1084  do { \
1085    uint32_t   level; \
1086    \
1087    level = sparc_disable_interrupts(); \
1088    __asm__ volatile ( "mov  %0, %%g1 " : "=r" (level) : "0" (level) ); \
1089    while (1); /* loop forever */ \
1090  } while (0)
1091
1092/* end of Fatal Error manager macros */
1093
1094/* Bitfield handler macros */
1095
1096#if ( SPARC_HAS_BITSCAN == 0 )
1097  /**
1098   * The SPARC port uses the generic C algorithm for bitfield scan if the
1099   * CPU model does not have a scan instruction.
1100   */
1101  #define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1102  /**
1103   * The SPARC port uses the generic C algorithm for bitfield scan if the
1104   * CPU model does not have a scan instruction.  Thus is needs the generic
1105   * data table used by that algorithm.
1106   */
1107  #define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1108#else
1109  #error "scan instruction not currently supported by RTEMS!!"
1110#endif
1111
1112/* end of Bitfield handler macros */
1113
1114/* functions */
1115
1116/**
1117 * @brief SPARC specific initialization.
1118 *
1119 * This routine performs CPU dependent initialization.
1120 */
1121void _CPU_Initialize(void);
1122
1123/**
1124 * @brief SPARC specific raw ISR installer.
1125 *
1126 * This routine installs @a new_handler to be directly called from the trap
1127 * table.
1128 *
1129 * @param[in] vector is the vector number
1130 * @param[in] new_handler is the new ISR handler
1131 * @param[in] old_handler will contain the old ISR handler
1132 */
1133void _CPU_ISR_install_raw_handler(
1134  uint32_t    vector,
1135  proc_ptr    new_handler,
1136  proc_ptr   *old_handler
1137);
1138
1139/**
1140 * @brief SPARC specific RTEMS ISR installer.
1141 *
1142 * This routine installs an interrupt vector.
1143 *
1144 * @param[in] vector is the vector number
1145 * @param[in] new_handler is the new ISR handler
1146 * @param[in] old_handler will contain the old ISR handler
1147 */
1148
1149void _CPU_ISR_install_vector(
1150  uint32_t    vector,
1151  proc_ptr    new_handler,
1152  proc_ptr   *old_handler
1153);
1154
1155/**
1156 * @brief SPARC specific context switch.
1157 *
1158 * This routine switches from the run context to the heir context.
1159 *
1160 * @param[in] run is the currently executing thread
1161 * @param[in] heir will become the currently executing thread
1162 */
1163void _CPU_Context_switch(
1164  Context_Control  *run,
1165  Context_Control  *heir
1166);
1167
1168/**
1169 * @brief SPARC specific context restore.
1170 *
1171 * This routine is generally used only to restart self in an
1172 * efficient manner.
1173 *
1174 * @param[in] new_context is the context to restore
1175 */
1176void _CPU_Context_restore(
1177  Context_Control *new_context
1178) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1179
1180/**
1181 * @brief The pointer to the current per-CPU control is available via register
1182 * g6.
1183 */
1184register struct Per_CPU_Control *_SPARC_Per_CPU_current __asm__( "g6" );
1185
1186#define _CPU_Get_current_per_CPU_control() ( _SPARC_Per_CPU_current )
1187
1188#if defined(RTEMS_SMP)
1189  uint32_t _CPU_SMP_Initialize( void );
1190
1191  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1192
1193  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1194
1195  #if defined(__leon__) && !defined(RTEMS_PARAVIRT)
1196    static inline uint32_t _CPU_SMP_Get_current_processor( void )
1197    {
1198      return _LEON3_Get_current_processor();
1199    }
1200  #else
1201    uint32_t _CPU_SMP_Get_current_processor( void );
1202  #endif
1203
1204  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1205
1206  #if defined(__leon__)
1207  void _LEON3_Start_multitasking( Context_Control *heir )
1208    RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1209  #define _CPU_Start_multitasking _LEON3_Start_multitasking
1210  #endif
1211
1212  static inline void _CPU_SMP_Processor_event_broadcast( void )
1213  {
1214    __asm__ volatile ( "" : : : "memory" );
1215  }
1216
1217  static inline void _CPU_SMP_Processor_event_receive( void )
1218  {
1219    __asm__ volatile ( "" : : : "memory" );
1220  }
1221#endif
1222
1223/**
1224 * @brief SPARC specific save FPU method.
1225 *
1226 * This routine saves the floating point context passed to it.
1227 *
1228 * @param[in] fp_context_ptr is the area to save into
1229 */
1230void _CPU_Context_save_fp(
1231  Context_Control_fp **fp_context_ptr
1232);
1233
1234/**
1235 * @brief SPARC specific restore FPU method.
1236 *
1237 * This routine restores the floating point context passed to it.
1238 *
1239 * @param[in] fp_context_ptr is the area to restore from
1240 */
1241void _CPU_Context_restore_fp(
1242  Context_Control_fp **fp_context_ptr
1243);
1244
1245static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
1246{
1247  /* TODO */
1248}
1249
1250static inline void _CPU_Context_validate( uintptr_t pattern )
1251{
1252  while (1) {
1253    /* TODO */
1254  }
1255}
1256
1257typedef struct {
1258  uint32_t trap;
1259  CPU_Interrupt_frame *isf;
1260} CPU_Exception_frame;
1261
1262void _BSP_Exception_frame_print( const CPU_Exception_frame *frame );
1263
1264static inline void _CPU_Exception_frame_print(
1265  const CPU_Exception_frame *frame
1266)
1267{
1268  _BSP_Exception_frame_print( frame );
1269}
1270
1271/**
1272 * @brief SPARC specific method to endian swap an uint32_t.
1273 *
1274 * The following routine swaps the endian format of an unsigned int.
1275 * It must be static because it is referenced indirectly.
1276 *
1277 * @param[in] value is the value to endian swap
1278 *
1279 * This version will work on any processor, but if you come across a better
1280 * way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
1281 * entity as shown below is not any more efficient on the SPARC.
1282 *
1283 *    - swap least significant two bytes with 16-bit rotate
1284 *    - swap upper and lower 16-bits
1285 *    - swap most significant two bytes with 16-bit rotate
1286 *
1287 * It is not obvious how the SPARC can do significantly better than the
1288 * generic code.  gcc 2.7.0 only generates about 12 instructions for the
1289 * following code at optimization level four (i.e. -O4).
1290 */
1291static inline uint32_t CPU_swap_u32(
1292  uint32_t value
1293)
1294{
1295  uint32_t   byte1, byte2, byte3, byte4, swapped;
1296
1297  byte4 = (value >> 24) & 0xff;
1298  byte3 = (value >> 16) & 0xff;
1299  byte2 = (value >> 8)  & 0xff;
1300  byte1 =  value        & 0xff;
1301
1302  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1303  return( swapped );
1304}
1305
1306/**
1307 * @brief SPARC specific method to endian swap an uint16_t.
1308 *
1309 * The following routine swaps the endian format of a uint16_t.
1310 *
1311 * @param[in] value is the value to endian swap
1312 */
1313#define CPU_swap_u16( value ) \
1314  (((value&0xff) << 8) | ((value >> 8)&0xff))
1315
1316typedef uint32_t CPU_Counter_ticks;
1317
1318typedef CPU_Counter_ticks (*SPARC_Counter_difference)(
1319  CPU_Counter_ticks second,
1320  CPU_Counter_ticks first
1321);
1322
1323/*
1324 * The SPARC processors supported by RTEMS have no built-in CPU counter
1325 * support.  We have to use some hardware counter module for this purpose.  The
1326 * BSP must provide a 32-bit register which contains the current CPU counter
1327 * value and a function for the difference calculation.  It can use for example
1328 * the GPTIMER instance used for the clock driver.
1329 */
1330typedef struct {
1331  volatile const CPU_Counter_ticks *counter_register;
1332  SPARC_Counter_difference counter_difference;
1333} SPARC_Counter;
1334
1335extern SPARC_Counter _SPARC_Counter;
1336
1337/*
1338 * Returns always a value of one regardless of the parameters.  This prevents
1339 * an infinite loop in rtems_counter_delay_ticks().  Its only a reasonably safe
1340 * default.
1341 */
1342CPU_Counter_ticks _SPARC_Counter_difference_default(
1343  CPU_Counter_ticks second,
1344  CPU_Counter_ticks first
1345);
1346
1347static inline bool _SPARC_Counter_is_default( void )
1348{
1349  return _SPARC_Counter.counter_difference
1350    == _SPARC_Counter_difference_default;
1351}
1352
1353static inline void _SPARC_Counter_initialize(
1354  volatile const CPU_Counter_ticks *counter_register,
1355  SPARC_Counter_difference counter_difference
1356)
1357{
1358  _SPARC_Counter.counter_register = counter_register;
1359  _SPARC_Counter.counter_difference = counter_difference;
1360}
1361
1362static inline CPU_Counter_ticks _CPU_Counter_read( void )
1363{
1364  return *_SPARC_Counter.counter_register;
1365}
1366
1367static inline CPU_Counter_ticks _CPU_Counter_difference(
1368  CPU_Counter_ticks second,
1369  CPU_Counter_ticks first
1370)
1371{
1372  return (*_SPARC_Counter.counter_difference)( second, first );
1373}
1374
1375#endif /* ASM */
1376
1377#ifdef __cplusplus
1378}
1379#endif
1380
1381#endif
Note: See TracBrowser for help on using the repository browser.