source: rtems/cpukit/score/cpu/sparc/rtems/score/cpu.h @ a8865f8

5
Last change on this file since a8865f8 was a8865f8, checked in by Sebastian Huber <sebastian.huber@…>, on 01/25/16 at 09:20:28

score: Introduce CPU_CACHE_LINE_BYTES

Add CPU_CACHE_LINE_BYTES for the maximum cache line size in bytes. The
actual processor may use no cache or a smaller cache line size.

  • Property mode set to 100644
File size: 46.8 KB
Line 
1/**
2 * @file
3 *
4 * @brief SPARC CPU Department Source
5 *
6 * This include file contains information pertaining to the port of
7 * the executive to the SPARC processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/types.h>
27#include <rtems/score/sparc.h>
28
29/* conditional compilation parameters */
30
31#if defined(RTEMS_SMP)
32  /*
33   * The SPARC ABI is a bit special with respect to the floating point context.
34   * The complete floating point context is volatile.  Thus from an ABI point
35   * of view nothing needs to be saved and restored during a context switch.
36   * Instead the floating point context must be saved and restored during
37   * interrupt processing.  Historically the deferred floating point switch is
38   * used for SPARC and the complete floating point context is saved and
39   * restored during a context switch to the new floating point unit owner.
40   * This is a bit dangerous since post-switch actions (e.g. signal handlers)
41   * and context switch extensions may silently corrupt the floating point
42   * context.  The floating point unit is disabled for interrupt handlers.
43   * Thus in case an interrupt handler uses the floating point unit then this
44   * will result in a trap.
45   *
46   * On SMP configurations the deferred floating point switch is not
47   * supported in principle.  So use here a safe floating point support.  Safe
48   * means that the volatile floating point context is saved and restored
49   * around a thread dispatch issued during interrupt processing.  Thus
50   * post-switch actions and context switch extensions may safely use the
51   * floating point unit.
52   */
53  #define SPARC_USE_SAFE_FP_SUPPORT
54#endif
55
56/**
57 * Should the calls to _Thread_Enable_dispatch be inlined?
58 *
59 * - If TRUE, then they are inlined.
60 * - If FALSE, then a subroutine call is made.
61 *
62 * On this port, it is faster to inline _Thread_Enable_dispatch.
63 */
64#define CPU_INLINE_ENABLE_DISPATCH       TRUE
65
66/**
67 * Does the executive manage a dedicated interrupt stack in software?
68 *
69 * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
70 * If FALSE, nothing is done.
71 *
72 * The SPARC does not have a dedicated HW interrupt stack and one has
73 * been implemented in SW.
74 */
75#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
76
77/**
78 * Does the CPU follow the simple vectored interrupt model?
79 *
80 * - If TRUE, then RTEMS allocates the vector table it internally manages.
81 * - If FALSE, then the BSP is assumed to allocate and manage the vector
82 *   table
83 *
84 * THe SPARC is a simple vectored architecture.  Usually there is no
85 * PIC and the CPU directly vectors the interrupts.
86 */
87#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
88
89/**
90 * Does this CPU have hardware support for a dedicated interrupt stack?
91 *
92 * - If TRUE, then it must be installed during initialization.
93 * - If FALSE, then no installation is performed.
94 *
95 * The SPARC does not have a dedicated HW interrupt stack.
96 */
97#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
98
99/**
100 * Do we allocate a dedicated interrupt stack in the Interrupt Manager?
101 *
102 * - If TRUE, then the memory is allocated during initialization.
103 * - If FALSE, then the memory is allocated during initialization.
104 *
105 * The SPARC does not have hardware support for switching to a
106 * dedicated interrupt stack.  The port includes support for doing this
107 * in software.
108 *
109 */
110#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
111
112/**
113 * Does the RTEMS invoke the user's ISR with the vector number and
114 * a pointer to the saved interrupt frame (1) or just the vector
115 * number (0)?
116 *
117 * The SPARC port does not pass an Interrupt Stack Frame pointer to
118 * interrupt handlers.
119 */
120#define CPU_ISR_PASSES_FRAME_POINTER 0
121
122/**
123 * Does the CPU have hardware floating point?
124 *
125 * - If TRUE, then the FLOATING_POINT task attribute is supported.
126 * - If FALSE, then the FLOATING_POINT task attribute is ignored.
127 *
128 * This is set based upon the multilib settings.
129 */
130#if ( SPARC_HAS_FPU == 1 ) && !defined(SPARC_USE_SAFE_FP_SUPPORT)
131  #define CPU_HARDWARE_FP     TRUE
132#else
133  #define CPU_HARDWARE_FP     FALSE
134#endif
135
136/**
137 * The SPARC GCC port does not have a software floating point library
138 * that requires RTEMS assistance.
139 */
140#define CPU_SOFTWARE_FP     FALSE
141
142/**
143 * Are all tasks FLOATING_POINT tasks implicitly?
144 *
145 * - If TRUE, then the FLOATING_POINT task attribute is assumed.
146 * - If FALSE, then the FLOATING_POINT task attribute is followed.
147 *
148 * The SPARC GCC port does not implicitly use floating point registers.
149 */
150#define CPU_ALL_TASKS_ARE_FP     FALSE
151
152/**
153 * Should the IDLE task have a floating point context?
154 *
155 * - If TRUE, then the IDLE task is created as a FLOATING_POINT task
156 *   and it has a floating point context which is switched in and out.
157 * - If FALSE, then the IDLE task does not have a floating point context.
158 *
159 * The IDLE task does not have to be floating point on the SPARC.
160 */
161#define CPU_IDLE_TASK_IS_FP      FALSE
162
163/**
164 * Should the saving of the floating point registers be deferred
165 * until a context switch is made to another different floating point
166 * task?
167 *
168 * - If TRUE, then the floating point context will not be stored until
169 * necessary.  It will remain in the floating point registers and not
170 * disturned until another floating point task is switched to.
171 *
172 * - If FALSE, then the floating point context is saved when a floating
173 * point task is switched out and restored when the next floating point
174 * task is restored.  The state of the floating point registers between
175 * those two operations is not specified.
176 *
177 * On the SPARC, we can disable the FPU for integer only tasks so
178 * it is safe to defer floating point context switches.
179 */
180#if defined(SPARC_USE_SAFE_FP_SUPPORT)
181  #define CPU_USE_DEFERRED_FP_SWITCH FALSE
182#else
183  #define CPU_USE_DEFERRED_FP_SWITCH TRUE
184#endif
185
186/**
187 * Does this port provide a CPU dependent IDLE task implementation?
188 *
189 * - If TRUE, then the routine _CPU_Thread_Idle_body
190 * must be provided and is the default IDLE thread body instead of
191 * _CPU_Thread_Idle_body.
192 *
193 * - If FALSE, then use the generic IDLE thread body if the BSP does
194 * not provide one.
195 *
196 * The SPARC architecture does not have a low power or halt instruction.
197 * It is left to the BSP and/or CPU specific code to provide an IDLE
198 * thread body which is aware of low power modes.
199 */
200#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
201
202/**
203 * Does the stack grow up (toward higher addresses) or down
204 * (toward lower addresses)?
205 *
206 * - If TRUE, then the grows upward.
207 * - If FALSE, then the grows toward smaller addresses.
208 *
209 * The stack grows to lower addresses on the SPARC.
210 */
211#define CPU_STACK_GROWS_UP               FALSE
212
213/* FIXME: Is this the right value? */
214#define CPU_CACHE_LINE_BYTES 32
215
216#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
217
218/**
219 * Define what is required to specify how the network to host conversion
220 * routines are handled.
221 *
222 * The SPARC is big endian.
223 */
224#define CPU_BIG_ENDIAN                           TRUE
225
226/**
227 * Define what is required to specify how the network to host conversion
228 * routines are handled.
229 *
230 * The SPARC is NOT little endian.
231 */
232#define CPU_LITTLE_ENDIAN                        FALSE
233
234/**
235 * The following defines the number of bits actually used in the
236 * interrupt field of the task mode.  How those bits map to the
237 * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
238 *
239 * The SPARC has 16 interrupt levels in the PIL field of the PSR.
240 */
241#define CPU_MODES_INTERRUPT_MASK   0x0000000F
242
243#ifndef ASM
244/**
245 * This structure represents the organization of the minimum stack frame
246 * for the SPARC.  More framing information is required in certain situaions
247 * such as when there are a large number of out parameters or when the callee
248 * must save floating point registers.
249 */
250typedef struct {
251  /** This is the offset of the l0 register. */
252  uint32_t    l0;
253  /** This is the offset of the l1 register. */
254  uint32_t    l1;
255  /** This is the offset of the l2 register. */
256  uint32_t    l2;
257  /** This is the offset of the l3 register. */
258  uint32_t    l3;
259  /** This is the offset of the l4 register. */
260  uint32_t    l4;
261  /** This is the offset of the l5 register. */
262  uint32_t    l5;
263  /** This is the offset of the l6 register. */
264  uint32_t    l6;
265  /** This is the offset of the l7 register. */
266  uint32_t    l7;
267  /** This is the offset of the l0 register. */
268  uint32_t    i0;
269  /** This is the offset of the i1 register. */
270  uint32_t    i1;
271  /** This is the offset of the i2 register. */
272  uint32_t    i2;
273  /** This is the offset of the i3 register. */
274  uint32_t    i3;
275  /** This is the offset of the i4 register. */
276  uint32_t    i4;
277  /** This is the offset of the i5 register. */
278  uint32_t    i5;
279  /** This is the offset of the i6 register. */
280  uint32_t    i6_fp;
281  /** This is the offset of the i7 register. */
282  uint32_t    i7;
283  /** This is the offset of the register used to return structures. */
284  void       *structure_return_address;
285
286  /*
287   * The following are for the callee to save the register arguments in
288   * should this be necessary.
289   */
290  /** This is the offset of the register for saved argument 0. */
291  uint32_t    saved_arg0;
292  /** This is the offset of the register for saved argument 1. */
293  uint32_t    saved_arg1;
294  /** This is the offset of the register for saved argument 2. */
295  uint32_t    saved_arg2;
296  /** This is the offset of the register for saved argument 3. */
297  uint32_t    saved_arg3;
298  /** This is the offset of the register for saved argument 4. */
299  uint32_t    saved_arg4;
300  /** This is the offset of the register for saved argument 5. */
301  uint32_t    saved_arg5;
302  /** This field pads the structure so ldd and std instructions can be used. */
303  uint32_t    pad0;
304}  CPU_Minimum_stack_frame;
305
306#endif /* ASM */
307
308/** This macro defines an offset into the stack frame for use in assembly. */
309#define CPU_STACK_FRAME_L0_OFFSET             0x00
310/** This macro defines an offset into the stack frame for use in assembly. */
311#define CPU_STACK_FRAME_L1_OFFSET             0x04
312/** This macro defines an offset into the stack frame for use in assembly. */
313#define CPU_STACK_FRAME_L2_OFFSET             0x08
314/** This macro defines an offset into the stack frame for use in assembly. */
315#define CPU_STACK_FRAME_L3_OFFSET             0x0c
316/** This macro defines an offset into the stack frame for use in assembly. */
317#define CPU_STACK_FRAME_L4_OFFSET             0x10
318/** This macro defines an offset into the stack frame for use in assembly. */
319#define CPU_STACK_FRAME_L5_OFFSET             0x14
320/** This macro defines an offset into the stack frame for use in assembly. */
321#define CPU_STACK_FRAME_L6_OFFSET             0x18
322/** This macro defines an offset into the stack frame for use in assembly. */
323#define CPU_STACK_FRAME_L7_OFFSET             0x1c
324/** This macro defines an offset into the stack frame for use in assembly. */
325#define CPU_STACK_FRAME_I0_OFFSET             0x20
326/** This macro defines an offset into the stack frame for use in assembly. */
327#define CPU_STACK_FRAME_I1_OFFSET             0x24
328/** This macro defines an offset into the stack frame for use in assembly. */
329#define CPU_STACK_FRAME_I2_OFFSET             0x28
330/** This macro defines an offset into the stack frame for use in assembly. */
331#define CPU_STACK_FRAME_I3_OFFSET             0x2c
332/** This macro defines an offset into the stack frame for use in assembly. */
333#define CPU_STACK_FRAME_I4_OFFSET             0x30
334/** This macro defines an offset into the stack frame for use in assembly. */
335#define CPU_STACK_FRAME_I5_OFFSET             0x34
336/** This macro defines an offset into the stack frame for use in assembly. */
337#define CPU_STACK_FRAME_I6_FP_OFFSET          0x38
338/** This macro defines an offset into the stack frame for use in assembly. */
339#define CPU_STACK_FRAME_I7_OFFSET             0x3c
340/** This macro defines an offset into the stack frame for use in assembly. */
341#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x40
342/** This macro defines an offset into the stack frame for use in assembly. */
343#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x44
344/** This macro defines an offset into the stack frame for use in assembly. */
345#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x48
346/** This macro defines an offset into the stack frame for use in assembly. */
347#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x4c
348/** This macro defines an offset into the stack frame for use in assembly. */
349#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0x50
350/** This macro defines an offset into the stack frame for use in assembly. */
351#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0x54
352/** This macro defines an offset into the stack frame for use in assembly. */
353#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0x58
354/** This macro defines an offset into the stack frame for use in assembly. */
355#define CPU_STACK_FRAME_PAD0_OFFSET           0x5c
356
357/** This defines the size of the minimum stack frame. */
358#define CPU_MINIMUM_STACK_FRAME_SIZE          0x60
359
360#if ( SPARC_HAS_FPU == 1 )
361  #define CPU_PER_CPU_CONTROL_SIZE 8
362#else
363  #define CPU_PER_CPU_CONTROL_SIZE 4
364#endif
365
366/**
367 * @brief Offset of the CPU_Per_CPU_control::isr_dispatch_disable field
368 * relative to the Per_CPU_Control begin.
369 */
370#define SPARC_PER_CPU_ISR_DISPATCH_DISABLE 0
371
372#if ( SPARC_HAS_FPU == 1 )
373  /**
374   * @brief Offset of the CPU_Per_CPU_control::fsr field relative to the
375   * Per_CPU_Control begin.
376   */
377  #define SPARC_PER_CPU_FSR_OFFSET 4
378#endif
379
380/**
381 * @defgroup Contexts SPARC Context Structures
382 *
383 * @ingroup Score
384 *
385 * Generally there are 2 types of context to save.
386 *    + Interrupt registers to save
387 *    + Task level registers to save
388 *
389 * This means we have the following 3 context items:
390 *    + task level context stuff::  Context_Control
391 *    + floating point task stuff:: Context_Control_fp
392 *    + special interrupt level context :: Context_Control_interrupt
393 *
394 * On the SPARC, we are relatively conservative in that we save most
395 * of the CPU state in the context area.  The ET (enable trap) bit and
396 * the CWP (current window pointer) fields of the PSR are considered
397 * system wide resources and are not maintained on a per-thread basis.
398 */
399/**@{**/
400
401#ifndef ASM
402
403typedef struct {
404  /**
405   * This flag is context switched with each thread.  It indicates
406   * that THIS thread has an _ISR_Dispatch stack frame on its stack.
407   * By using this flag, we can avoid nesting more interrupt dispatching
408   * attempts on a previously interrupted thread's stack.
409   */
410  uint32_t isr_dispatch_disable;
411
412#if ( SPARC_HAS_FPU == 1 )
413  /**
414   * @brief Memory location to store the FSR register during interrupt
415   * processing.
416   *
417   * This is a write-only field.  The FSR is written to force a completion of
418   * floating point operations in progress.
419   */
420  uint32_t fsr;
421#endif
422} CPU_Per_CPU_control;
423
424/**
425 * @brief SPARC basic context.
426 *
427 * This structure defines the non-volatile integer and processor state context
428 * for the SPARC architecture according to "SYSTEM V APPLICATION BINARY
429 * INTERFACE - SPARC Processor Supplement", Third Edition.
430 *
431 * The registers g2 through g4 are reserved for applications.  GCC uses them as
432 * volatile registers by default.  So they are treated like volatile registers
433 * in RTEMS as well.
434 *
435 * The register g6 contains the per-CPU control of the current processor.  It
436 * is an invariant of the processor context.  This register must not be saved
437 * and restored during context switches or interrupt services.
438 */
439typedef struct {
440  /** This will contain the contents of the g5 register. */
441  uint32_t   g5;
442  /** This will contain the contents of the g7 register. */
443  uint32_t   g7;
444
445  /**
446   * This will contain the contents of the l0 and l1 registers.
447   *
448   * Using a double l0_and_l1 will put everything in this structure on a double
449   * word boundary which allows us to use double word loads and stores safely
450   * in the context switch.
451   */
452  double     l0_and_l1;
453  /** This will contain the contents of the l2 register. */
454  uint32_t   l2;
455  /** This will contain the contents of the l3 register. */
456  uint32_t   l3;
457  /** This will contain the contents of the l4 register. */
458  uint32_t   l4;
459  /** This will contain the contents of the l5 registeer.*/
460  uint32_t   l5;
461  /** This will contain the contents of the l6 register. */
462  uint32_t   l6;
463  /** This will contain the contents of the l7 register. */
464  uint32_t   l7;
465
466  /** This will contain the contents of the i0 register. */
467  uint32_t   i0;
468  /** This will contain the contents of the i1 register. */
469  uint32_t   i1;
470  /** This will contain the contents of the i2 register. */
471  uint32_t   i2;
472  /** This will contain the contents of the i3 register. */
473  uint32_t   i3;
474  /** This will contain the contents of the i4 register. */
475  uint32_t   i4;
476  /** This will contain the contents of the i5 register. */
477  uint32_t   i5;
478  /** This will contain the contents of the i6 (e.g. frame pointer) register. */
479  uint32_t   i6_fp;
480  /** This will contain the contents of the i7 register. */
481  uint32_t   i7;
482
483  /** This will contain the contents of the o6 (e.g. frame pointer) register. */
484  uint32_t   o6_sp;
485  /**
486   * This will contain the contents of the o7 (e.g. address of CALL
487   * instruction) register.
488   */
489  uint32_t   o7;
490
491  /** This will contain the contents of the processor status register. */
492  uint32_t   psr;
493  /**
494   * This field is used to prevent heavy nesting of calls to _Thread_Dispatch
495   * on an interrupted  task's stack.  This is problematic on the slower
496   * SPARC CPU models at high interrupt rates.
497   */
498  uint32_t   isr_dispatch_disable;
499
500#if defined(RTEMS_SMP)
501  volatile uint32_t is_executing;
502#endif
503} Context_Control;
504
505/**
506 * This macro provides a CPU independent way for RTEMS to access the
507 * stack pointer in a context structure. The actual name and offset is
508 * CPU architecture dependent.
509 */
510#define _CPU_Context_Get_SP( _context ) \
511  (_context)->o6_sp
512
513#ifdef RTEMS_SMP
514  static inline bool _CPU_Context_Get_is_executing(
515    const Context_Control *context
516  )
517  {
518    return context->is_executing;
519  }
520
521  static inline void _CPU_Context_Set_is_executing(
522    Context_Control *context,
523    bool is_executing
524  )
525  {
526    context->is_executing = is_executing;
527  }
528#endif
529
530#endif /* ASM */
531
532/*
533 *  Offsets of fields with Context_Control for assembly routines.
534 */
535
536/** This macro defines an offset into the context for use in assembly. */
537#define G5_OFFSET    0x00
538/** This macro defines an offset into the context for use in assembly. */
539#define G7_OFFSET    0x04
540
541/** This macro defines an offset into the context for use in assembly. */
542#define L0_OFFSET    0x08
543/** This macro defines an offset into the context for use in assembly. */
544#define L1_OFFSET    0x0C
545/** This macro defines an offset into the context for use in assembly. */
546#define L2_OFFSET    0x10
547/** This macro defines an offset into the context for use in assembly. */
548#define L3_OFFSET    0x14
549/** This macro defines an offset into the context for use in assembly. */
550#define L4_OFFSET    0x18
551/** This macro defines an offset into the context for use in assembly. */
552#define L5_OFFSET    0x1C
553/** This macro defines an offset into the context for use in assembly. */
554#define L6_OFFSET    0x20
555/** This macro defines an offset into the context for use in assembly. */
556#define L7_OFFSET    0x24
557
558/** This macro defines an offset into the context for use in assembly. */
559#define I0_OFFSET    0x28
560/** This macro defines an offset into the context for use in assembly. */
561#define I1_OFFSET    0x2C
562/** This macro defines an offset into the context for use in assembly. */
563#define I2_OFFSET    0x30
564/** This macro defines an offset into the context for use in assembly. */
565#define I3_OFFSET    0x34
566/** This macro defines an offset into the context for use in assembly. */
567#define I4_OFFSET    0x38
568/** This macro defines an offset into the context for use in assembly. */
569#define I5_OFFSET    0x3C
570/** This macro defines an offset into the context for use in assembly. */
571#define I6_FP_OFFSET 0x40
572/** This macro defines an offset into the context for use in assembly. */
573#define I7_OFFSET    0x44
574
575/** This macro defines an offset into the context for use in assembly. */
576#define O6_SP_OFFSET 0x48
577/** This macro defines an offset into the context for use in assembly. */
578#define O7_OFFSET    0x4C
579
580/** This macro defines an offset into the context for use in assembly. */
581#define PSR_OFFSET   0x50
582/** This macro defines an offset into the context for use in assembly. */
583#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0x54
584
585#if defined(RTEMS_SMP)
586  #define SPARC_CONTEXT_CONTROL_IS_EXECUTING_OFFSET 0x58
587#endif
588
589#ifndef ASM
590/**
591 * @brief SPARC basic context.
592 *
593 * This structure defines floating point context area.
594 */
595typedef struct {
596  /** This will contain the contents of the f0 and f1 register. */
597  double      f0_f1;
598  /** This will contain the contents of the f2 and f3 register. */
599  double      f2_f3;
600  /** This will contain the contents of the f4 and f5 register. */
601  double      f4_f5;
602  /** This will contain the contents of the f6 and f7 register. */
603  double      f6_f7;
604  /** This will contain the contents of the f8 and f9 register. */
605  double      f8_f9;
606  /** This will contain the contents of the f10 and f11 register. */
607  double      f10_f11;
608  /** This will contain the contents of the f12 and f13 register. */
609  double      f12_f13;
610  /** This will contain the contents of the f14 and f15 register. */
611  double      f14_f15;
612  /** This will contain the contents of the f16 and f17 register. */
613  double      f16_f17;
614  /** This will contain the contents of the f18 and f19 register. */
615  double      f18_f19;
616  /** This will contain the contents of the f20 and f21 register. */
617  double      f20_f21;
618  /** This will contain the contents of the f22 and f23 register. */
619  double      f22_f23;
620  /** This will contain the contents of the f24 and f25 register. */
621  double      f24_f25;
622  /** This will contain the contents of the f26 and f27 register. */
623  double      f26_f27;
624  /** This will contain the contents of the f28 and f29 register. */
625  double      f28_f29;
626  /** This will contain the contents of the f30 and f31 register. */
627  double      f30_f31;
628  /** This will contain the contents of the floating point status register. */
629  uint32_t    fsr;
630} Context_Control_fp;
631
632#endif /* ASM */
633
634/*
635 *  Offsets of fields with Context_Control_fp for assembly routines.
636 */
637
638/** This macro defines an offset into the FPU context for use in assembly. */
639#define FO_F1_OFFSET     0x00
640/** This macro defines an offset into the FPU context for use in assembly. */
641#define F2_F3_OFFSET     0x08
642/** This macro defines an offset into the FPU context for use in assembly. */
643#define F4_F5_OFFSET     0x10
644/** This macro defines an offset into the FPU context for use in assembly. */
645#define F6_F7_OFFSET     0x18
646/** This macro defines an offset into the FPU context for use in assembly. */
647#define F8_F9_OFFSET     0x20
648/** This macro defines an offset into the FPU context for use in assembly. */
649#define F1O_F11_OFFSET   0x28
650/** This macro defines an offset into the FPU context for use in assembly. */
651#define F12_F13_OFFSET   0x30
652/** This macro defines an offset into the FPU context for use in assembly. */
653#define F14_F15_OFFSET   0x38
654/** This macro defines an offset into the FPU context for use in assembly. */
655#define F16_F17_OFFSET   0x40
656/** This macro defines an offset into the FPU context for use in assembly. */
657#define F18_F19_OFFSET   0x48
658/** This macro defines an offset into the FPU context for use in assembly. */
659#define F2O_F21_OFFSET   0x50
660/** This macro defines an offset into the FPU context for use in assembly. */
661#define F22_F23_OFFSET   0x58
662/** This macro defines an offset into the FPU context for use in assembly. */
663#define F24_F25_OFFSET   0x60
664/** This macro defines an offset into the FPU context for use in assembly. */
665#define F26_F27_OFFSET   0x68
666/** This macro defines an offset into the FPU context for use in assembly. */
667#define F28_F29_OFFSET   0x70
668/** This macro defines an offset into the FPU context for use in assembly. */
669#define F3O_F31_OFFSET   0x78
670/** This macro defines an offset into the FPU context for use in assembly. */
671#define FSR_OFFSET       0x80
672
673/** This defines the size of the FPU context area for use in assembly. */
674#define CONTEXT_CONTROL_FP_SIZE 0x84
675
676#ifndef ASM
677
678/** @} */
679
680/**
681 * @brief Interrupt stack frame (ISF).
682 *
683 * Context saved on stack for an interrupt.
684 *
685 * NOTE: The PSR, PC, and NPC are only saved in this structure for the
686 *       benefit of the user's handler.
687 */
688typedef struct {
689  /** On an interrupt, we must save the minimum stack frame. */
690  CPU_Minimum_stack_frame  Stack_frame;
691  /** This is the offset of the PSR on an ISF. */
692  uint32_t                 psr;
693  /** This is the offset of the XXX on an ISF. */
694  uint32_t                 pc;
695  /** This is the offset of the XXX on an ISF. */
696  uint32_t                 npc;
697  /** This is the offset of the g1 register on an ISF. */
698  uint32_t                 g1;
699  /** This is the offset of the g2 register on an ISF. */
700  uint32_t                 g2;
701  /** This is the offset of the g3 register on an ISF. */
702  uint32_t                 g3;
703  /** This is the offset of the g4 register on an ISF. */
704  uint32_t                 g4;
705  /** This is the offset of the g5 register on an ISF. */
706  uint32_t                 g5;
707  /** This is the offset is reserved for alignment on an ISF. */
708  uint32_t                 reserved_for_alignment;
709  /** This is the offset of the g7 register on an ISF. */
710  uint32_t                 g7;
711  /** This is the offset of the i0 register on an ISF. */
712  uint32_t                 i0;
713  /** This is the offset of the i1 register on an ISF. */
714  uint32_t                 i1;
715  /** This is the offset of the i2 register on an ISF. */
716  uint32_t                 i2;
717  /** This is the offset of the i3 register on an ISF. */
718  uint32_t                 i3;
719  /** This is the offset of the i4 register on an ISF. */
720  uint32_t                 i4;
721  /** This is the offset of the i5 register on an ISF. */
722  uint32_t                 i5;
723  /** This is the offset of the i6 register on an ISF. */
724  uint32_t                 i6_fp;
725  /** This is the offset of the i7 register on an ISF. */
726  uint32_t                 i7;
727  /** This is the offset of the y register on an ISF. */
728  uint32_t                 y;
729  /** This is the offset of the tpc register on an ISF. */
730  uint32_t                 tpc;
731} CPU_Interrupt_frame;
732
733#endif /* ASM */
734
735/*
736 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
737 */
738
739/** This macro defines an offset into the ISF for use in assembly. */
740#define ISF_PSR_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
741/** This macro defines an offset into the ISF for use in assembly. */
742#define ISF_PC_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x04
743/** This macro defines an offset into the ISF for use in assembly. */
744#define ISF_NPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
745/** This macro defines an offset into the ISF for use in assembly. */
746#define ISF_G1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x0c
747/** This macro defines an offset into the ISF for use in assembly. */
748#define ISF_G2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
749/** This macro defines an offset into the ISF for use in assembly. */
750#define ISF_G3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x14
751/** This macro defines an offset into the ISF for use in assembly. */
752#define ISF_G4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
753/** This macro defines an offset into the ISF for use in assembly. */
754#define ISF_G5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x1c
755/** This macro defines an offset into the ISF for use in assembly. */
756#define ISF_G7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x24
757/** This macro defines an offset into the ISF for use in assembly. */
758#define ISF_I0_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
759/** This macro defines an offset into the ISF for use in assembly. */
760#define ISF_I1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x2c
761/** This macro defines an offset into the ISF for use in assembly. */
762#define ISF_I2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
763/** This macro defines an offset into the ISF for use in assembly. */
764#define ISF_I3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x34
765/** This macro defines an offset into the ISF for use in assembly. */
766#define ISF_I4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
767/** This macro defines an offset into the ISF for use in assembly. */
768#define ISF_I5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x3c
769/** This macro defines an offset into the ISF for use in assembly. */
770#define ISF_I6_FP_OFFSET       CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
771/** This macro defines an offset into the ISF for use in assembly. */
772#define ISF_I7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x44
773/** This macro defines an offset into the ISF for use in assembly. */
774#define ISF_Y_OFFSET           CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
775/** This macro defines an offset into the ISF for use in assembly. */
776#define ISF_TPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x4c
777
778/** This defines the size of the ISF area for use in assembly. */
779#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE \
780        CPU_MINIMUM_STACK_FRAME_SIZE + 0x50
781
782#ifndef ASM
783/**
784 * This variable is contains the initialize context for the FP unit.
785 * It is filled in by _CPU_Initialize and copied into the task's FP
786 * context area during _CPU_Context_Initialize.
787 */
788SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
789
790/**
791 * The following type defines an entry in the SPARC's trap table.
792 *
793 * NOTE: The instructions chosen are RTEMS dependent although one is
794 *       obligated to use two of the four instructions to perform a
795 *       long jump.  The other instructions load one register with the
796 *       trap type (a.k.a. vector) and another with the psr.
797 */
798typedef struct {
799  /** This will contain a "mov %psr, %l0" instruction. */
800  uint32_t     mov_psr_l0;
801  /** This will contain a "sethi %hi(_handler), %l4" instruction. */
802  uint32_t     sethi_of_handler_to_l4;
803  /** This will contain a "jmp %l4 + %lo(_handler)" instruction. */
804  uint32_t     jmp_to_low_of_handler_plus_l4;
805  /** This will contain a " mov _vector, %l3" instruction. */
806  uint32_t     mov_vector_l3;
807} CPU_Trap_table_entry;
808
809/**
810 * This is the set of opcodes for the instructions loaded into a trap
811 * table entry.  The routine which installs a handler is responsible
812 * for filling in the fields for the _handler address and the _vector
813 * trap type.
814 *
815 * The constants following this structure are masks for the fields which
816 * must be filled in when the handler is installed.
817 */
818extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
819
820/**
821 * The size of the floating point context area.
822 */
823#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
824
825#endif
826
827/**
828 * Amount of extra stack (above minimum stack size) required by
829 * MPCI receive server thread.  Remember that in a multiprocessor
830 * system this thread must exist and be able to process all directives.
831 */
832#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
833
834/**
835 * This defines the number of entries in the ISR_Vector_table managed
836 * by the executive.
837 *
838 * On the SPARC, there are really only 256 vectors.  However, the executive
839 * has no easy, fast, reliable way to determine which traps are synchronous
840 * and which are asynchronous.  By default, synchronous traps return to the
841 * instruction which caused the interrupt.  So if you install a software
842 * trap handler as an executive interrupt handler (which is desirable since
843 * RTEMS takes care of window and register issues), then the executive needs
844 * to know that the return address is to the trap rather than the instruction
845 * following the trap.
846 *
847 * So vectors 0 through 255 are treated as regular asynchronous traps which
848 * provide the "correct" return address.  Vectors 256 through 512 are assumed
849 * by the executive to be synchronous and to require that the return address
850 * be fudged.
851 *
852 * If you use this mechanism to install a trap handler which must reexecute
853 * the instruction which caused the trap, then it should be installed as
854 * an asynchronous trap.  This will avoid the executive changing the return
855 * address.
856 */
857#define CPU_INTERRUPT_NUMBER_OF_VECTORS     256
858
859/**
860 * The SPARC has 256 vectors but the port treats 256-512 as synchronous
861 * traps.
862 */
863#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 511
864
865/**
866 * This is the bit step in a vector number to indicate it is being installed
867 * as a synchronous trap.
868 */
869#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x100
870
871/**
872 * This macro indicates that @a _trap as an asynchronous trap.
873 */
874#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
875
876/**
877 * This macro indicates that @a _trap as a synchronous trap.
878 */
879#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 256 )
880
881/**
882 * This macro returns the real hardware vector number associated with @a _trap.
883 */
884#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 256)
885
886/**
887 * This is defined if the port has a special way to report the ISR nesting
888 * level.  Most ports maintain the variable _ISR_Nest_level.
889 */
890#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
891
892/**
893 * Should be large enough to run all tests.  This ensures
894 * that a "reasonable" small application should not have any problems.
895 *
896 * This appears to be a fairly generous number for the SPARC since
897 * represents a call depth of about 20 routines based on the minimum
898 * stack frame.
899 */
900#define CPU_STACK_MINIMUM_SIZE  (1024*4)
901
902/**
903 * What is the size of a pointer on this architecture?
904 */
905#define CPU_SIZEOF_POINTER 4
906
907/**
908 * CPU's worst alignment requirement for data types on a byte boundary.  This
909 * alignment does not take into account the requirements for the stack.
910 *
911 * On the SPARC, this is required for double word loads and stores.
912 */
913#define CPU_ALIGNMENT      8
914
915/**
916 * This number corresponds to the byte alignment requirement for the
917 * heap handler.  This alignment requirement may be stricter than that
918 * for the data types alignment specified by CPU_ALIGNMENT.  It is
919 * common for the heap to follow the same alignment requirement as
920 * CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
921 * then this should be set to CPU_ALIGNMENT.
922 *
923 * NOTE:  This does not have to be a power of 2.  It does have to
924 *        be greater or equal to than CPU_ALIGNMENT.
925 */
926#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
927
928/**
929 * This number corresponds to the byte alignment requirement for memory
930 * buffers allocated by the partition manager.  This alignment requirement
931 * may be stricter than that for the data types alignment specified by
932 * CPU_ALIGNMENT.  It is common for the partition to follow the same
933 * alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
934 * enough for the partition, then this should be set to CPU_ALIGNMENT.
935 *
936 * NOTE:  This does not have to be a power of 2.  It does have to
937 *        be greater or equal to than CPU_ALIGNMENT.
938 */
939#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
940
941/**
942 * This number corresponds to the byte alignment requirement for the
943 * stack.  This alignment requirement may be stricter than that for the
944 * data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
945 * is strict enough for the stack, then this should be set to 0.
946 *
947 * NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
948 *
949 * The alignment restrictions for the SPARC are not that strict but this
950 * should unsure that the stack is always sufficiently alignment that the
951 * window overflow, underflow, and flush routines can use double word loads
952 * and stores.
953 */
954#define CPU_STACK_ALIGNMENT        16
955
956#ifndef ASM
957
958/*
959 *  ISR handler macros
960 */
961
962/**
963 * Support routine to initialize the RTEMS vector table after it is allocated.
964 */
965#define _CPU_Initialize_vectors()
966
967/**
968 * Disable all interrupts for a critical section.  The previous
969 * level is returned in _level.
970 */
971#define _CPU_ISR_Disable( _level ) \
972  (_level) = sparc_disable_interrupts()
973
974/**
975 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
976 * This indicates the end of a critical section.  The parameter
977 * _level is not modified.
978 */
979#define _CPU_ISR_Enable( _level ) \
980  sparc_enable_interrupts( _level )
981
982/**
983 * This temporarily restores the interrupt to _level before immediately
984 * disabling them again.  This is used to divide long critical
985 * sections into two or more parts.  The parameter _level is not
986 * modified.
987 */
988#define _CPU_ISR_Flash( _level ) \
989  sparc_flash_interrupts( _level )
990
991/**
992 * Map interrupt level in task mode onto the hardware that the CPU
993 * actually provides.  Currently, interrupt levels which do not
994 * map onto the CPU in a straight fashion are undefined.
995 */
996#define _CPU_ISR_Set_level( _newlevel ) \
997   sparc_enable_interrupts( _newlevel << 8)
998
999/**
1000 * @brief Obtain the current interrupt disable level.
1001 *
1002 * This method is invoked to return the current interrupt disable level.
1003 *
1004 * @return This method returns the current interrupt disable level.
1005 */
1006uint32_t   _CPU_ISR_Get_level( void );
1007
1008/* end of ISR handler macros */
1009
1010/* Context handler macros */
1011
1012/**
1013 * Initialize the context to a state suitable for starting a
1014 * task after a context restore operation.  Generally, this
1015 * involves:
1016 *
1017 * - setting a starting address
1018 * - preparing the stack
1019 * - preparing the stack and frame pointers
1020 * - setting the proper interrupt level in the context
1021 * - initializing the floating point context
1022 *
1023 * @param[in] the_context points to the context area
1024 * @param[in] stack_base is the low address of the allocated stack area
1025 * @param[in] size is the size of the stack area in bytes
1026 * @param[in] new_level is the interrupt level for the task
1027 * @param[in] entry_point is the task's entry point
1028 * @param[in] is_fp is set to TRUE if the task is a floating point task
1029 * @param[in] tls_area is the thread-local storage (TLS) area
1030 *
1031 * NOTE:  Implemented as a subroutine for the SPARC port.
1032 */
1033void _CPU_Context_Initialize(
1034  Context_Control  *the_context,
1035  uint32_t         *stack_base,
1036  uint32_t          size,
1037  uint32_t          new_level,
1038  void             *entry_point,
1039  bool              is_fp,
1040  void             *tls_area
1041);
1042
1043/**
1044 * This macro is invoked from _Thread_Handler to do whatever CPU
1045 * specific magic is required that must be done in the context of
1046 * the thread when it starts.
1047 *
1048 * On the SPARC, this is setting the frame pointer so GDB is happy.
1049 * Make GDB stop unwinding at _Thread_Handler, previous register window
1050 * Frame pointer is 0 and calling address must be a function with starting
1051 * with a SAVE instruction. If return address is leaf-function (no SAVE)
1052 * GDB will not look at prev reg window fp.
1053 *
1054 * _Thread_Handler is known to start with SAVE.
1055 */
1056#define _CPU_Context_Initialization_at_thread_begin() \
1057  do { \
1058    __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
1059  } while (0)
1060
1061/**
1062 * This routine is responsible for somehow restarting the currently
1063 * executing task.
1064 *
1065 * On the SPARC, this is is relatively painless but requires a small
1066 * amount of wrapper code before using the regular restore code in
1067 * of the context switch.
1068 */
1069#define _CPU_Context_Restart_self( _the_context ) \
1070   _CPU_Context_restore( (_the_context) );
1071
1072/**
1073 * The FP context area for the SPARC is a simple structure and nothing
1074 * special is required to find the "starting load point"
1075 */
1076#define _CPU_Context_Fp_start( _base, _offset ) \
1077   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
1078
1079/**
1080 * This routine initializes the FP context area passed to it to.
1081 *
1082 * The SPARC allows us to use the simple initialization model
1083 * in which an "initial" FP context was saved into _CPU_Null_fp_context
1084 * at CPU initialization and it is simply copied into the destination
1085 * context.
1086 */
1087#define _CPU_Context_Initialize_fp( _destination ) \
1088  do { \
1089   *(*(_destination)) = _CPU_Null_fp_context; \
1090  } while (0)
1091
1092/* end of Context handler macros */
1093
1094/* Fatal Error manager macros */
1095
1096/**
1097 * This routine copies _error into a known place -- typically a stack
1098 * location or a register, optionally disables interrupts, and
1099 * halts/stops the CPU.
1100 */
1101extern void _CPU_Fatal_halt(uint32_t source, uint32_t error)
1102  RTEMS_NO_RETURN;
1103
1104/* end of Fatal Error manager macros */
1105
1106/* Bitfield handler macros */
1107
1108#if ( SPARC_HAS_BITSCAN == 0 )
1109  /**
1110   * The SPARC port uses the generic C algorithm for bitfield scan if the
1111   * CPU model does not have a scan instruction.
1112   */
1113  #define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1114  /**
1115   * The SPARC port uses the generic C algorithm for bitfield scan if the
1116   * CPU model does not have a scan instruction.  Thus is needs the generic
1117   * data table used by that algorithm.
1118   */
1119  #define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1120#else
1121  #error "scan instruction not currently supported by RTEMS!!"
1122#endif
1123
1124/* end of Bitfield handler macros */
1125
1126/* functions */
1127
1128/**
1129 * @brief SPARC specific initialization.
1130 *
1131 * This routine performs CPU dependent initialization.
1132 */
1133void _CPU_Initialize(void);
1134
1135/**
1136 * @brief SPARC specific raw ISR installer.
1137 *
1138 * This routine installs @a new_handler to be directly called from the trap
1139 * table.
1140 *
1141 * @param[in] vector is the vector number
1142 * @param[in] new_handler is the new ISR handler
1143 * @param[in] old_handler will contain the old ISR handler
1144 */
1145void _CPU_ISR_install_raw_handler(
1146  uint32_t    vector,
1147  proc_ptr    new_handler,
1148  proc_ptr   *old_handler
1149);
1150
1151/**
1152 * @brief SPARC specific RTEMS ISR installer.
1153 *
1154 * This routine installs an interrupt vector.
1155 *
1156 * @param[in] vector is the vector number
1157 * @param[in] new_handler is the new ISR handler
1158 * @param[in] old_handler will contain the old ISR handler
1159 */
1160
1161void _CPU_ISR_install_vector(
1162  uint32_t    vector,
1163  proc_ptr    new_handler,
1164  proc_ptr   *old_handler
1165);
1166
1167/**
1168 * @brief SPARC specific context switch.
1169 *
1170 * This routine switches from the run context to the heir context.
1171 *
1172 * @param[in] run is the currently executing thread
1173 * @param[in] heir will become the currently executing thread
1174 */
1175void _CPU_Context_switch(
1176  Context_Control  *run,
1177  Context_Control  *heir
1178);
1179
1180/**
1181 * @brief SPARC specific context restore.
1182 *
1183 * This routine is generally used only to restart self in an
1184 * efficient manner.
1185 *
1186 * @param[in] new_context is the context to restore
1187 */
1188void _CPU_Context_restore(
1189  Context_Control *new_context
1190) RTEMS_NO_RETURN;
1191
1192/**
1193 * @brief The pointer to the current per-CPU control is available via register
1194 * g6.
1195 */
1196register struct Per_CPU_Control *_SPARC_Per_CPU_current __asm__( "g6" );
1197
1198#define _CPU_Get_current_per_CPU_control() _SPARC_Per_CPU_current
1199
1200#if defined(RTEMS_SMP)
1201  uint32_t _CPU_SMP_Initialize( void );
1202
1203  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1204
1205  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1206
1207  void _CPU_SMP_Prepare_start_multitasking( void );
1208
1209  #if defined(__leon__) && !defined(RTEMS_PARAVIRT)
1210    static inline uint32_t _CPU_SMP_Get_current_processor( void )
1211    {
1212      return _LEON3_Get_current_processor();
1213    }
1214  #else
1215    uint32_t _CPU_SMP_Get_current_processor( void );
1216  #endif
1217
1218  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1219
1220  static inline void _CPU_SMP_Processor_event_broadcast( void )
1221  {
1222    __asm__ volatile ( "" : : : "memory" );
1223  }
1224
1225  static inline void _CPU_SMP_Processor_event_receive( void )
1226  {
1227    __asm__ volatile ( "" : : : "memory" );
1228  }
1229#endif
1230
1231/**
1232 * @brief SPARC specific save FPU method.
1233 *
1234 * This routine saves the floating point context passed to it.
1235 *
1236 * @param[in] fp_context_ptr is the area to save into
1237 */
1238void _CPU_Context_save_fp(
1239  Context_Control_fp **fp_context_ptr
1240);
1241
1242/**
1243 * @brief SPARC specific restore FPU method.
1244 *
1245 * This routine restores the floating point context passed to it.
1246 *
1247 * @param[in] fp_context_ptr is the area to restore from
1248 */
1249void _CPU_Context_restore_fp(
1250  Context_Control_fp **fp_context_ptr
1251);
1252
1253void _CPU_Context_volatile_clobber( uintptr_t pattern );
1254
1255void _CPU_Context_validate( uintptr_t pattern );
1256
1257typedef struct {
1258  uint32_t trap;
1259  CPU_Interrupt_frame *isf;
1260} CPU_Exception_frame;
1261
1262void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1263
1264/**
1265 * @brief SPARC specific method to endian swap an uint32_t.
1266 *
1267 * The following routine swaps the endian format of an unsigned int.
1268 * It must be static because it is referenced indirectly.
1269 *
1270 * @param[in] value is the value to endian swap
1271 *
1272 * This version will work on any processor, but if you come across a better
1273 * way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
1274 * entity as shown below is not any more efficient on the SPARC.
1275 *
1276 *    - swap least significant two bytes with 16-bit rotate
1277 *    - swap upper and lower 16-bits
1278 *    - swap most significant two bytes with 16-bit rotate
1279 *
1280 * It is not obvious how the SPARC can do significantly better than the
1281 * generic code.  gcc 2.7.0 only generates about 12 instructions for the
1282 * following code at optimization level four (i.e. -O4).
1283 */
1284static inline uint32_t CPU_swap_u32(
1285  uint32_t value
1286)
1287{
1288  uint32_t   byte1, byte2, byte3, byte4, swapped;
1289
1290  byte4 = (value >> 24) & 0xff;
1291  byte3 = (value >> 16) & 0xff;
1292  byte2 = (value >> 8)  & 0xff;
1293  byte1 =  value        & 0xff;
1294
1295  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1296  return( swapped );
1297}
1298
1299/**
1300 * @brief SPARC specific method to endian swap an uint16_t.
1301 *
1302 * The following routine swaps the endian format of a uint16_t.
1303 *
1304 * @param[in] value is the value to endian swap
1305 */
1306#define CPU_swap_u16( value ) \
1307  (((value&0xff) << 8) | ((value >> 8)&0xff))
1308
1309typedef uint32_t CPU_Counter_ticks;
1310
1311typedef CPU_Counter_ticks (*SPARC_Counter_difference)(
1312  CPU_Counter_ticks second,
1313  CPU_Counter_ticks first
1314);
1315
1316/*
1317 * The SPARC processors supported by RTEMS have no built-in CPU counter
1318 * support.  We have to use some hardware counter module for this purpose.  The
1319 * BSP must provide a 32-bit register which contains the current CPU counter
1320 * value and a function for the difference calculation.  It can use for example
1321 * the GPTIMER instance used for the clock driver.
1322 */
1323typedef struct {
1324  volatile const CPU_Counter_ticks *counter_register;
1325  SPARC_Counter_difference counter_difference;
1326} SPARC_Counter;
1327
1328extern SPARC_Counter _SPARC_Counter;
1329
1330/*
1331 * Returns always a value of one regardless of the parameters.  This prevents
1332 * an infinite loop in rtems_counter_delay_ticks().  Its only a reasonably safe
1333 * default.
1334 */
1335CPU_Counter_ticks _SPARC_Counter_difference_default(
1336  CPU_Counter_ticks second,
1337  CPU_Counter_ticks first
1338);
1339
1340static inline bool _SPARC_Counter_is_default( void )
1341{
1342  return _SPARC_Counter.counter_difference
1343    == _SPARC_Counter_difference_default;
1344}
1345
1346static inline void _SPARC_Counter_initialize(
1347  volatile const CPU_Counter_ticks *counter_register,
1348  SPARC_Counter_difference counter_difference
1349)
1350{
1351  _SPARC_Counter.counter_register = counter_register;
1352  _SPARC_Counter.counter_difference = counter_difference;
1353}
1354
1355static inline CPU_Counter_ticks _CPU_Counter_read( void )
1356{
1357  return *_SPARC_Counter.counter_register;
1358}
1359
1360static inline CPU_Counter_ticks _CPU_Counter_difference(
1361  CPU_Counter_ticks second,
1362  CPU_Counter_ticks first
1363)
1364{
1365  return (*_SPARC_Counter.counter_difference)( second, first );
1366}
1367
1368#endif /* ASM */
1369
1370#ifdef __cplusplus
1371}
1372#endif
1373
1374#endif
Note: See TracBrowser for help on using the repository browser.