source: rtems/cpukit/score/cpu/sparc/rtems/score/cpu.h @ 422de7f7

4.115
Last change on this file since 422de7f7 was 422de7f7, checked in by Sebastian Huber <sebastian.huber@…>, on 05/26/15 at 12:09:11

sparc: Delete unused CONTEXT_CONTROL_SIZE

  • Property mode set to 100644
File size: 45.4 KB
Line 
1/**
2 * @file
3 *
4 * @brief SPARC CPU Department Source
5 *
6 * This include file contains information pertaining to the port of
7 * the executive to the SPARC processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/types.h>
27#include <rtems/score/sparc.h>
28
29/* conditional compilation parameters */
30
31/**
32 * Should the calls to _Thread_Enable_dispatch be inlined?
33 *
34 * - If TRUE, then they are inlined.
35 * - If FALSE, then a subroutine call is made.
36 *
37 * On this port, it is faster to inline _Thread_Enable_dispatch.
38 */
39#define CPU_INLINE_ENABLE_DISPATCH       TRUE
40
41/**
42 * Does the executive manage a dedicated interrupt stack in software?
43 *
44 * If TRUE, then a stack is allocated in _ISR_Handler_initialization.
45 * If FALSE, nothing is done.
46 *
47 * The SPARC does not have a dedicated HW interrupt stack and one has
48 * been implemented in SW.
49 */
50#define CPU_HAS_SOFTWARE_INTERRUPT_STACK   TRUE
51
52/**
53 * Does the CPU follow the simple vectored interrupt model?
54 *
55 * - If TRUE, then RTEMS allocates the vector table it internally manages.
56 * - If FALSE, then the BSP is assumed to allocate and manage the vector
57 *   table
58 *
59 * THe SPARC is a simple vectored architecture.  Usually there is no
60 * PIC and the CPU directly vectors the interrupts.
61 */
62#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
63
64/**
65 * Does this CPU have hardware support for a dedicated interrupt stack?
66 *
67 * - If TRUE, then it must be installed during initialization.
68 * - If FALSE, then no installation is performed.
69 *
70 * The SPARC does not have a dedicated HW interrupt stack.
71 */
72#define CPU_HAS_HARDWARE_INTERRUPT_STACK  FALSE
73
74/**
75 * Do we allocate a dedicated interrupt stack in the Interrupt Manager?
76 *
77 * - If TRUE, then the memory is allocated during initialization.
78 * - If FALSE, then the memory is allocated during initialization.
79 *
80 * The SPARC does not have hardware support for switching to a
81 * dedicated interrupt stack.  The port includes support for doing this
82 * in software.
83 *
84 */
85#define CPU_ALLOCATE_INTERRUPT_STACK      TRUE
86
87/**
88 * Does the RTEMS invoke the user's ISR with the vector number and
89 * a pointer to the saved interrupt frame (1) or just the vector
90 * number (0)?
91 *
92 * The SPARC port does not pass an Interrupt Stack Frame pointer to
93 * interrupt handlers.
94 */
95#define CPU_ISR_PASSES_FRAME_POINTER 0
96
97/**
98 * Does the CPU have hardware floating point?
99 *
100 * - If TRUE, then the FLOATING_POINT task attribute is supported.
101 * - If FALSE, then the FLOATING_POINT task attribute is ignored.
102 *
103 * This is set based upon the multilib settings.
104 */
105#if ( SPARC_HAS_FPU == 1 )
106  #define CPU_HARDWARE_FP     TRUE
107#else
108  #define CPU_HARDWARE_FP     FALSE
109#endif
110
111/**
112 * The SPARC GCC port does not have a software floating point library
113 * that requires RTEMS assistance.
114 */
115#define CPU_SOFTWARE_FP     FALSE
116
117/**
118 * Are all tasks FLOATING_POINT tasks implicitly?
119 *
120 * - If TRUE, then the FLOATING_POINT task attribute is assumed.
121 * - If FALSE, then the FLOATING_POINT task attribute is followed.
122 *
123 * The SPARC GCC port does not implicitly use floating point registers.
124 */
125#define CPU_ALL_TASKS_ARE_FP     FALSE
126
127/**
128 * Should the IDLE task have a floating point context?
129 *
130 * - If TRUE, then the IDLE task is created as a FLOATING_POINT task
131 *   and it has a floating point context which is switched in and out.
132 * - If FALSE, then the IDLE task does not have a floating point context.
133 *
134 * The IDLE task does not have to be floating point on the SPARC.
135 */
136#define CPU_IDLE_TASK_IS_FP      FALSE
137
138/**
139 * Should the saving of the floating point registers be deferred
140 * until a context switch is made to another different floating point
141 * task?
142 *
143 * - If TRUE, then the floating point context will not be stored until
144 * necessary.  It will remain in the floating point registers and not
145 * disturned until another floating point task is switched to.
146 *
147 * - If FALSE, then the floating point context is saved when a floating
148 * point task is switched out and restored when the next floating point
149 * task is restored.  The state of the floating point registers between
150 * those two operations is not specified.
151 *
152 * On the SPARC, we can disable the FPU for integer only tasks so
153 * it is safe to defer floating point context switches.
154 */
155#if defined(RTEMS_SMP)
156  #define CPU_USE_DEFERRED_FP_SWITCH FALSE
157#else
158  #define CPU_USE_DEFERRED_FP_SWITCH TRUE
159#endif
160
161/**
162 * Does this port provide a CPU dependent IDLE task implementation?
163 *
164 * - If TRUE, then the routine _CPU_Thread_Idle_body
165 * must be provided and is the default IDLE thread body instead of
166 * _CPU_Thread_Idle_body.
167 *
168 * - If FALSE, then use the generic IDLE thread body if the BSP does
169 * not provide one.
170 *
171 * The SPARC architecture does not have a low power or halt instruction.
172 * It is left to the BSP and/or CPU specific code to provide an IDLE
173 * thread body which is aware of low power modes.
174 */
175#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
176
177/**
178 * Does the stack grow up (toward higher addresses) or down
179 * (toward lower addresses)?
180 *
181 * - If TRUE, then the grows upward.
182 * - If FALSE, then the grows toward smaller addresses.
183 *
184 * The stack grows to lower addresses on the SPARC.
185 */
186#define CPU_STACK_GROWS_UP               FALSE
187
188/**
189 * The following is the variable attribute used to force alignment
190 * of critical data structures.  On some processors it may make
191 * sense to have these aligned on tighter boundaries than
192 * the minimum requirements of the compiler in order to have as
193 * much of the critical data area as possible in a cache line.
194 *
195 * The SPARC does not appear to have particularly strict alignment
196 * requirements.  This value was chosen to take advantages of caches.
197 */
198#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (32)))
199
200#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
201
202/**
203 * Define what is required to specify how the network to host conversion
204 * routines are handled.
205 *
206 * The SPARC is big endian.
207 */
208#define CPU_BIG_ENDIAN                           TRUE
209
210/**
211 * Define what is required to specify how the network to host conversion
212 * routines are handled.
213 *
214 * The SPARC is NOT little endian.
215 */
216#define CPU_LITTLE_ENDIAN                        FALSE
217
218/**
219 * The following defines the number of bits actually used in the
220 * interrupt field of the task mode.  How those bits map to the
221 * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
222 *
223 * The SPARC has 16 interrupt levels in the PIL field of the PSR.
224 */
225#define CPU_MODES_INTERRUPT_MASK   0x0000000F
226
227#ifndef ASM
228/**
229 * This structure represents the organization of the minimum stack frame
230 * for the SPARC.  More framing information is required in certain situaions
231 * such as when there are a large number of out parameters or when the callee
232 * must save floating point registers.
233 */
234typedef struct {
235  /** This is the offset of the l0 register. */
236  uint32_t    l0;
237  /** This is the offset of the l1 register. */
238  uint32_t    l1;
239  /** This is the offset of the l2 register. */
240  uint32_t    l2;
241  /** This is the offset of the l3 register. */
242  uint32_t    l3;
243  /** This is the offset of the l4 register. */
244  uint32_t    l4;
245  /** This is the offset of the l5 register. */
246  uint32_t    l5;
247  /** This is the offset of the l6 register. */
248  uint32_t    l6;
249  /** This is the offset of the l7 register. */
250  uint32_t    l7;
251  /** This is the offset of the l0 register. */
252  uint32_t    i0;
253  /** This is the offset of the i1 register. */
254  uint32_t    i1;
255  /** This is the offset of the i2 register. */
256  uint32_t    i2;
257  /** This is the offset of the i3 register. */
258  uint32_t    i3;
259  /** This is the offset of the i4 register. */
260  uint32_t    i4;
261  /** This is the offset of the i5 register. */
262  uint32_t    i5;
263  /** This is the offset of the i6 register. */
264  uint32_t    i6_fp;
265  /** This is the offset of the i7 register. */
266  uint32_t    i7;
267  /** This is the offset of the register used to return structures. */
268  void       *structure_return_address;
269
270  /*
271   * The following are for the callee to save the register arguments in
272   * should this be necessary.
273   */
274  /** This is the offset of the register for saved argument 0. */
275  uint32_t    saved_arg0;
276  /** This is the offset of the register for saved argument 1. */
277  uint32_t    saved_arg1;
278  /** This is the offset of the register for saved argument 2. */
279  uint32_t    saved_arg2;
280  /** This is the offset of the register for saved argument 3. */
281  uint32_t    saved_arg3;
282  /** This is the offset of the register for saved argument 4. */
283  uint32_t    saved_arg4;
284  /** This is the offset of the register for saved argument 5. */
285  uint32_t    saved_arg5;
286  /** This field pads the structure so ldd and std instructions can be used. */
287  uint32_t    pad0;
288}  CPU_Minimum_stack_frame;
289
290#endif /* ASM */
291
292/** This macro defines an offset into the stack frame for use in assembly. */
293#define CPU_STACK_FRAME_L0_OFFSET             0x00
294/** This macro defines an offset into the stack frame for use in assembly. */
295#define CPU_STACK_FRAME_L1_OFFSET             0x04
296/** This macro defines an offset into the stack frame for use in assembly. */
297#define CPU_STACK_FRAME_L2_OFFSET             0x08
298/** This macro defines an offset into the stack frame for use in assembly. */
299#define CPU_STACK_FRAME_L3_OFFSET             0x0c
300/** This macro defines an offset into the stack frame for use in assembly. */
301#define CPU_STACK_FRAME_L4_OFFSET             0x10
302/** This macro defines an offset into the stack frame for use in assembly. */
303#define CPU_STACK_FRAME_L5_OFFSET             0x14
304/** This macro defines an offset into the stack frame for use in assembly. */
305#define CPU_STACK_FRAME_L6_OFFSET             0x18
306/** This macro defines an offset into the stack frame for use in assembly. */
307#define CPU_STACK_FRAME_L7_OFFSET             0x1c
308/** This macro defines an offset into the stack frame for use in assembly. */
309#define CPU_STACK_FRAME_I0_OFFSET             0x20
310/** This macro defines an offset into the stack frame for use in assembly. */
311#define CPU_STACK_FRAME_I1_OFFSET             0x24
312/** This macro defines an offset into the stack frame for use in assembly. */
313#define CPU_STACK_FRAME_I2_OFFSET             0x28
314/** This macro defines an offset into the stack frame for use in assembly. */
315#define CPU_STACK_FRAME_I3_OFFSET             0x2c
316/** This macro defines an offset into the stack frame for use in assembly. */
317#define CPU_STACK_FRAME_I4_OFFSET             0x30
318/** This macro defines an offset into the stack frame for use in assembly. */
319#define CPU_STACK_FRAME_I5_OFFSET             0x34
320/** This macro defines an offset into the stack frame for use in assembly. */
321#define CPU_STACK_FRAME_I6_FP_OFFSET          0x38
322/** This macro defines an offset into the stack frame for use in assembly. */
323#define CPU_STACK_FRAME_I7_OFFSET             0x3c
324/** This macro defines an offset into the stack frame for use in assembly. */
325#define CPU_STRUCTURE_RETURN_ADDRESS_OFFSET   0x40
326/** This macro defines an offset into the stack frame for use in assembly. */
327#define CPU_STACK_FRAME_SAVED_ARG0_OFFSET     0x44
328/** This macro defines an offset into the stack frame for use in assembly. */
329#define CPU_STACK_FRAME_SAVED_ARG1_OFFSET     0x48
330/** This macro defines an offset into the stack frame for use in assembly. */
331#define CPU_STACK_FRAME_SAVED_ARG2_OFFSET     0x4c
332/** This macro defines an offset into the stack frame for use in assembly. */
333#define CPU_STACK_FRAME_SAVED_ARG3_OFFSET     0x50
334/** This macro defines an offset into the stack frame for use in assembly. */
335#define CPU_STACK_FRAME_SAVED_ARG4_OFFSET     0x54
336/** This macro defines an offset into the stack frame for use in assembly. */
337#define CPU_STACK_FRAME_SAVED_ARG5_OFFSET     0x58
338/** This macro defines an offset into the stack frame for use in assembly. */
339#define CPU_STACK_FRAME_PAD0_OFFSET           0x5c
340
341/** This defines the size of the minimum stack frame. */
342#define CPU_MINIMUM_STACK_FRAME_SIZE          0x60
343
344#define CPU_PER_CPU_CONTROL_SIZE 4
345
346/**
347 * @brief Offset of the CPU_Per_CPU_control::isr_dispatch_disable field
348 * relative to the Per_CPU_Control begin.
349 */
350#define SPARC_PER_CPU_ISR_DISPATCH_DISABLE 0
351
352/**
353 * @defgroup Contexts SPARC Context Structures
354 *
355 * @ingroup Score
356 *
357 * Generally there are 2 types of context to save.
358 *    + Interrupt registers to save
359 *    + Task level registers to save
360 *
361 * This means we have the following 3 context items:
362 *    + task level context stuff::  Context_Control
363 *    + floating point task stuff:: Context_Control_fp
364 *    + special interrupt level context :: Context_Control_interrupt
365 *
366 * On the SPARC, we are relatively conservative in that we save most
367 * of the CPU state in the context area.  The ET (enable trap) bit and
368 * the CWP (current window pointer) fields of the PSR are considered
369 * system wide resources and are not maintained on a per-thread basis.
370 */
371/**@{**/
372
373#ifndef ASM
374
375typedef struct {
376  /**
377   * This flag is context switched with each thread.  It indicates
378   * that THIS thread has an _ISR_Dispatch stack frame on its stack.
379   * By using this flag, we can avoid nesting more interrupt dispatching
380   * attempts on a previously interrupted thread's stack.
381   */
382  uint32_t isr_dispatch_disable;
383} CPU_Per_CPU_control;
384
385/**
386 * @brief SPARC basic context.
387 *
388 * This structure defines the non-volatile integer and processor state context
389 * for the SPARC architecture according to "SYSTEM V APPLICATION BINARY
390 * INTERFACE - SPARC Processor Supplement", Third Edition.
391 *
392 * The registers g2 through g4 are reserved for applications.  GCC uses them as
393 * volatile registers by default.  So they are treated like volatile registers
394 * in RTEMS as well.
395 *
396 * The register g6 contains the per-CPU control of the current processor.  It
397 * is an invariant of the processor context.  This register must not be saved
398 * and restored during context switches or interrupt services.
399 */
400typedef struct {
401  /** This will contain the contents of the g5 register. */
402  uint32_t   g5;
403  /** This will contain the contents of the g7 register. */
404  uint32_t   g7;
405
406  /**
407   * This will contain the contents of the l0 and l1 registers.
408   *
409   * Using a double l0_and_l1 will put everything in this structure on a double
410   * word boundary which allows us to use double word loads and stores safely
411   * in the context switch.
412   */
413  double     l0_and_l1;
414  /** This will contain the contents of the l2 register. */
415  uint32_t   l2;
416  /** This will contain the contents of the l3 register. */
417  uint32_t   l3;
418  /** This will contain the contents of the l4 register. */
419  uint32_t   l4;
420  /** This will contain the contents of the l5 registeer.*/
421  uint32_t   l5;
422  /** This will contain the contents of the l6 register. */
423  uint32_t   l6;
424  /** This will contain the contents of the l7 register. */
425  uint32_t   l7;
426
427  /** This will contain the contents of the i0 register. */
428  uint32_t   i0;
429  /** This will contain the contents of the i1 register. */
430  uint32_t   i1;
431  /** This will contain the contents of the i2 register. */
432  uint32_t   i2;
433  /** This will contain the contents of the i3 register. */
434  uint32_t   i3;
435  /** This will contain the contents of the i4 register. */
436  uint32_t   i4;
437  /** This will contain the contents of the i5 register. */
438  uint32_t   i5;
439  /** This will contain the contents of the i6 (e.g. frame pointer) register. */
440  uint32_t   i6_fp;
441  /** This will contain the contents of the i7 register. */
442  uint32_t   i7;
443
444  /** This will contain the contents of the o6 (e.g. frame pointer) register. */
445  uint32_t   o6_sp;
446  /**
447   * This will contain the contents of the o7 (e.g. address of CALL
448   * instruction) register.
449   */
450  uint32_t   o7;
451
452  /** This will contain the contents of the processor status register. */
453  uint32_t   psr;
454  /**
455   * This field is used to prevent heavy nesting of calls to _Thread_Dispatch
456   * on an interrupted  task's stack.  This is problematic on the slower
457   * SPARC CPU models at high interrupt rates.
458   */
459  uint32_t   isr_dispatch_disable;
460
461#if defined(RTEMS_SMP)
462  volatile uint32_t is_executing;
463#endif
464} Context_Control;
465
466/**
467 * This macro provides a CPU independent way for RTEMS to access the
468 * stack pointer in a context structure. The actual name and offset is
469 * CPU architecture dependent.
470 */
471#define _CPU_Context_Get_SP( _context ) \
472  (_context)->o6_sp
473
474#ifdef RTEMS_SMP
475  static inline bool _CPU_Context_Get_is_executing(
476    const Context_Control *context
477  )
478  {
479    return context->is_executing;
480  }
481
482  static inline void _CPU_Context_Set_is_executing(
483    Context_Control *context,
484    bool is_executing
485  )
486  {
487    context->is_executing = is_executing;
488  }
489#endif
490
491#endif /* ASM */
492
493/*
494 *  Offsets of fields with Context_Control for assembly routines.
495 */
496
497/** This macro defines an offset into the context for use in assembly. */
498#define G5_OFFSET    0x00
499/** This macro defines an offset into the context for use in assembly. */
500#define G7_OFFSET    0x04
501
502/** This macro defines an offset into the context for use in assembly. */
503#define L0_OFFSET    0x08
504/** This macro defines an offset into the context for use in assembly. */
505#define L1_OFFSET    0x0C
506/** This macro defines an offset into the context for use in assembly. */
507#define L2_OFFSET    0x10
508/** This macro defines an offset into the context for use in assembly. */
509#define L3_OFFSET    0x14
510/** This macro defines an offset into the context for use in assembly. */
511#define L4_OFFSET    0x18
512/** This macro defines an offset into the context for use in assembly. */
513#define L5_OFFSET    0x1C
514/** This macro defines an offset into the context for use in assembly. */
515#define L6_OFFSET    0x20
516/** This macro defines an offset into the context for use in assembly. */
517#define L7_OFFSET    0x24
518
519/** This macro defines an offset into the context for use in assembly. */
520#define I0_OFFSET    0x28
521/** This macro defines an offset into the context for use in assembly. */
522#define I1_OFFSET    0x2C
523/** This macro defines an offset into the context for use in assembly. */
524#define I2_OFFSET    0x30
525/** This macro defines an offset into the context for use in assembly. */
526#define I3_OFFSET    0x34
527/** This macro defines an offset into the context for use in assembly. */
528#define I4_OFFSET    0x38
529/** This macro defines an offset into the context for use in assembly. */
530#define I5_OFFSET    0x3C
531/** This macro defines an offset into the context for use in assembly. */
532#define I6_FP_OFFSET 0x40
533/** This macro defines an offset into the context for use in assembly. */
534#define I7_OFFSET    0x44
535
536/** This macro defines an offset into the context for use in assembly. */
537#define O6_SP_OFFSET 0x48
538/** This macro defines an offset into the context for use in assembly. */
539#define O7_OFFSET    0x4C
540
541/** This macro defines an offset into the context for use in assembly. */
542#define PSR_OFFSET   0x50
543/** This macro defines an offset into the context for use in assembly. */
544#define ISR_DISPATCH_DISABLE_STACK_OFFSET 0x54
545
546#if defined(RTEMS_SMP)
547  #define SPARC_CONTEXT_CONTROL_IS_EXECUTING_OFFSET 0x58
548#endif
549
550#ifndef ASM
551/**
552 * @brief SPARC basic context.
553 *
554 * This structure defines floating point context area.
555 */
556typedef struct {
557  /** This will contain the contents of the f0 and f1 register. */
558  double      f0_f1;
559  /** This will contain the contents of the f2 and f3 register. */
560  double      f2_f3;
561  /** This will contain the contents of the f4 and f5 register. */
562  double      f4_f5;
563  /** This will contain the contents of the f6 and f7 register. */
564  double      f6_f7;
565  /** This will contain the contents of the f8 and f9 register. */
566  double      f8_f9;
567  /** This will contain the contents of the f10 and f11 register. */
568  double      f10_f11;
569  /** This will contain the contents of the f12 and f13 register. */
570  double      f12_f13;
571  /** This will contain the contents of the f14 and f15 register. */
572  double      f14_f15;
573  /** This will contain the contents of the f16 and f17 register. */
574  double      f16_f17;
575  /** This will contain the contents of the f18 and f19 register. */
576  double      f18_f19;
577  /** This will contain the contents of the f20 and f21 register. */
578  double      f20_f21;
579  /** This will contain the contents of the f22 and f23 register. */
580  double      f22_f23;
581  /** This will contain the contents of the f24 and f25 register. */
582  double      f24_f25;
583  /** This will contain the contents of the f26 and f27 register. */
584  double      f26_f27;
585  /** This will contain the contents of the f28 and f29 register. */
586  double      f28_f29;
587  /** This will contain the contents of the f30 and f31 register. */
588  double      f30_f31;
589  /** This will contain the contents of the floating point status register. */
590  uint32_t    fsr;
591} Context_Control_fp;
592
593#endif /* ASM */
594
595/*
596 *  Offsets of fields with Context_Control_fp for assembly routines.
597 */
598
599/** This macro defines an offset into the FPU context for use in assembly. */
600#define FO_F1_OFFSET     0x00
601/** This macro defines an offset into the FPU context for use in assembly. */
602#define F2_F3_OFFSET     0x08
603/** This macro defines an offset into the FPU context for use in assembly. */
604#define F4_F5_OFFSET     0x10
605/** This macro defines an offset into the FPU context for use in assembly. */
606#define F6_F7_OFFSET     0x18
607/** This macro defines an offset into the FPU context for use in assembly. */
608#define F8_F9_OFFSET     0x20
609/** This macro defines an offset into the FPU context for use in assembly. */
610#define F1O_F11_OFFSET   0x28
611/** This macro defines an offset into the FPU context for use in assembly. */
612#define F12_F13_OFFSET   0x30
613/** This macro defines an offset into the FPU context for use in assembly. */
614#define F14_F15_OFFSET   0x38
615/** This macro defines an offset into the FPU context for use in assembly. */
616#define F16_F17_OFFSET   0x40
617/** This macro defines an offset into the FPU context for use in assembly. */
618#define F18_F19_OFFSET   0x48
619/** This macro defines an offset into the FPU context for use in assembly. */
620#define F2O_F21_OFFSET   0x50
621/** This macro defines an offset into the FPU context for use in assembly. */
622#define F22_F23_OFFSET   0x58
623/** This macro defines an offset into the FPU context for use in assembly. */
624#define F24_F25_OFFSET   0x60
625/** This macro defines an offset into the FPU context for use in assembly. */
626#define F26_F27_OFFSET   0x68
627/** This macro defines an offset into the FPU context for use in assembly. */
628#define F28_F29_OFFSET   0x70
629/** This macro defines an offset into the FPU context for use in assembly. */
630#define F3O_F31_OFFSET   0x78
631/** This macro defines an offset into the FPU context for use in assembly. */
632#define FSR_OFFSET       0x80
633
634/** This defines the size of the FPU context area for use in assembly. */
635#define CONTEXT_CONTROL_FP_SIZE 0x84
636
637#ifndef ASM
638
639/** @} */
640
641/**
642 * @brief Interrupt stack frame (ISF).
643 *
644 * Context saved on stack for an interrupt.
645 *
646 * NOTE: The PSR, PC, and NPC are only saved in this structure for the
647 *       benefit of the user's handler.
648 */
649typedef struct {
650  /** On an interrupt, we must save the minimum stack frame. */
651  CPU_Minimum_stack_frame  Stack_frame;
652  /** This is the offset of the PSR on an ISF. */
653  uint32_t                 psr;
654  /** This is the offset of the XXX on an ISF. */
655  uint32_t                 pc;
656  /** This is the offset of the XXX on an ISF. */
657  uint32_t                 npc;
658  /** This is the offset of the g1 register on an ISF. */
659  uint32_t                 g1;
660  /** This is the offset of the g2 register on an ISF. */
661  uint32_t                 g2;
662  /** This is the offset of the g3 register on an ISF. */
663  uint32_t                 g3;
664  /** This is the offset of the g4 register on an ISF. */
665  uint32_t                 g4;
666  /** This is the offset of the g5 register on an ISF. */
667  uint32_t                 g5;
668  /** This is the offset is reserved for alignment on an ISF. */
669  uint32_t                 reserved_for_alignment;
670  /** This is the offset of the g7 register on an ISF. */
671  uint32_t                 g7;
672  /** This is the offset of the i0 register on an ISF. */
673  uint32_t                 i0;
674  /** This is the offset of the i1 register on an ISF. */
675  uint32_t                 i1;
676  /** This is the offset of the i2 register on an ISF. */
677  uint32_t                 i2;
678  /** This is the offset of the i3 register on an ISF. */
679  uint32_t                 i3;
680  /** This is the offset of the i4 register on an ISF. */
681  uint32_t                 i4;
682  /** This is the offset of the i5 register on an ISF. */
683  uint32_t                 i5;
684  /** This is the offset of the i6 register on an ISF. */
685  uint32_t                 i6_fp;
686  /** This is the offset of the i7 register on an ISF. */
687  uint32_t                 i7;
688  /** This is the offset of the y register on an ISF. */
689  uint32_t                 y;
690  /** This is the offset of the tpc register on an ISF. */
691  uint32_t                 tpc;
692} CPU_Interrupt_frame;
693
694#endif /* ASM */
695
696/*
697 *  Offsets of fields with CPU_Interrupt_frame for assembly routines.
698 */
699
700/** This macro defines an offset into the ISF for use in assembly. */
701#define ISF_PSR_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x00
702/** This macro defines an offset into the ISF for use in assembly. */
703#define ISF_PC_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x04
704/** This macro defines an offset into the ISF for use in assembly. */
705#define ISF_NPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x08
706/** This macro defines an offset into the ISF for use in assembly. */
707#define ISF_G1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x0c
708/** This macro defines an offset into the ISF for use in assembly. */
709#define ISF_G2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x10
710/** This macro defines an offset into the ISF for use in assembly. */
711#define ISF_G3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x14
712/** This macro defines an offset into the ISF for use in assembly. */
713#define ISF_G4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x18
714/** This macro defines an offset into the ISF for use in assembly. */
715#define ISF_G5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x1c
716/** This macro defines an offset into the ISF for use in assembly. */
717#define ISF_G7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x24
718/** This macro defines an offset into the ISF for use in assembly. */
719#define ISF_I0_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x28
720/** This macro defines an offset into the ISF for use in assembly. */
721#define ISF_I1_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x2c
722/** This macro defines an offset into the ISF for use in assembly. */
723#define ISF_I2_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x30
724/** This macro defines an offset into the ISF for use in assembly. */
725#define ISF_I3_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x34
726/** This macro defines an offset into the ISF for use in assembly. */
727#define ISF_I4_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x38
728/** This macro defines an offset into the ISF for use in assembly. */
729#define ISF_I5_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x3c
730/** This macro defines an offset into the ISF for use in assembly. */
731#define ISF_I6_FP_OFFSET       CPU_MINIMUM_STACK_FRAME_SIZE + 0x40
732/** This macro defines an offset into the ISF for use in assembly. */
733#define ISF_I7_OFFSET          CPU_MINIMUM_STACK_FRAME_SIZE + 0x44
734/** This macro defines an offset into the ISF for use in assembly. */
735#define ISF_Y_OFFSET           CPU_MINIMUM_STACK_FRAME_SIZE + 0x48
736/** This macro defines an offset into the ISF for use in assembly. */
737#define ISF_TPC_OFFSET         CPU_MINIMUM_STACK_FRAME_SIZE + 0x4c
738
739/** This defines the size of the ISF area for use in assembly. */
740#define CONTEXT_CONTROL_INTERRUPT_FRAME_SIZE \
741        CPU_MINIMUM_STACK_FRAME_SIZE + 0x50
742
743#ifndef ASM
744/**
745 * This variable is contains the initialize context for the FP unit.
746 * It is filled in by _CPU_Initialize and copied into the task's FP
747 * context area during _CPU_Context_Initialize.
748 */
749SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context CPU_STRUCTURE_ALIGNMENT;
750
751/**
752 * The following type defines an entry in the SPARC's trap table.
753 *
754 * NOTE: The instructions chosen are RTEMS dependent although one is
755 *       obligated to use two of the four instructions to perform a
756 *       long jump.  The other instructions load one register with the
757 *       trap type (a.k.a. vector) and another with the psr.
758 */
759typedef struct {
760  /** This will contain a "mov %psr, %l0" instruction. */
761  uint32_t     mov_psr_l0;
762  /** This will contain a "sethi %hi(_handler), %l4" instruction. */
763  uint32_t     sethi_of_handler_to_l4;
764  /** This will contain a "jmp %l4 + %lo(_handler)" instruction. */
765  uint32_t     jmp_to_low_of_handler_plus_l4;
766  /** This will contain a " mov _vector, %l3" instruction. */
767  uint32_t     mov_vector_l3;
768} CPU_Trap_table_entry;
769
770/**
771 * This is the set of opcodes for the instructions loaded into a trap
772 * table entry.  The routine which installs a handler is responsible
773 * for filling in the fields for the _handler address and the _vector
774 * trap type.
775 *
776 * The constants following this structure are masks for the fields which
777 * must be filled in when the handler is installed.
778 */
779extern const CPU_Trap_table_entry _CPU_Trap_slot_template;
780
781/**
782 * The size of the floating point context area.
783 */
784#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
785
786#endif
787
788/**
789 * Amount of extra stack (above minimum stack size) required by
790 * MPCI receive server thread.  Remember that in a multiprocessor
791 * system this thread must exist and be able to process all directives.
792 */
793#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
794
795/**
796 * This defines the number of entries in the ISR_Vector_table managed
797 * by the executive.
798 *
799 * On the SPARC, there are really only 256 vectors.  However, the executive
800 * has no easy, fast, reliable way to determine which traps are synchronous
801 * and which are asynchronous.  By default, synchronous traps return to the
802 * instruction which caused the interrupt.  So if you install a software
803 * trap handler as an executive interrupt handler (which is desirable since
804 * RTEMS takes care of window and register issues), then the executive needs
805 * to know that the return address is to the trap rather than the instruction
806 * following the trap.
807 *
808 * So vectors 0 through 255 are treated as regular asynchronous traps which
809 * provide the "correct" return address.  Vectors 256 through 512 are assumed
810 * by the executive to be synchronous and to require that the return address
811 * be fudged.
812 *
813 * If you use this mechanism to install a trap handler which must reexecute
814 * the instruction which caused the trap, then it should be installed as
815 * an asynchronous trap.  This will avoid the executive changing the return
816 * address.
817 */
818#define CPU_INTERRUPT_NUMBER_OF_VECTORS     256
819
820/**
821 * The SPARC has 256 vectors but the port treats 256-512 as synchronous
822 * traps.
823 */
824#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER 511
825
826/**
827 * This is the bit step in a vector number to indicate it is being installed
828 * as a synchronous trap.
829 */
830#define SPARC_SYNCHRONOUS_TRAP_BIT_MASK     0x100
831
832/**
833 * This macro indicates that @a _trap as an asynchronous trap.
834 */
835#define SPARC_ASYNCHRONOUS_TRAP( _trap )    (_trap)
836
837/**
838 * This macro indicates that @a _trap as a synchronous trap.
839 */
840#define SPARC_SYNCHRONOUS_TRAP( _trap )     ((_trap) + 256 )
841
842/**
843 * This macro returns the real hardware vector number associated with @a _trap.
844 */
845#define SPARC_REAL_TRAP_NUMBER( _trap )     ((_trap) % 256)
846
847/**
848 * This is defined if the port has a special way to report the ISR nesting
849 * level.  Most ports maintain the variable _ISR_Nest_level.
850 */
851#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
852
853/**
854 * Should be large enough to run all tests.  This ensures
855 * that a "reasonable" small application should not have any problems.
856 *
857 * This appears to be a fairly generous number for the SPARC since
858 * represents a call depth of about 20 routines based on the minimum
859 * stack frame.
860 */
861#define CPU_STACK_MINIMUM_SIZE  (1024*4)
862
863/**
864 * What is the size of a pointer on this architecture?
865 */
866#define CPU_SIZEOF_POINTER 4
867
868/**
869 * CPU's worst alignment requirement for data types on a byte boundary.  This
870 * alignment does not take into account the requirements for the stack.
871 *
872 * On the SPARC, this is required for double word loads and stores.
873 */
874#define CPU_ALIGNMENT      8
875
876/**
877 * This number corresponds to the byte alignment requirement for the
878 * heap handler.  This alignment requirement may be stricter than that
879 * for the data types alignment specified by CPU_ALIGNMENT.  It is
880 * common for the heap to follow the same alignment requirement as
881 * CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
882 * then this should be set to CPU_ALIGNMENT.
883 *
884 * NOTE:  This does not have to be a power of 2.  It does have to
885 *        be greater or equal to than CPU_ALIGNMENT.
886 */
887#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
888
889/**
890 * This number corresponds to the byte alignment requirement for memory
891 * buffers allocated by the partition manager.  This alignment requirement
892 * may be stricter than that for the data types alignment specified by
893 * CPU_ALIGNMENT.  It is common for the partition to follow the same
894 * alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
895 * enough for the partition, then this should be set to CPU_ALIGNMENT.
896 *
897 * NOTE:  This does not have to be a power of 2.  It does have to
898 *        be greater or equal to than CPU_ALIGNMENT.
899 */
900#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
901
902/**
903 * This number corresponds to the byte alignment requirement for the
904 * stack.  This alignment requirement may be stricter than that for the
905 * data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
906 * is strict enough for the stack, then this should be set to 0.
907 *
908 * NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
909 *
910 * The alignment restrictions for the SPARC are not that strict but this
911 * should unsure that the stack is always sufficiently alignment that the
912 * window overflow, underflow, and flush routines can use double word loads
913 * and stores.
914 */
915#define CPU_STACK_ALIGNMENT        16
916
917#ifndef ASM
918
919/*
920 *  ISR handler macros
921 */
922
923/**
924 * Support routine to initialize the RTEMS vector table after it is allocated.
925 */
926#define _CPU_Initialize_vectors()
927
928/**
929 * Disable all interrupts for a critical section.  The previous
930 * level is returned in _level.
931 */
932#define _CPU_ISR_Disable( _level ) \
933  (_level) = sparc_disable_interrupts()
934
935/**
936 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
937 * This indicates the end of a critical section.  The parameter
938 * _level is not modified.
939 */
940#define _CPU_ISR_Enable( _level ) \
941  sparc_enable_interrupts( _level )
942
943/**
944 * This temporarily restores the interrupt to _level before immediately
945 * disabling them again.  This is used to divide long critical
946 * sections into two or more parts.  The parameter _level is not
947 * modified.
948 */
949#define _CPU_ISR_Flash( _level ) \
950  sparc_flash_interrupts( _level )
951
952/**
953 * Map interrupt level in task mode onto the hardware that the CPU
954 * actually provides.  Currently, interrupt levels which do not
955 * map onto the CPU in a straight fashion are undefined.
956 */
957#define _CPU_ISR_Set_level( _newlevel ) \
958   sparc_enable_interrupts( _newlevel << 8)
959
960/**
961 * @brief Obtain the current interrupt disable level.
962 *
963 * This method is invoked to return the current interrupt disable level.
964 *
965 * @return This method returns the current interrupt disable level.
966 */
967uint32_t   _CPU_ISR_Get_level( void );
968
969/* end of ISR handler macros */
970
971/* Context handler macros */
972
973/**
974 * Initialize the context to a state suitable for starting a
975 * task after a context restore operation.  Generally, this
976 * involves:
977 *
978 * - setting a starting address
979 * - preparing the stack
980 * - preparing the stack and frame pointers
981 * - setting the proper interrupt level in the context
982 * - initializing the floating point context
983 *
984 * @param[in] the_context points to the context area
985 * @param[in] stack_base is the low address of the allocated stack area
986 * @param[in] size is the size of the stack area in bytes
987 * @param[in] new_level is the interrupt level for the task
988 * @param[in] entry_point is the task's entry point
989 * @param[in] is_fp is set to TRUE if the task is a floating point task
990 * @param[in] tls_area is the thread-local storage (TLS) area
991 *
992 * NOTE:  Implemented as a subroutine for the SPARC port.
993 */
994void _CPU_Context_Initialize(
995  Context_Control  *the_context,
996  uint32_t         *stack_base,
997  uint32_t          size,
998  uint32_t          new_level,
999  void             *entry_point,
1000  bool              is_fp,
1001  void             *tls_area
1002);
1003
1004/**
1005 * This macro is invoked from _Thread_Handler to do whatever CPU
1006 * specific magic is required that must be done in the context of
1007 * the thread when it starts.
1008 *
1009 * On the SPARC, this is setting the frame pointer so GDB is happy.
1010 * Make GDB stop unwinding at _Thread_Handler, previous register window
1011 * Frame pointer is 0 and calling address must be a function with starting
1012 * with a SAVE instruction. If return address is leaf-function (no SAVE)
1013 * GDB will not look at prev reg window fp.
1014 *
1015 * _Thread_Handler is known to start with SAVE.
1016 */
1017#define _CPU_Context_Initialization_at_thread_begin() \
1018  do { \
1019    __asm__ volatile ("set _Thread_Handler,%%i7\n"::); \
1020  } while (0)
1021
1022/**
1023 * This routine is responsible for somehow restarting the currently
1024 * executing task.
1025 *
1026 * On the SPARC, this is is relatively painless but requires a small
1027 * amount of wrapper code before using the regular restore code in
1028 * of the context switch.
1029 */
1030#define _CPU_Context_Restart_self( _the_context ) \
1031   _CPU_Context_restore( (_the_context) );
1032
1033/**
1034 * The FP context area for the SPARC is a simple structure and nothing
1035 * special is required to find the "starting load point"
1036 */
1037#define _CPU_Context_Fp_start( _base, _offset ) \
1038   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
1039
1040/**
1041 * This routine initializes the FP context area passed to it to.
1042 *
1043 * The SPARC allows us to use the simple initialization model
1044 * in which an "initial" FP context was saved into _CPU_Null_fp_context
1045 * at CPU initialization and it is simply copied into the destination
1046 * context.
1047 */
1048#define _CPU_Context_Initialize_fp( _destination ) \
1049  do { \
1050   *(*(_destination)) = _CPU_Null_fp_context; \
1051  } while (0)
1052
1053/* end of Context handler macros */
1054
1055/* Fatal Error manager macros */
1056
1057/**
1058 * This routine copies _error into a known place -- typically a stack
1059 * location or a register, optionally disables interrupts, and
1060 * halts/stops the CPU.
1061 */
1062extern void _CPU_Fatal_halt(uint32_t source, uint32_t error)
1063  RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1064
1065/* end of Fatal Error manager macros */
1066
1067/* Bitfield handler macros */
1068
1069#if ( SPARC_HAS_BITSCAN == 0 )
1070  /**
1071   * The SPARC port uses the generic C algorithm for bitfield scan if the
1072   * CPU model does not have a scan instruction.
1073   */
1074  #define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1075  /**
1076   * The SPARC port uses the generic C algorithm for bitfield scan if the
1077   * CPU model does not have a scan instruction.  Thus is needs the generic
1078   * data table used by that algorithm.
1079   */
1080  #define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1081#else
1082  #error "scan instruction not currently supported by RTEMS!!"
1083#endif
1084
1085/* end of Bitfield handler macros */
1086
1087/* functions */
1088
1089/**
1090 * @brief SPARC specific initialization.
1091 *
1092 * This routine performs CPU dependent initialization.
1093 */
1094void _CPU_Initialize(void);
1095
1096/**
1097 * @brief SPARC specific raw ISR installer.
1098 *
1099 * This routine installs @a new_handler to be directly called from the trap
1100 * table.
1101 *
1102 * @param[in] vector is the vector number
1103 * @param[in] new_handler is the new ISR handler
1104 * @param[in] old_handler will contain the old ISR handler
1105 */
1106void _CPU_ISR_install_raw_handler(
1107  uint32_t    vector,
1108  proc_ptr    new_handler,
1109  proc_ptr   *old_handler
1110);
1111
1112/**
1113 * @brief SPARC specific RTEMS ISR installer.
1114 *
1115 * This routine installs an interrupt vector.
1116 *
1117 * @param[in] vector is the vector number
1118 * @param[in] new_handler is the new ISR handler
1119 * @param[in] old_handler will contain the old ISR handler
1120 */
1121
1122void _CPU_ISR_install_vector(
1123  uint32_t    vector,
1124  proc_ptr    new_handler,
1125  proc_ptr   *old_handler
1126);
1127
1128/**
1129 * @brief SPARC specific context switch.
1130 *
1131 * This routine switches from the run context to the heir context.
1132 *
1133 * @param[in] run is the currently executing thread
1134 * @param[in] heir will become the currently executing thread
1135 */
1136void _CPU_Context_switch(
1137  Context_Control  *run,
1138  Context_Control  *heir
1139);
1140
1141/**
1142 * @brief SPARC specific context restore.
1143 *
1144 * This routine is generally used only to restart self in an
1145 * efficient manner.
1146 *
1147 * @param[in] new_context is the context to restore
1148 */
1149void _CPU_Context_restore(
1150  Context_Control *new_context
1151) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1152
1153/**
1154 * @brief The pointer to the current per-CPU control is available via register
1155 * g6.
1156 */
1157register struct Per_CPU_Control *_SPARC_Per_CPU_current __asm__( "g6" );
1158
1159#define _CPU_Get_current_per_CPU_control() ( _SPARC_Per_CPU_current )
1160
1161#if defined(RTEMS_SMP)
1162  uint32_t _CPU_SMP_Initialize( void );
1163
1164  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1165
1166  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1167
1168  void _CPU_SMP_Prepare_start_multitasking( void );
1169
1170  #if defined(__leon__) && !defined(RTEMS_PARAVIRT)
1171    static inline uint32_t _CPU_SMP_Get_current_processor( void )
1172    {
1173      return _LEON3_Get_current_processor();
1174    }
1175  #else
1176    uint32_t _CPU_SMP_Get_current_processor( void );
1177  #endif
1178
1179  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1180
1181  static inline void _CPU_SMP_Processor_event_broadcast( void )
1182  {
1183    __asm__ volatile ( "" : : : "memory" );
1184  }
1185
1186  static inline void _CPU_SMP_Processor_event_receive( void )
1187  {
1188    __asm__ volatile ( "" : : : "memory" );
1189  }
1190#endif
1191
1192/**
1193 * @brief SPARC specific save FPU method.
1194 *
1195 * This routine saves the floating point context passed to it.
1196 *
1197 * @param[in] fp_context_ptr is the area to save into
1198 */
1199void _CPU_Context_save_fp(
1200  Context_Control_fp **fp_context_ptr
1201);
1202
1203/**
1204 * @brief SPARC specific restore FPU method.
1205 *
1206 * This routine restores the floating point context passed to it.
1207 *
1208 * @param[in] fp_context_ptr is the area to restore from
1209 */
1210void _CPU_Context_restore_fp(
1211  Context_Control_fp **fp_context_ptr
1212);
1213
1214void _CPU_Context_volatile_clobber( uintptr_t pattern );
1215
1216void _CPU_Context_validate( uintptr_t pattern );
1217
1218typedef struct {
1219  uint32_t trap;
1220  CPU_Interrupt_frame *isf;
1221} CPU_Exception_frame;
1222
1223void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1224
1225/**
1226 * @brief SPARC specific method to endian swap an uint32_t.
1227 *
1228 * The following routine swaps the endian format of an unsigned int.
1229 * It must be static because it is referenced indirectly.
1230 *
1231 * @param[in] value is the value to endian swap
1232 *
1233 * This version will work on any processor, but if you come across a better
1234 * way for the SPARC PLEASE use it.  The most common way to swap a 32-bit
1235 * entity as shown below is not any more efficient on the SPARC.
1236 *
1237 *    - swap least significant two bytes with 16-bit rotate
1238 *    - swap upper and lower 16-bits
1239 *    - swap most significant two bytes with 16-bit rotate
1240 *
1241 * It is not obvious how the SPARC can do significantly better than the
1242 * generic code.  gcc 2.7.0 only generates about 12 instructions for the
1243 * following code at optimization level four (i.e. -O4).
1244 */
1245static inline uint32_t CPU_swap_u32(
1246  uint32_t value
1247)
1248{
1249  uint32_t   byte1, byte2, byte3, byte4, swapped;
1250
1251  byte4 = (value >> 24) & 0xff;
1252  byte3 = (value >> 16) & 0xff;
1253  byte2 = (value >> 8)  & 0xff;
1254  byte1 =  value        & 0xff;
1255
1256  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1257  return( swapped );
1258}
1259
1260/**
1261 * @brief SPARC specific method to endian swap an uint16_t.
1262 *
1263 * The following routine swaps the endian format of a uint16_t.
1264 *
1265 * @param[in] value is the value to endian swap
1266 */
1267#define CPU_swap_u16( value ) \
1268  (((value&0xff) << 8) | ((value >> 8)&0xff))
1269
1270typedef uint32_t CPU_Counter_ticks;
1271
1272typedef CPU_Counter_ticks (*SPARC_Counter_difference)(
1273  CPU_Counter_ticks second,
1274  CPU_Counter_ticks first
1275);
1276
1277/*
1278 * The SPARC processors supported by RTEMS have no built-in CPU counter
1279 * support.  We have to use some hardware counter module for this purpose.  The
1280 * BSP must provide a 32-bit register which contains the current CPU counter
1281 * value and a function for the difference calculation.  It can use for example
1282 * the GPTIMER instance used for the clock driver.
1283 */
1284typedef struct {
1285  volatile const CPU_Counter_ticks *counter_register;
1286  SPARC_Counter_difference counter_difference;
1287} SPARC_Counter;
1288
1289extern SPARC_Counter _SPARC_Counter;
1290
1291/*
1292 * Returns always a value of one regardless of the parameters.  This prevents
1293 * an infinite loop in rtems_counter_delay_ticks().  Its only a reasonably safe
1294 * default.
1295 */
1296CPU_Counter_ticks _SPARC_Counter_difference_default(
1297  CPU_Counter_ticks second,
1298  CPU_Counter_ticks first
1299);
1300
1301static inline bool _SPARC_Counter_is_default( void )
1302{
1303  return _SPARC_Counter.counter_difference
1304    == _SPARC_Counter_difference_default;
1305}
1306
1307static inline void _SPARC_Counter_initialize(
1308  volatile const CPU_Counter_ticks *counter_register,
1309  SPARC_Counter_difference counter_difference
1310)
1311{
1312  _SPARC_Counter.counter_register = counter_register;
1313  _SPARC_Counter.counter_difference = counter_difference;
1314}
1315
1316static inline CPU_Counter_ticks _CPU_Counter_read( void )
1317{
1318  return *_SPARC_Counter.counter_register;
1319}
1320
1321static inline CPU_Counter_ticks _CPU_Counter_difference(
1322  CPU_Counter_ticks second,
1323  CPU_Counter_ticks first
1324)
1325{
1326  return (*_SPARC_Counter.counter_difference)( second, first );
1327}
1328
1329#endif /* ASM */
1330
1331#ifdef __cplusplus
1332}
1333#endif
1334
1335#endif
Note: See TracBrowser for help on using the repository browser.