source: rtems/cpukit/score/cpu/sparc/cpu.c @ f172fc89

4.104.114.84.95
Last change on this file since f172fc89 was 2a0a6851, checked in by Ralf Corsepius <ralf.corsepius@…>, on 03/30/04 at 11:47:19

2004-03-30 Ralf Corsepius <ralf_corsepius@…>

  • cpu.c, rtems/score/cpu.h, rtems/score/sparc.h: Convert to using c99 fixed size types.
  • Property mode set to 100644
File size: 9.0 KB
Line 
1/*
2 *  SPARC Dependent Source
3 *
4 *  COPYRIGHT (c) 1989-1999.
5 *  On-Line Applications Research Corporation (OAR).
6 *
7 *  The license and distribution terms for this file may be
8 *  found in the file LICENSE in this distribution or at
9 *  http://www.rtems.com/license/LICENSE.
10 *
11 *  $Id$
12 */
13
14#include <rtems/system.h>
15#include <rtems/score/isr.h>
16#include <rtems/rtems/cache.h>
17
18/*
19 *  This initializes the set of opcodes placed in each trap
20 *  table entry.  The routine which installs a handler is responsible
21 *  for filling in the fields for the _handler address and the _vector
22 *  trap type.
23 *
24 *  The constants following this structure are masks for the fields which
25 *  must be filled in when the handler is installed.
26 */
27
28const CPU_Trap_table_entry _CPU_Trap_slot_template = {
29  0xa1480000,      /* mov   %psr, %l0           */
30  0x29000000,      /* sethi %hi(_handler), %l4  */
31  0x81c52000,      /* jmp   %l4 + %lo(_handler) */
32  0xa6102000       /* mov   _vector, %l3        */
33};
34
35/*PAGE
36 *
37 *  _CPU_Initialize
38 *
39 *  This routine performs processor dependent initialization.
40 *
41 *  Input Parameters:
42 *    cpu_table       - CPU table to initialize
43 *    thread_dispatch - address of disptaching routine
44 *
45 *  Output Parameters: NONE
46 *
47 *  NOTE: There is no need to save the pointer to the thread dispatch routine.
48 *        The SPARC's assembly code can reference it directly with no problems.
49 */
50
51void _CPU_Initialize(
52  rtems_cpu_table  *cpu_table,
53  void            (*thread_dispatch)      /* ignored on this CPU */
54)
55{
56#if (SPARC_HAS_FPU == 1)
57  void                  *pointer;
58
59  /*
60   *  This seems to be the most appropriate way to obtain an initial
61   *  FP context on the SPARC.  The NULL fp context is copied it to
62   *  the task's FP context during Context_Initialize.
63   */
64
65  pointer = &_CPU_Null_fp_context;
66  _CPU_Context_save_fp( &pointer );
67#endif
68
69  /*
70   *  Grab our own copy of the user's CPU table.
71   */
72
73  _CPU_Table = *cpu_table;
74}
75
76/*PAGE
77 *
78 *  _CPU_ISR_Get_level
79 *
80 *  Input Parameters: NONE
81 *
82 *  Output Parameters:
83 *    returns the current interrupt level (PIL field of the PSR)
84 */
85 
86uint32_t   _CPU_ISR_Get_level( void )
87{
88  uint32_t   level;
89 
90  sparc_get_interrupt_level( level );
91 
92  return level;
93}
94
95/*PAGE
96 *
97 *  _CPU_ISR_install_raw_handler
98 *
99 *  This routine installs the specified handler as a "raw" non-executive
100 *  supported trap handler (a.k.a. interrupt service routine).
101 *
102 *  Input Parameters:
103 *    vector      - trap table entry number plus synchronous
104 *                    vs. asynchronous information
105 *    new_handler - address of the handler to be installed
106 *    old_handler - pointer to an address of the handler previously installed
107 *
108 *  Output Parameters: NONE
109 *    *new_handler - address of the handler previously installed
110 *
111 *  NOTE:
112 *
113 *  On the SPARC, there are really only 256 vectors.  However, the executive
114 *  has no easy, fast, reliable way to determine which traps are synchronous
115 *  and which are asynchronous.  By default, synchronous traps return to the
116 *  instruction which caused the interrupt.  So if you install a software
117 *  trap handler as an executive interrupt handler (which is desirable since
118 *  RTEMS takes care of window and register issues), then the executive needs
119 *  to know that the return address is to the trap rather than the instruction
120 *  following the trap.
121 *
122 *  So vectors 0 through 255 are treated as regular asynchronous traps which
123 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
124 *  by the executive to be synchronous and to require that the return address
125 *  be fudged.
126 *
127 *  If you use this mechanism to install a trap handler which must reexecute
128 *  the instruction which caused the trap, then it should be installed as
129 *  an asynchronous trap.  This will avoid the executive changing the return
130 *  address.
131 */
132 
133void _CPU_ISR_install_raw_handler(
134  uint32_t    vector,
135  proc_ptr    new_handler,
136  proc_ptr   *old_handler
137)
138{
139  uint32_t               real_vector;
140  CPU_Trap_table_entry  *tbr;
141  CPU_Trap_table_entry  *slot;
142  uint32_t               u32_tbr;
143  uint32_t               u32_handler;
144
145  /*
146   *  Get the "real" trap number for this vector ignoring the synchronous
147   *  versus asynchronous indicator included with our vector numbers.
148   */
149
150  real_vector = SPARC_REAL_TRAP_NUMBER( vector );
151
152  /*
153   *  Get the current base address of the trap table and calculate a pointer
154   *  to the slot we are interested in.
155   */
156
157  sparc_get_tbr( u32_tbr );
158
159  u32_tbr &= 0xfffff000;
160
161  tbr = (CPU_Trap_table_entry *) u32_tbr;
162
163  slot = &tbr[ real_vector ];
164
165  /*
166   *  Get the address of the old_handler from the trap table.
167   *
168   *  NOTE: The old_handler returned will be bogus if it does not follow
169   *        the RTEMS model.
170   */
171
172#define HIGH_BITS_MASK   0xFFFFFC00
173#define HIGH_BITS_SHIFT  10
174#define LOW_BITS_MASK    0x000003FF
175
176  if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
177    u32_handler =
178      ((slot->sethi_of_handler_to_l4 & HIGH_BITS_MASK) << HIGH_BITS_SHIFT) |
179      (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
180    *old_handler = (proc_ptr) u32_handler;
181  } else
182    *old_handler = 0;
183
184  /*
185   *  Copy the template to the slot and then fix it.
186   */
187
188  *slot = _CPU_Trap_slot_template;
189
190  u32_handler = (uint32_t  ) new_handler;
191
192  slot->mov_vector_l3 |= vector;
193  slot->sethi_of_handler_to_l4 |=
194    (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
195  slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
196
197  /* need to flush icache after this !!! */
198
199  rtems_cache_invalidate_entire_instruction();
200
201}
202
203/*PAGE
204 *
205 *  _CPU_ISR_install_vector
206 *
207 *  This kernel routine installs the RTEMS handler for the
208 *  specified vector.
209 *
210 *  Input parameters:
211 *    vector       - interrupt vector number
212 *    new_handler  - replacement ISR for this vector number
213 *    old_handler  - pointer to former ISR for this vector number
214 *
215 *  Output parameters:
216 *    *old_handler - former ISR for this vector number
217 *
218 */
219
220void _CPU_ISR_install_vector(
221  uint32_t    vector,
222  proc_ptr    new_handler,
223  proc_ptr   *old_handler
224)
225{
226   uint32_t   real_vector;
227   proc_ptr   ignored;
228
229  /*
230   *  Get the "real" trap number for this vector ignoring the synchronous
231   *  versus asynchronous indicator included with our vector numbers.
232   */
233
234   real_vector = SPARC_REAL_TRAP_NUMBER( vector );
235
236   /*
237    *  Return the previous ISR handler.
238    */
239
240   *old_handler = _ISR_Vector_table[ real_vector ];
241
242   /*
243    *  Install the wrapper so this ISR can be invoked properly.
244    */
245
246   _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
247
248   /*
249    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
250    *  be used by the _ISR_Handler so the user gets control.
251    */
252
253    _ISR_Vector_table[ real_vector ] = new_handler;
254}
255
256/*PAGE
257 *
258 *  _CPU_Context_Initialize
259 *
260 *  This kernel routine initializes the basic non-FP context area associated
261 *  with each thread.
262 *
263 *  Input parameters:
264 *    the_context  - pointer to the context area
265 *    stack_base   - address of memory for the SPARC
266 *    size         - size in bytes of the stack area
267 *    new_level    - interrupt level for this context area
268 *    entry_point  - the starting execution point for this this context
269 *    is_fp        - TRUE if this context is associated with an FP thread
270 *
271 *  Output parameters: NONE
272 */
273
274void _CPU_Context_Initialize(
275  Context_Control  *the_context,
276  uint32_t         *stack_base,
277  uint32_t          size,
278  uint32_t          new_level,
279  void             *entry_point,
280  boolean           is_fp
281)
282{
283    uint32_t     stack_high;  /* highest "stack aligned" address */
284    uint32_t     the_size;
285    uint32_t     tmp_psr;
286 
287    /*
288     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
289     *  based on the stack_high address. 
290     */
291 
292    stack_high = ((uint32_t  )(stack_base) + size);
293    stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
294 
295    the_size = size & ~(CPU_STACK_ALIGNMENT - 1);
296 
297    /*
298     *  See the README in this directory for a diagram of the stack.
299     */
300 
301    the_context->o7    = ((uint32_t  ) entry_point) - 8;
302    the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE;
303    the_context->i6_fp = stack_high;
304
305    /*
306     *  Build the PSR for the task.  Most everything can be 0 and the
307     *  CWP is corrected during the context switch.
308     *
309     *  The EF bit determines if the floating point unit is available.
310     *  The FPU is ONLY enabled if the context is associated with an FP task
311     *  and this SPARC model has an FPU.
312     */
313
314    sparc_get_psr( tmp_psr );
315    tmp_psr &= ~SPARC_PSR_PIL_MASK;
316    tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
317    tmp_psr &= ~SPARC_PSR_EF_MASK;      /* disabled by default */
318   
319#if (SPARC_HAS_FPU == 1)
320    /*
321     *  If this bit is not set, then a task gets a fault when it accesses
322     *  a floating point register.  This is a nice way to detect floating
323     *  point tasks which are not currently declared as such.
324     */
325
326    if ( is_fp )
327      tmp_psr |= SPARC_PSR_EF_MASK;
328#endif
329    the_context->psr = tmp_psr;
330}
Note: See TracBrowser for help on using the repository browser.