source: rtems/cpukit/score/cpu/sparc/cpu.c @ df4fcaa

4.104.114.95
Last change on this file since df4fcaa was df4fcaa, checked in by Joel Sherrill <joel.sherrill@…>, on 09/08/08 at 15:19:23

2008-09-08 Joel Sherrill <joel.sherrill@…>

  • cpu.c: Remove extraneous spaces.
  • Property mode set to 100644
File size: 9.2 KB
Line 
1/*
2 *  SPARC Dependent Source
3 *
4 *  COPYRIGHT (c) 1989-2007.
5 *  On-Line Applications Research Corporation (OAR).
6 *
7 *  The license and distribution terms for this file may be
8 *  found in the file LICENSE in this distribution or at
9 *  http://www.rtems.com/license/LICENSE.
10 *
11 *  $Id$
12 */
13
14#include <rtems/system.h>
15#include <rtems/score/isr.h>
16#include <rtems/rtems/cache.h>
17
18/*
19 *  This initializes the set of opcodes placed in each trap
20 *  table entry.  The routine which installs a handler is responsible
21 *  for filling in the fields for the _handler address and the _vector
22 *  trap type.
23 *
24 *  The constants following this structure are masks for the fields which
25 *  must be filled in when the handler is installed.
26 */
27
28const CPU_Trap_table_entry _CPU_Trap_slot_template = {
29  0xa1480000,      /* mov   %psr, %l0           */
30  0x29000000,      /* sethi %hi(_handler), %l4  */
31  0x81c52000,      /* jmp   %l4 + %lo(_handler) */
32  0xa6102000       /* mov   _vector, %l3        */
33};
34
35/*PAGE
36 *
37 *  _CPU_Initialize
38 *
39 *  This routine performs processor dependent initialization.
40 *
41 *  Input Parameters:
42 *    thread_dispatch - address of disptaching routine
43 *
44 *  Output Parameters: NONE
45 *
46 *  NOTE: There is no need to save the pointer to the thread dispatch routine.
47 *        The SPARC's assembly code can reference it directly with no problems.
48 */
49
50void _CPU_Initialize(
51  void            (*thread_dispatch)      /* ignored on this CPU */
52)
53{
54#if (SPARC_HAS_FPU == 1)
55  Context_Control_fp *pointer;
56
57  /*
58   *  This seems to be the most appropriate way to obtain an initial
59   *  FP context on the SPARC.  The NULL fp context is copied it to
60   *  the task's FP context during Context_Initialize.
61   */
62
63  pointer = &_CPU_Null_fp_context;
64  _CPU_Context_save_fp( &pointer );
65#endif
66
67  /*
68   *  Since no tasks have been created yet and no interrupts have occurred,
69   *  there is no way that the currently executing thread can have an
70   *  _ISR_Dispatch stack frame on its stack.
71   */
72  _CPU_ISR_Dispatch_disable = 0;
73}
74
75/*PAGE
76 *
77 *  _CPU_ISR_Get_level
78 *
79 *  Input Parameters: NONE
80 *
81 *  Output Parameters:
82 *    returns the current interrupt level (PIL field of the PSR)
83 */
84 
85uint32_t   _CPU_ISR_Get_level( void )
86{
87  uint32_t   level;
88 
89  sparc_get_interrupt_level( level );
90 
91  return level;
92}
93
94/*PAGE
95 *
96 *  _CPU_ISR_install_raw_handler
97 *
98 *  This routine installs the specified handler as a "raw" non-executive
99 *  supported trap handler (a.k.a. interrupt service routine).
100 *
101 *  Input Parameters:
102 *    vector      - trap table entry number plus synchronous
103 *                    vs. asynchronous information
104 *    new_handler - address of the handler to be installed
105 *    old_handler - pointer to an address of the handler previously installed
106 *
107 *  Output Parameters: NONE
108 *    *new_handler - address of the handler previously installed
109 *
110 *  NOTE:
111 *
112 *  On the SPARC, there are really only 256 vectors.  However, the executive
113 *  has no easy, fast, reliable way to determine which traps are synchronous
114 *  and which are asynchronous.  By default, synchronous traps return to the
115 *  instruction which caused the interrupt.  So if you install a software
116 *  trap handler as an executive interrupt handler (which is desirable since
117 *  RTEMS takes care of window and register issues), then the executive needs
118 *  to know that the return address is to the trap rather than the instruction
119 *  following the trap.
120 *
121 *  So vectors 0 through 255 are treated as regular asynchronous traps which
122 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
123 *  by the executive to be synchronous and to require that the return address
124 *  be fudged.
125 *
126 *  If you use this mechanism to install a trap handler which must reexecute
127 *  the instruction which caused the trap, then it should be installed as
128 *  an asynchronous trap.  This will avoid the executive changing the return
129 *  address.
130 */
131 
132void _CPU_ISR_install_raw_handler(
133  uint32_t    vector,
134  proc_ptr    new_handler,
135  proc_ptr   *old_handler
136)
137{
138  uint32_t               real_vector;
139  CPU_Trap_table_entry  *tbr;
140  CPU_Trap_table_entry  *slot;
141  uint32_t               u32_tbr;
142  uint32_t               u32_handler;
143
144  /*
145   *  Get the "real" trap number for this vector ignoring the synchronous
146   *  versus asynchronous indicator included with our vector numbers.
147   */
148
149  real_vector = SPARC_REAL_TRAP_NUMBER( vector );
150
151  /*
152   *  Get the current base address of the trap table and calculate a pointer
153   *  to the slot we are interested in.
154   */
155
156  sparc_get_tbr( u32_tbr );
157
158  u32_tbr &= 0xfffff000;
159
160  tbr = (CPU_Trap_table_entry *) u32_tbr;
161
162  slot = &tbr[ real_vector ];
163
164  /*
165   *  Get the address of the old_handler from the trap table.
166   *
167   *  NOTE: The old_handler returned will be bogus if it does not follow
168   *        the RTEMS model.
169   */
170
171#define HIGH_BITS_MASK   0xFFFFFC00
172#define HIGH_BITS_SHIFT  10
173#define LOW_BITS_MASK    0x000003FF
174
175  if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
176    u32_handler =
177      (slot->sethi_of_handler_to_l4 << HIGH_BITS_SHIFT) |
178      (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
179    *old_handler = (proc_ptr) u32_handler;
180  } else
181    *old_handler = 0;
182
183  /*
184   *  Copy the template to the slot and then fix it.
185   */
186
187  *slot = _CPU_Trap_slot_template;
188
189  u32_handler = (uint32_t) new_handler;
190
191  slot->mov_vector_l3 |= vector;
192  slot->sethi_of_handler_to_l4 |=
193    (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
194  slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
195
196  /* need to flush icache after this !!! */
197
198  rtems_cache_invalidate_entire_instruction();
199
200}
201
202/*PAGE
203 *
204 *  _CPU_ISR_install_vector
205 *
206 *  This kernel routine installs the RTEMS handler for the
207 *  specified vector.
208 *
209 *  Input parameters:
210 *    vector       - interrupt vector number
211 *    new_handler  - replacement ISR for this vector number
212 *    old_handler  - pointer to former ISR for this vector number
213 *
214 *  Output parameters:
215 *    *old_handler - former ISR for this vector number
216 *
217 */
218
219void _CPU_ISR_install_vector(
220  uint32_t    vector,
221  proc_ptr    new_handler,
222  proc_ptr   *old_handler
223)
224{
225   uint32_t   real_vector;
226   proc_ptr   ignored;
227
228  /*
229   *  Get the "real" trap number for this vector ignoring the synchronous
230   *  versus asynchronous indicator included with our vector numbers.
231   */
232
233   real_vector = SPARC_REAL_TRAP_NUMBER( vector );
234
235   /*
236    *  Return the previous ISR handler.
237    */
238
239   *old_handler = _ISR_Vector_table[ real_vector ];
240
241   /*
242    *  Install the wrapper so this ISR can be invoked properly.
243    */
244
245   _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
246
247   /*
248    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
249    *  be used by the _ISR_Handler so the user gets control.
250    */
251
252    _ISR_Vector_table[ real_vector ] = new_handler;
253}
254
255/*PAGE
256 *
257 *  _CPU_Context_Initialize
258 *
259 *  This kernel routine initializes the basic non-FP context area associated
260 *  with each thread.
261 *
262 *  Input parameters:
263 *    the_context  - pointer to the context area
264 *    stack_base   - address of memory for the SPARC
265 *    size         - size in bytes of the stack area
266 *    new_level    - interrupt level for this context area
267 *    entry_point  - the starting execution point for this this context
268 *    is_fp        - TRUE if this context is associated with an FP thread
269 *
270 *  Output parameters: NONE
271 */
272
273void _CPU_Context_Initialize(
274  Context_Control  *the_context,
275  uint32_t         *stack_base,
276  uint32_t          size,
277  uint32_t          new_level,
278  void             *entry_point,
279  bool              is_fp
280)
281{
282    uint32_t     stack_high;  /* highest "stack aligned" address */
283    uint32_t     the_size;
284    uint32_t     tmp_psr;
285 
286    /*
287     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
288     *  based on the stack_high address. 
289     */
290 
291    stack_high = ((uint32_t)(stack_base) + size);
292    stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
293 
294    the_size = size & ~(CPU_STACK_ALIGNMENT - 1);
295 
296    /*
297     *  See the README in this directory for a diagram of the stack.
298     */
299 
300    the_context->o7    = ((uint32_t) entry_point) - 8;
301    the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE;
302    the_context->i6_fp = 0;
303
304    /*
305     *  Build the PSR for the task.  Most everything can be 0 and the
306     *  CWP is corrected during the context switch.
307     *
308     *  The EF bit determines if the floating point unit is available.
309     *  The FPU is ONLY enabled if the context is associated with an FP task
310     *  and this SPARC model has an FPU.
311     */
312
313    sparc_get_psr( tmp_psr );
314    tmp_psr &= ~SPARC_PSR_PIL_MASK;
315    tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
316    tmp_psr &= ~SPARC_PSR_EF_MASK;      /* disabled by default */
317   
318#if (SPARC_HAS_FPU == 1)
319    /*
320     *  If this bit is not set, then a task gets a fault when it accesses
321     *  a floating point register.  This is a nice way to detect floating
322     *  point tasks which are not currently declared as such.
323     */
324
325    if ( is_fp )
326      tmp_psr |= SPARC_PSR_EF_MASK;
327#endif
328    the_context->psr = tmp_psr;
329
330  /*
331   *  Since THIS thread is being created, there is no way that THIS
332   *  thread can have an _ISR_Dispatch stack frame on its stack.
333   */
334    the_context->isr_dispatch_disable = 0;
335}
Note: See TracBrowser for help on using the repository browser.