source: rtems/cpukit/score/cpu/sparc/cpu.c @ 022851a

4.115
Last change on this file since 022851a was 022851a, checked in by Sebastian Huber <sebastian.huber@…>, on 01/28/14 at 11:10:08

Add thread-local storage (TLS) support

Tested and implemented on ARM, m68k, PowerPC and SPARC. Other
architectures need more work.

  • Property mode set to 100644
File size: 8.1 KB
Line 
1/**
2 *  @file
3 *
4 *  @brief SPARC CPU Dependent Source
5 */
6
7/*
8 *  COPYRIGHT (c) 1989-2007.
9 *  On-Line Applications Research Corporation (OAR).
10 *
11 *  The license and distribution terms for this file may be
12 *  found in the file LICENSE in this distribution or at
13 *  http://www.rtems.com/license/LICENSE.
14 */
15
16#ifdef HAVE_CONFIG_H
17#include "config.h"
18#endif
19
20#include <rtems/system.h>
21#include <rtems/score/isr.h>
22#include <rtems/score/percpu.h>
23#include <rtems/score/tls.h>
24#include <rtems/rtems/cache.h>
25
26RTEMS_STATIC_ASSERT(
27  offsetof( Per_CPU_Control, cpu_per_cpu.isr_dispatch_disable)
28    == SPARC_PER_CPU_ISR_DISPATCH_DISABLE,
29  SPARC_PER_CPU_ISR_DISPATCH_DISABLE
30);
31
32/*
33 *  This initializes the set of opcodes placed in each trap
34 *  table entry.  The routine which installs a handler is responsible
35 *  for filling in the fields for the _handler address and the _vector
36 *  trap type.
37 *
38 *  The constants following this structure are masks for the fields which
39 *  must be filled in when the handler is installed.
40 */
41
42const CPU_Trap_table_entry _CPU_Trap_slot_template = {
43  0xa1480000,      /* mov   %psr, %l0           */
44  0x29000000,      /* sethi %hi(_handler), %l4  */
45  0x81c52000,      /* jmp   %l4 + %lo(_handler) */
46  0xa6102000       /* mov   _vector, %l3        */
47};
48
49/*
50 *  _CPU_Initialize
51 *
52 *  This routine performs processor dependent initialization.
53 *
54 *  INPUT PARAMETERS: NONE
55 *
56 *  Output Parameters: NONE
57 *
58 *  NOTE: There is no need to save the pointer to the thread dispatch routine.
59 *        The SPARC's assembly code can reference it directly with no problems.
60 */
61
62void _CPU_Initialize(void)
63{
64#if (SPARC_HAS_FPU == 1)
65  Context_Control_fp *pointer;
66
67  /*
68   *  This seems to be the most appropriate way to obtain an initial
69   *  FP context on the SPARC.  The NULL fp context is copied it to
70   *  the task's FP context during Context_Initialize.
71   */
72
73  pointer = &_CPU_Null_fp_context;
74  _CPU_Context_save_fp( &pointer );
75#endif
76}
77
78uint32_t   _CPU_ISR_Get_level( void )
79{
80  uint32_t   level;
81
82  sparc_get_interrupt_level( level );
83
84  return level;
85}
86
87/*
88 *  _CPU_ISR_install_raw_handler
89 *
90 *  This routine installs the specified handler as a "raw" non-executive
91 *  supported trap handler (a.k.a. interrupt service routine).
92 *
93 *  Input Parameters:
94 *    vector      - trap table entry number plus synchronous
95 *                    vs. asynchronous information
96 *    new_handler - address of the handler to be installed
97 *    old_handler - pointer to an address of the handler previously installed
98 *
99 *  Output Parameters: NONE
100 *    *new_handler - address of the handler previously installed
101 *
102 *  NOTE:
103 *
104 *  On the SPARC, there are really only 256 vectors.  However, the executive
105 *  has no easy, fast, reliable way to determine which traps are synchronous
106 *  and which are asynchronous.  By default, synchronous traps return to the
107 *  instruction which caused the interrupt.  So if you install a software
108 *  trap handler as an executive interrupt handler (which is desirable since
109 *  RTEMS takes care of window and register issues), then the executive needs
110 *  to know that the return address is to the trap rather than the instruction
111 *  following the trap.
112 *
113 *  So vectors 0 through 255 are treated as regular asynchronous traps which
114 *  provide the "correct" return address.  Vectors 256 through 512 are assumed
115 *  by the executive to be synchronous and to require that the return address
116 *  be fudged.
117 *
118 *  If you use this mechanism to install a trap handler which must reexecute
119 *  the instruction which caused the trap, then it should be installed as
120 *  an asynchronous trap.  This will avoid the executive changing the return
121 *  address.
122 */
123
124void _CPU_ISR_install_raw_handler(
125  uint32_t    vector,
126  proc_ptr    new_handler,
127  proc_ptr   *old_handler
128)
129{
130  uint32_t               real_vector;
131  CPU_Trap_table_entry  *tbr;
132  CPU_Trap_table_entry  *slot;
133  uint32_t               u32_tbr;
134  uint32_t               u32_handler;
135
136  /*
137   *  Get the "real" trap number for this vector ignoring the synchronous
138   *  versus asynchronous indicator included with our vector numbers.
139   */
140
141  real_vector = SPARC_REAL_TRAP_NUMBER( vector );
142
143  /*
144   *  Get the current base address of the trap table and calculate a pointer
145   *  to the slot we are interested in.
146   */
147
148  sparc_get_tbr( u32_tbr );
149
150  u32_tbr &= 0xfffff000;
151
152  tbr = (CPU_Trap_table_entry *) u32_tbr;
153
154  slot = &tbr[ real_vector ];
155
156  /*
157   *  Get the address of the old_handler from the trap table.
158   *
159   *  NOTE: The old_handler returned will be bogus if it does not follow
160   *        the RTEMS model.
161   */
162
163#define HIGH_BITS_MASK   0xFFFFFC00
164#define HIGH_BITS_SHIFT  10
165#define LOW_BITS_MASK    0x000003FF
166
167  if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
168    u32_handler =
169      (slot->sethi_of_handler_to_l4 << HIGH_BITS_SHIFT) |
170      (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
171    *old_handler = (proc_ptr) u32_handler;
172  } else
173    *old_handler = 0;
174
175  /*
176   *  Copy the template to the slot and then fix it.
177   */
178
179  *slot = _CPU_Trap_slot_template;
180
181  u32_handler = (uint32_t) new_handler;
182
183  slot->mov_vector_l3 |= vector;
184  slot->sethi_of_handler_to_l4 |=
185    (u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
186  slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
187
188  /* need to flush icache after this !!! */
189
190  rtems_cache_invalidate_entire_instruction();
191
192}
193
194void _CPU_ISR_install_vector(
195  uint32_t    vector,
196  proc_ptr    new_handler,
197  proc_ptr   *old_handler
198)
199{
200   uint32_t   real_vector;
201   proc_ptr   ignored;
202
203  /*
204   *  Get the "real" trap number for this vector ignoring the synchronous
205   *  versus asynchronous indicator included with our vector numbers.
206   */
207
208   real_vector = SPARC_REAL_TRAP_NUMBER( vector );
209
210   /*
211    *  Return the previous ISR handler.
212    */
213
214   *old_handler = _ISR_Vector_table[ real_vector ];
215
216   /*
217    *  Install the wrapper so this ISR can be invoked properly.
218    */
219
220   _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
221
222   /*
223    *  We put the actual user ISR address in '_ISR_vector_table'.  This will
224    *  be used by the _ISR_Handler so the user gets control.
225    */
226
227    _ISR_Vector_table[ real_vector ] = new_handler;
228}
229
230void _CPU_Context_Initialize(
231  Context_Control  *the_context,
232  uint32_t         *stack_base,
233  uint32_t          size,
234  uint32_t          new_level,
235  void             *entry_point,
236  bool              is_fp,
237  void             *tls_area
238)
239{
240    uint32_t     stack_high;  /* highest "stack aligned" address */
241    uint32_t     tmp_psr;
242
243    /*
244     *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
245     *  based on the stack_high address.
246     */
247
248    stack_high = ((uint32_t)(stack_base) + size);
249    stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
250
251    /*
252     *  See the README in this directory for a diagram of the stack.
253     */
254
255    the_context->o7    = ((uint32_t) entry_point) - 8;
256    the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE;
257    the_context->i6_fp = 0;
258
259    /*
260     *  Build the PSR for the task.  Most everything can be 0 and the
261     *  CWP is corrected during the context switch.
262     *
263     *  The EF bit determines if the floating point unit is available.
264     *  The FPU is ONLY enabled if the context is associated with an FP task
265     *  and this SPARC model has an FPU.
266     */
267
268    sparc_get_psr( tmp_psr );
269    tmp_psr &= ~SPARC_PSR_PIL_MASK;
270    tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
271    tmp_psr &= ~SPARC_PSR_EF_MASK;      /* disabled by default */
272
273#if (SPARC_HAS_FPU == 1)
274    /*
275     *  If this bit is not set, then a task gets a fault when it accesses
276     *  a floating point register.  This is a nice way to detect floating
277     *  point tasks which are not currently declared as such.
278     */
279
280    if ( is_fp )
281      tmp_psr |= SPARC_PSR_EF_MASK;
282#endif
283    the_context->psr = tmp_psr;
284
285  /*
286   *  Since THIS thread is being created, there is no way that THIS
287   *  thread can have an _ISR_Dispatch stack frame on its stack.
288   */
289    the_context->isr_dispatch_disable = 0;
290
291  if ( tls_area != NULL ) {
292    void *tcb = _TLS_TCB_after_tls_block_initialize( tls_area );
293
294    the_context->g7 = (uintptr_t) tcb;
295  }
296}
Note: See TracBrowser for help on using the repository browser.