source: rtems/cpukit/score/cpu/sh/rtems/score/cpu.h @ decff899

5
Last change on this file since decff899 was decff899, checked in by Sebastian Huber <sebastian.huber@…>, on 02/17/16 at 13:26:29

score: Add CPU_MAXIMUM_PROCESSORS

Maximum number of processors of all systems supported by this CPU port.

  • Property mode set to 100644
File size: 26.1 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the Hitachi SH
7 *  processor.
8 *
9 *  Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and
10 *           Bernd Becker (becker@faw.uni-ulm.de)
11 *
12 *  COPYRIGHT (c) 1997-1998, FAW Ulm, Germany
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
17 *
18 *
19 *  COPYRIGHT (c) 1998-2006.
20 *  On-Line Applications Research Corporation (OAR).
21 *
22 *  The license and distribution terms for this file may be
23 *  found in the file LICENSE in this distribution or at
24 *  http://www.rtems.org/license/LICENSE.
25 */
26
27#ifndef _RTEMS_SCORE_CPU_H
28#define _RTEMS_SCORE_CPU_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34#include <rtems/score/types.h>
35#include <rtems/score/sh.h>
36
37/* conditional compilation parameters */
38
39/*
40 *  Should the calls to _Thread_Enable_dispatch be inlined?
41 *
42 *  If TRUE, then they are inlined.
43 *  If FALSE, then a subroutine call is made.
44 *
45 *  Basically this is an example of the classic trade-off of size
46 *  versus speed.  Inlining the call (TRUE) typically increases the
47 *  size of RTEMS while speeding up the enabling of dispatching.
48 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
49 *  only be 0 or 1 unless you are in an interrupt handler and that
50 *  interrupt handler invokes the executive.]  When not inlined
51 *  something calls _Thread_Enable_dispatch which in turns calls
52 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
53 *  one subroutine call is avoided entirely.]
54 */
55
56#define CPU_INLINE_ENABLE_DISPATCH       FALSE
57
58/*
59 *  Does the CPU follow the simple vectored interrupt model?
60 *
61 *  If TRUE, then RTEMS allocates the vector table it internally manages.
62 *  If FALSE, then the BSP is assumed to allocate and manage the vector
63 *  table
64 *
65 *  SH Specific Information:
66 *
67 *  XXX document implementation including references if appropriate
68 */
69#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
70
71/*
72 *  Does RTEMS manage a dedicated interrupt stack in software?
73 *
74 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
75 *  If FALSE, nothing is done.
76 *
77 *  If the CPU supports a dedicated interrupt stack in hardware,
78 *  then it is generally the responsibility of the BSP to allocate it
79 *  and set it up.
80 *
81 *  If the CPU does not support a dedicated interrupt stack, then
82 *  the porter has two options: (1) execute interrupts on the
83 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
84 *  interrupt stack.
85 *
86 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
87 *
88 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
89 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
90 *  possible that both are FALSE for a particular CPU.  Although it
91 *  is unclear what that would imply about the interrupt processing
92 *  procedure on that CPU.
93 */
94
95#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
96#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
97
98/*
99 * We define the interrupt stack in the linker script
100 */
101#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
102
103/*
104 *  Does the RTEMS invoke the user's ISR with the vector number and
105 *  a pointer to the saved interrupt frame (1) or just the vector
106 *  number (0)?
107 */
108
109#define CPU_ISR_PASSES_FRAME_POINTER 0
110
111/*
112 *  Does the CPU have hardware floating point?
113 *
114 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
115 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
116 *
117 *  We currently support sh1 only, which has no FPU, other SHes have an FPU
118 *
119 *  The macro name "SH_HAS_FPU" should be made CPU specific.
120 *  It indicates whether or not this CPU model has FP support.  For
121 *  example, it would be possible to have an i386_nofp CPU model
122 *  which set this to false to indicate that you have an i386 without
123 *  an i387 and wish to leave floating point support out of RTEMS.
124 */
125
126#if SH_HAS_FPU
127#define CPU_HARDWARE_FP TRUE
128#define CPU_SOFTWARE_FP FALSE
129#else
130#define CPU_SOFTWARE_FP FALSE
131#define CPU_HARDWARE_FP FALSE
132#endif
133
134/*
135 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
136 *
137 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
138 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
139 *
140 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
141 */
142
143#if SH_HAS_FPU
144#define CPU_ALL_TASKS_ARE_FP     TRUE
145#else
146#define CPU_ALL_TASKS_ARE_FP     FALSE
147#endif
148
149/*
150 *  Should the IDLE task have a floating point context?
151 *
152 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
153 *  and it has a floating point context which is switched in and out.
154 *  If FALSE, then the IDLE task does not have a floating point context.
155 *
156 *  Setting this to TRUE negatively impacts the time required to preempt
157 *  the IDLE task from an interrupt because the floating point context
158 *  must be saved as part of the preemption.
159 */
160
161#if SH_HAS_FPU
162#define CPU_IDLE_TASK_IS_FP     TRUE
163#else
164#define CPU_IDLE_TASK_IS_FP      FALSE
165#endif
166
167/*
168 *  Should the saving of the floating point registers be deferred
169 *  until a context switch is made to another different floating point
170 *  task?
171 *
172 *  If TRUE, then the floating point context will not be stored until
173 *  necessary.  It will remain in the floating point registers and not
174 *  disturned until another floating point task is switched to.
175 *
176 *  If FALSE, then the floating point context is saved when a floating
177 *  point task is switched out and restored when the next floating point
178 *  task is restored.  The state of the floating point registers between
179 *  those two operations is not specified.
180 *
181 *  If the floating point context does NOT have to be saved as part of
182 *  interrupt dispatching, then it should be safe to set this to TRUE.
183 *
184 *  Setting this flag to TRUE results in using a different algorithm
185 *  for deciding when to save and restore the floating point context.
186 *  The deferred FP switch algorithm minimizes the number of times
187 *  the FP context is saved and restored.  The FP context is not saved
188 *  until a context switch is made to another, different FP task.
189 *  Thus in a system with only one FP task, the FP context will never
190 *  be saved or restored.
191 */
192
193#if SH_HAS_FPU
194#define CPU_USE_DEFERRED_FP_SWITCH      FALSE
195#else
196#define CPU_USE_DEFERRED_FP_SWITCH      TRUE
197#endif
198
199/*
200 *  Does this port provide a CPU dependent IDLE task implementation?
201 *
202 *  If TRUE, then the routine _CPU_Thread_Idle_body
203 *  must be provided and is the default IDLE thread body instead of
204 *  _CPU_Thread_Idle_body.
205 *
206 *  If FALSE, then use the generic IDLE thread body if the BSP does
207 *  not provide one.
208 *
209 *  This is intended to allow for supporting processors which have
210 *  a low power or idle mode.  When the IDLE thread is executed, then
211 *  the CPU can be powered down.
212 *
213 *  The order of precedence for selecting the IDLE thread body is:
214 *
215 *    1.  BSP provided
216 *    2.  CPU dependent (if provided)
217 *    3.  generic (if no BSP and no CPU dependent)
218 */
219
220#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
221
222/*
223 *  Does the stack grow up (toward higher addresses) or down
224 *  (toward lower addresses)?
225 *
226 *  If TRUE, then the grows upward.
227 *  If FALSE, then the grows toward smaller addresses.
228 */
229
230#define CPU_STACK_GROWS_UP               FALSE
231
232/* FIXME: Is this the right value? */
233#define CPU_CACHE_LINE_BYTES 16
234
235#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
236
237/*
238 *  Define what is required to specify how the network to host conversion
239 *  routines are handled.
240 *
241 *  NOTE: SHes can be big or little endian, the default is big endian
242 */
243
244/* __LITTLE_ENDIAN__ is defined if -ml is given to gcc */
245#if defined(__LITTLE_ENDIAN__)
246#define CPU_BIG_ENDIAN                           FALSE
247#define CPU_LITTLE_ENDIAN                        TRUE
248#else
249#define CPU_BIG_ENDIAN                           TRUE
250#define CPU_LITTLE_ENDIAN                        FALSE
251#endif
252
253/*
254 *  The following defines the number of bits actually used in the
255 *  interrupt field of the task mode.  How those bits map to the
256 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
257 */
258
259#define CPU_MODES_INTERRUPT_MASK   0x0000000f
260
261#define CPU_PER_CPU_CONTROL_SIZE 0
262
263#define CPU_MAXIMUM_PROCESSORS 32
264
265/*
266 *  Processor defined structures required for cpukit/score.
267 */
268
269/* may need to put some structures here.  */
270
271typedef struct {
272  /* There is no CPU specific per-CPU state */
273} CPU_Per_CPU_control;
274
275/*
276 * Contexts
277 *
278 *  Generally there are 2 types of context to save.
279 *     1. Interrupt registers to save
280 *     2. Task level registers to save
281 *
282 *  This means we have the following 3 context items:
283 *     1. task level context stuff::  Context_Control
284 *     2. floating point task stuff:: Context_Control_fp
285 *     3. special interrupt level context :: Context_Control_interrupt
286 *
287 *  On some processors, it is cost-effective to save only the callee
288 *  preserved registers during a task context switch.  This means
289 *  that the ISR code needs to save those registers which do not
290 *  persist across function calls.  It is not mandatory to make this
291 *  distinctions between the caller/callee saves registers for the
292 *  purpose of minimizing context saved during task switch and on interrupts.
293 *  If the cost of saving extra registers is minimal, simplicity is the
294 *  choice.  Save the same context on interrupt entry as for tasks in
295 *  this case.
296 *
297 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
298 *  care should be used in designing the context area.
299 *
300 *  On some CPUs with hardware floating point support, the Context_Control_fp
301 *  structure will not be used or it simply consist of an array of a
302 *  fixed number of bytes.   This is done when the floating point context
303 *  is dumped by a "FP save context" type instruction and the format
304 *  is not really defined by the CPU.  In this case, there is no need
305 *  to figure out the exact format -- only the size.  Of course, although
306 *  this is enough information for RTEMS, it is probably not enough for
307 *  a debugger such as gdb.  But that is another problem.
308 */
309
310typedef struct {
311  uint32_t   *r15;      /* stack pointer */
312
313  uint32_t   macl;
314  uint32_t   mach;
315  uint32_t   *pr;
316
317  uint32_t   *r14;      /* frame pointer/call saved */
318
319  uint32_t   r13;       /* call saved */
320  uint32_t   r12;       /* call saved */
321  uint32_t   r11;       /* call saved */
322  uint32_t   r10;       /* call saved */
323  uint32_t   r9;        /* call saved */
324  uint32_t   r8;        /* call saved */
325
326  uint32_t   *r7;       /* arg in */
327  uint32_t   *r6;       /* arg in */
328
329#if 0
330  uint32_t   *r5;       /* arg in */
331  uint32_t   *r4;       /* arg in */
332#endif
333
334  uint32_t   *r3;       /* scratch */
335  uint32_t   *r2;       /* scratch */
336  uint32_t   *r1;       /* scratch */
337
338  uint32_t   *r0;       /* arg return */
339
340  uint32_t   gbr;
341  uint32_t   sr;
342
343} Context_Control;
344
345#define _CPU_Context_Get_SP( _context ) \
346  (_context)->r15
347
348typedef struct {
349#if SH_HAS_FPU
350#ifdef SH4_USE_X_REGISTERS
351  union {
352    float f[16];
353    double d[8];
354  } x;
355#endif
356  union {
357    float f[16];
358    double d[8];
359  } r;
360  float fpul;       /* fp communication register */
361  uint32_t   fpscr; /* fp control register */
362#endif /* SH_HAS_FPU */
363} Context_Control_fp;
364
365typedef struct {
366} CPU_Interrupt_frame;
367
368/*
369 *  This variable is optional.  It is used on CPUs on which it is difficult
370 *  to generate an "uninitialized" FP context.  It is filled in by
371 *  _CPU_Initialize and copied into the task's FP context area during
372 *  _CPU_Context_Initialize.
373 */
374
375#if SH_HAS_FPU
376extern Context_Control_fp _CPU_Null_fp_context;
377#endif
378
379/*
380 *  Nothing prevents the porter from declaring more CPU specific variables.
381 */
382
383/* XXX: if needed, put more variables here */
384void CPU_delay( uint32_t   microseconds );
385
386/*
387 *  The size of the floating point context area.  On some CPUs this
388 *  will not be a "sizeof" because the format of the floating point
389 *  area is not defined -- only the size is.  This is usually on
390 *  CPUs with a "floating point save context" instruction.
391 */
392
393#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
394
395/*
396 *  Amount of extra stack (above minimum stack size) required by
397 *  MPCI receive server thread.  Remember that in a multiprocessor
398 *  system this thread must exist and be able to process all directives.
399 */
400
401#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
402
403/*
404 *  This defines the number of entries in the ISR_Vector_table managed
405 *  by RTEMS.
406 */
407
408#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
409#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
410
411/*
412 *  This is defined if the port has a special way to report the ISR nesting
413 *  level.  Most ports maintain the variable _ISR_Nest_level.
414 */
415
416#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
417
418/*
419 *  Should be large enough to run all RTEMS tests.  This ensures
420 *  that a "reasonable" small application should not have any problems.
421 *
422 *  We have been able to run the sptests with this value, but have not
423 *  been able to run the tmtest suite.
424 */
425
426#define CPU_STACK_MINIMUM_SIZE          4096
427
428#define CPU_SIZEOF_POINTER 4
429
430/*
431 *  CPU's worst alignment requirement for data types on a byte boundary.  This
432 *  alignment does not take into account the requirements for the stack.
433 */
434#if defined(__SH4__)
435/* FIXME: sh3 and SH3E? */
436#define CPU_ALIGNMENT              8
437#else
438#define CPU_ALIGNMENT              4
439#endif
440
441/*
442 *  This number corresponds to the byte alignment requirement for the
443 *  heap handler.  This alignment requirement may be stricter than that
444 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
445 *  common for the heap to follow the same alignment requirement as
446 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
447 *  then this should be set to CPU_ALIGNMENT.
448 *
449 *  NOTE:  This does not have to be a power of 2.  It does have to
450 *         be greater or equal to than CPU_ALIGNMENT.
451 */
452
453#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
454
455/*
456 *  This number corresponds to the byte alignment requirement for memory
457 *  buffers allocated by the partition manager.  This alignment requirement
458 *  may be stricter than that for the data types alignment specified by
459 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
460 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
461 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
462 *
463 *  NOTE:  This does not have to be a power of 2.  It does have to
464 *         be greater or equal to than CPU_ALIGNMENT.
465 */
466
467#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
468
469/*
470 *  This number corresponds to the byte alignment requirement for the
471 *  stack.  This alignment requirement may be stricter than that for the
472 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
473 *  is strict enough for the stack, then this should be set to 0.
474 *
475 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
476 */
477
478#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
479
480/*
481 *  ISR handler macros
482 */
483
484/*
485 *  Support routine to initialize the RTEMS vector table after it is allocated.
486 *
487 *  SH Specific Information: NONE
488 */
489
490#define _CPU_Initialize_vectors()
491
492/*
493 *  Disable all interrupts for an RTEMS critical section.  The previous
494 *  level is returned in _level.
495 */
496
497#define _CPU_ISR_Disable( _level) \
498  sh_disable_interrupts( _level )
499
500/*
501 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
502 *  This indicates the end of an RTEMS critical section.  The parameter
503 *  _level is not modified.
504 */
505
506#define _CPU_ISR_Enable( _level) \
507   sh_enable_interrupts( _level)
508
509/*
510 *  This temporarily restores the interrupt to _level before immediately
511 *  disabling them again.  This is used to divide long RTEMS critical
512 *  sections into two or more parts.  The parameter _level is not
513 * modified.
514 */
515
516#define _CPU_ISR_Flash( _level) \
517  sh_flash_interrupts( _level)
518
519/*
520 *  Map interrupt level in task mode onto the hardware that the CPU
521 *  actually provides.  Currently, interrupt levels which do not
522 *  map onto the CPU in a generic fashion are undefined.  Someday,
523 *  it would be nice if these were "mapped" by the application
524 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
525 *  8 - 255 would be available for bsp/application specific meaning.
526 *  This could be used to manage a programmable interrupt controller
527 *  via the rtems_task_mode directive.
528 */
529
530#define _CPU_ISR_Set_level( _newlevel) \
531  sh_set_interrupt_level(_newlevel)
532
533uint32_t   _CPU_ISR_Get_level( void );
534
535/* end of ISR handler macros */
536
537/* Context handler macros */
538
539/*
540 *  Initialize the context to a state suitable for starting a
541 *  task after a context restore operation.  Generally, this
542 *  involves:
543 *
544 *     - setting a starting address
545 *     - preparing the stack
546 *     - preparing the stack and frame pointers
547 *     - setting the proper interrupt level in the context
548 *     - initializing the floating point context
549 *
550 *  This routine generally does not set any unnecessary register
551 *  in the context.  The state of the "general data" registers is
552 *  undefined at task start time.
553 *
554 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
555 *        point thread.  This is typically only used on CPUs where the
556 *        FPU may be easily disabled by software such as on the SPARC
557 *        where the PSR contains an enable FPU bit.
558 */
559
560/*
561 * FIXME: defined as a function for debugging - should be a macro
562 */
563void _CPU_Context_Initialize(
564  Context_Control       *_the_context,
565  void                  *_stack_base,
566  uint32_t              _size,
567  uint32_t              _isr,
568  void    (*_entry_point)(void),
569  int                   _is_fp,
570  void                  *_tls_area );
571
572/*
573 *  This routine is responsible for somehow restarting the currently
574 *  executing task.  If you are lucky, then all that is necessary
575 *  is restoring the context.  Otherwise, there will need to be
576 *  a special assembly routine which does something special in this
577 *  case.  Context_Restore should work most of the time.  It will
578 *  not work if restarting self conflicts with the stack frame
579 *  assumptions of restoring a context.
580 */
581
582#define _CPU_Context_Restart_self( _the_context ) \
583   _CPU_Context_restore( (_the_context) );
584
585/*
586 *  The purpose of this macro is to allow the initial pointer into
587 *  a floating point context area (used to save the floating point
588 *  context) to be at an arbitrary place in the floating point
589 *  context area.
590 *
591 *  This is necessary because some FP units are designed to have
592 *  their context saved as a stack which grows into lower addresses.
593 *  Other FP units can be saved by simply moving registers into offsets
594 *  from the base of the context area.  Finally some FP units provide
595 *  a "dump context" instruction which could fill in from high to low
596 *  or low to high based on the whim of the CPU designers.
597 */
598
599#define _CPU_Context_Fp_start( _base, _offset ) \
600   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
601
602/*
603 *  This routine initializes the FP context area passed to it to.
604 *  There are a few standard ways in which to initialize the
605 *  floating point context.  The code included for this macro assumes
606 *  that this is a CPU in which a "initial" FP context was saved into
607 *  _CPU_Null_fp_context and it simply copies it to the destination
608 *  context passed to it.
609 *
610 *  Other models include (1) not doing anything, and (2) putting
611 *  a "null FP status word" in the correct place in the FP context.
612 *  SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have.
613 */
614
615#if SH_HAS_FPU
616#define _CPU_Context_Initialize_fp( _destination ) \
617  do { \
618     *(*(_destination)) = _CPU_Null_fp_context;\
619  } while(0)
620#else
621#define _CPU_Context_Initialize_fp( _destination ) \
622  {  }
623#endif
624
625/* end of Context handler macros */
626
627/* Fatal Error manager macros */
628
629/*
630 * FIXME: Trap32 ???
631 *
632 *  This routine copies _error into a known place -- typically a stack
633 *  location or a register, optionally disables interrupts, and
634 *  invokes a Trap32 Instruction which returns to the breakpoint
635 *  routine of cmon.
636 */
637
638#ifdef BSP_FATAL_HALT
639  /* we manage the fatal error in the board support package */
640  void bsp_fatal_halt( uint32_t   _error);
641#define _CPU_Fatal_halt( _source, _error ) bsp_fatal_halt( _error)
642#else
643#define _CPU_Fatal_halt( _source, _error)\
644{ \
645  __asm__ volatile("mov.l %0,r0"::"m" (_error)); \
646  __asm__ volatile("mov #1, r4"); \
647  __asm__ volatile("trapa #34"); \
648}
649#endif
650
651/* end of Fatal Error manager macros */
652
653/* Bitfield handler macros */
654
655/*
656 *  This routine sets _output to the bit number of the first bit
657 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
658 *  This type may be either 16 or 32 bits wide although only the 16
659 *  least significant bits will be used.
660 *
661 *  There are a number of variables in using a "find first bit" type
662 *  instruction.
663 *
664 *    (1) What happens when run on a value of zero?
665 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
666 *    (3) The numbering may be zero or one based.
667 *    (4) The "find first bit" instruction may search from MSB or LSB.
668 *
669 *  RTEMS guarantees that (1) will never happen so it is not a concern.
670 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
671 *  _CPU_Priority_bits_index().  These three form a set of routines
672 *  which must logically operate together.  Bits in the _value are
673 *  set and cleared based on masks built by _CPU_Priority_mask().
674 *  The basic major and minor values calculated by _Priority_Major()
675 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
676 *  to properly range between the values returned by the "find first bit"
677 *  instruction.  This makes it possible for _Priority_Get_highest() to
678 *  calculate the major and directly index into the minor table.
679 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
680 *  is the first bit found.
681 *
682 *  This entire "find first bit" and mapping process depends heavily
683 *  on the manner in which a priority is broken into a major and minor
684 *  components with the major being the 4 MSB of a priority and minor
685 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
686 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
687 *  to the lowest priority.
688 *
689 *  If your CPU does not have a "find first bit" instruction, then
690 *  there are ways to make do without it.  Here are a handful of ways
691 *  to implement this in software:
692 *
693 *    - a series of 16 bit test instructions
694 *    - a "binary search using if's"
695 *    - _number = 0
696 *      if _value > 0x00ff
697 *        _value >>=8
698 *        _number = 8;
699 *
700 *      if _value > 0x0000f
701 *        _value >=8
702 *        _number += 4
703 *
704 *      _number += bit_set_table[ _value ]
705 *
706 *    where bit_set_table[ 16 ] has values which indicate the first
707 *      bit set
708 */
709
710#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
711#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
712
713#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
714
715extern uint8_t   _bit_set_table[];
716
717#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
718  { \
719      _output = 0;\
720      if(_value > 0x00ff) \
721      { _value >>= 8; _output = 8; } \
722      if(_value > 0x000f) \
723        { _output += 4; _value >>= 4; } \
724      _output += _bit_set_table[ _value]; }
725
726#endif
727
728/* end of Bitfield handler macros */
729
730/*
731 *  This routine builds the mask which corresponds to the bit fields
732 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
733 *  for that routine.
734 */
735
736#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
737
738#define _CPU_Priority_Mask( _bit_number ) \
739  ( 1 << (_bit_number) )
740
741#endif
742
743/*
744 *  This routine translates the bit numbers returned by
745 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
746 *  a major or minor component of a priority.  See the discussion
747 *  for that routine.
748 */
749
750#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
751
752#define _CPU_Priority_bits_index( _priority ) \
753  (_priority)
754
755#endif
756
757/* end of Priority handler macros */
758
759/* functions */
760
761/*
762 *  @brief CPU Initialize
763 *
764 *  _CPU_Initialize
765 *
766 *  This routine performs CPU dependent initialization.
767 */
768void _CPU_Initialize(void);
769
770/*
771 *  _CPU_ISR_install_raw_handler
772 *
773 *  This routine installs a "raw" interrupt handler directly into the
774 *  processor's vector table.
775 */
776
777void _CPU_ISR_install_raw_handler(
778  uint32_t    vector,
779  proc_ptr    new_handler,
780  proc_ptr   *old_handler
781);
782
783/*
784 *  _CPU_ISR_install_vector
785 *
786 *  This routine installs an interrupt vector.
787 */
788
789void _CPU_ISR_install_vector(
790  uint32_t    vector,
791  proc_ptr    new_handler,
792  proc_ptr   *old_handler
793);
794
795/*
796 *  _CPU_Install_interrupt_stack
797 *
798 *  This routine installs the hardware interrupt stack pointer.
799 *
800 *  NOTE:  It needs only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
801 *         is TRUE.
802 */
803
804void _CPU_Install_interrupt_stack( void );
805
806/*
807 *  _CPU_Thread_Idle_body
808 *
809 *  This routine is the CPU dependent IDLE thread body.
810 *
811 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
812 *         is TRUE.
813 */
814
815void *_CPU_Thread_Idle_body( uintptr_t ignored );
816
817/*
818 *  _CPU_Context_switch
819 *
820 *  This routine switches from the run context to the heir context.
821 */
822
823void _CPU_Context_switch(
824  Context_Control  *run,
825  Context_Control  *heir
826);
827
828/*
829 *  _CPU_Context_restore
830 *
831 *  This routine is generally used only to restart self in an
832 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
833 */
834
835void _CPU_Context_restore(
836  Context_Control *new_context
837) RTEMS_NO_RETURN;
838
839/*
840 *  @brief This routine saves the floating point context passed to it.
841 *
842 *  _CPU_Context_save_fp
843 *
844 */
845void _CPU_Context_save_fp(
846  Context_Control_fp **fp_context_ptr
847);
848
849/*
850 *  @brief This routine restores the floating point context passed to it.
851 *
852 *  _CPU_Context_restore_fp
853 *
854 */
855void _CPU_Context_restore_fp(
856  Context_Control_fp **fp_context_ptr
857);
858
859static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
860{
861  /* TODO */
862}
863
864static inline void _CPU_Context_validate( uintptr_t pattern )
865{
866  while (1) {
867    /* TODO */
868  }
869}
870
871/* FIXME */
872typedef CPU_Interrupt_frame CPU_Exception_frame;
873
874void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
875
876typedef uint32_t CPU_Counter_ticks;
877
878CPU_Counter_ticks _CPU_Counter_read( void );
879
880static inline CPU_Counter_ticks _CPU_Counter_difference(
881  CPU_Counter_ticks second,
882  CPU_Counter_ticks first
883)
884{
885  return second - first;
886}
887
888#ifdef __cplusplus
889}
890#endif
891
892#endif
Note: See TracBrowser for help on using the repository browser.