source: rtems/cpukit/score/cpu/sh/rtems/score/cpu.h @ 8ac3549

4.115
Last change on this file since 8ac3549 was 8ac3549, checked in by Sebastian Huber <sebastian.huber@…>, on 03/04/15 at 15:13:49

score: Delete unused CPU_UNROLL_ENQUEUE_PRIORITY

  • Property mode set to 100644
File size: 26.9 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the Hitachi SH
7 *  processor.
8 *
9 *  Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and
10 *           Bernd Becker (becker@faw.uni-ulm.de)
11 *
12 *  COPYRIGHT (c) 1997-1998, FAW Ulm, Germany
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
17 *
18 *
19 *  COPYRIGHT (c) 1998-2006.
20 *  On-Line Applications Research Corporation (OAR).
21 *
22 *  The license and distribution terms for this file may be
23 *  found in the file LICENSE in this distribution or at
24 *  http://www.rtems.org/license/LICENSE.
25 */
26
27#ifndef _RTEMS_SCORE_CPU_H
28#define _RTEMS_SCORE_CPU_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34#include <rtems/score/types.h>
35#include <rtems/score/sh.h>
36
37/* conditional compilation parameters */
38
39/*
40 *  Should the calls to _Thread_Enable_dispatch be inlined?
41 *
42 *  If TRUE, then they are inlined.
43 *  If FALSE, then a subroutine call is made.
44 *
45 *  Basically this is an example of the classic trade-off of size
46 *  versus speed.  Inlining the call (TRUE) typically increases the
47 *  size of RTEMS while speeding up the enabling of dispatching.
48 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
49 *  only be 0 or 1 unless you are in an interrupt handler and that
50 *  interrupt handler invokes the executive.]  When not inlined
51 *  something calls _Thread_Enable_dispatch which in turns calls
52 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
53 *  one subroutine call is avoided entirely.]
54 */
55
56#define CPU_INLINE_ENABLE_DISPATCH       FALSE
57
58/*
59 *  Does the CPU follow the simple vectored interrupt model?
60 *
61 *  If TRUE, then RTEMS allocates the vector table it internally manages.
62 *  If FALSE, then the BSP is assumed to allocate and manage the vector
63 *  table
64 *
65 *  SH Specific Information:
66 *
67 *  XXX document implementation including references if appropriate
68 */
69#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
70
71/*
72 *  Does RTEMS manage a dedicated interrupt stack in software?
73 *
74 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
75 *  If FALSE, nothing is done.
76 *
77 *  If the CPU supports a dedicated interrupt stack in hardware,
78 *  then it is generally the responsibility of the BSP to allocate it
79 *  and set it up.
80 *
81 *  If the CPU does not support a dedicated interrupt stack, then
82 *  the porter has two options: (1) execute interrupts on the
83 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
84 *  interrupt stack.
85 *
86 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
87 *
88 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
89 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
90 *  possible that both are FALSE for a particular CPU.  Although it
91 *  is unclear what that would imply about the interrupt processing
92 *  procedure on that CPU.
93 */
94
95#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
96#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
97
98/*
99 * We define the interrupt stack in the linker script
100 */
101#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
102
103/*
104 *  Does the RTEMS invoke the user's ISR with the vector number and
105 *  a pointer to the saved interrupt frame (1) or just the vector
106 *  number (0)?
107 */
108
109#define CPU_ISR_PASSES_FRAME_POINTER 0
110
111/*
112 *  Does the CPU have hardware floating point?
113 *
114 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
115 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
116 *
117 *  We currently support sh1 only, which has no FPU, other SHes have an FPU
118 *
119 *  The macro name "SH_HAS_FPU" should be made CPU specific.
120 *  It indicates whether or not this CPU model has FP support.  For
121 *  example, it would be possible to have an i386_nofp CPU model
122 *  which set this to false to indicate that you have an i386 without
123 *  an i387 and wish to leave floating point support out of RTEMS.
124 */
125
126#if SH_HAS_FPU
127#define CPU_HARDWARE_FP TRUE
128#define CPU_SOFTWARE_FP FALSE
129#else
130#define CPU_SOFTWARE_FP FALSE
131#define CPU_HARDWARE_FP FALSE
132#endif
133
134/*
135 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
136 *
137 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
138 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
139 *
140 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
141 */
142
143#if SH_HAS_FPU
144#define CPU_ALL_TASKS_ARE_FP     TRUE
145#else
146#define CPU_ALL_TASKS_ARE_FP     FALSE
147#endif
148
149/*
150 *  Should the IDLE task have a floating point context?
151 *
152 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
153 *  and it has a floating point context which is switched in and out.
154 *  If FALSE, then the IDLE task does not have a floating point context.
155 *
156 *  Setting this to TRUE negatively impacts the time required to preempt
157 *  the IDLE task from an interrupt because the floating point context
158 *  must be saved as part of the preemption.
159 */
160
161#if SH_HAS_FPU
162#define CPU_IDLE_TASK_IS_FP     TRUE
163#else
164#define CPU_IDLE_TASK_IS_FP      FALSE
165#endif
166
167/*
168 *  Should the saving of the floating point registers be deferred
169 *  until a context switch is made to another different floating point
170 *  task?
171 *
172 *  If TRUE, then the floating point context will not be stored until
173 *  necessary.  It will remain in the floating point registers and not
174 *  disturned until another floating point task is switched to.
175 *
176 *  If FALSE, then the floating point context is saved when a floating
177 *  point task is switched out and restored when the next floating point
178 *  task is restored.  The state of the floating point registers between
179 *  those two operations is not specified.
180 *
181 *  If the floating point context does NOT have to be saved as part of
182 *  interrupt dispatching, then it should be safe to set this to TRUE.
183 *
184 *  Setting this flag to TRUE results in using a different algorithm
185 *  for deciding when to save and restore the floating point context.
186 *  The deferred FP switch algorithm minimizes the number of times
187 *  the FP context is saved and restored.  The FP context is not saved
188 *  until a context switch is made to another, different FP task.
189 *  Thus in a system with only one FP task, the FP context will never
190 *  be saved or restored.
191 */
192
193#if SH_HAS_FPU
194#define CPU_USE_DEFERRED_FP_SWITCH      FALSE
195#else
196#define CPU_USE_DEFERRED_FP_SWITCH      TRUE
197#endif
198
199/*
200 *  Does this port provide a CPU dependent IDLE task implementation?
201 *
202 *  If TRUE, then the routine _CPU_Thread_Idle_body
203 *  must be provided and is the default IDLE thread body instead of
204 *  _CPU_Thread_Idle_body.
205 *
206 *  If FALSE, then use the generic IDLE thread body if the BSP does
207 *  not provide one.
208 *
209 *  This is intended to allow for supporting processors which have
210 *  a low power or idle mode.  When the IDLE thread is executed, then
211 *  the CPU can be powered down.
212 *
213 *  The order of precedence for selecting the IDLE thread body is:
214 *
215 *    1.  BSP provided
216 *    2.  CPU dependent (if provided)
217 *    3.  generic (if no BSP and no CPU dependent)
218 */
219
220#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
221
222/*
223 *  Does the stack grow up (toward higher addresses) or down
224 *  (toward lower addresses)?
225 *
226 *  If TRUE, then the grows upward.
227 *  If FALSE, then the grows toward smaller addresses.
228 */
229
230#define CPU_STACK_GROWS_UP               FALSE
231
232/*
233 *  The following is the variable attribute used to force alignment
234 *  of critical RTEMS structures.  On some processors it may make
235 *  sense to have these aligned on tighter boundaries than
236 *  the minimum requirements of the compiler in order to have as
237 *  much of the critical data area as possible in a cache line.
238 *
239 *  The placement of this macro in the declaration of the variables
240 *  is based on the syntactically requirements of the GNU C
241 *  "__attribute__" extension.  For example with GNU C, use
242 *  the following to force a structures to a 32 byte boundary.
243 *
244 *      __attribute__ ((aligned (32)))
245 *
246 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
247 *         To benefit from using this, the data must be heavily
248 *         used so it will stay in the cache and used frequently enough
249 *         in the executive to justify turning this on.
250 */
251
252#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned(16)))
253
254#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
255
256/*
257 *  Define what is required to specify how the network to host conversion
258 *  routines are handled.
259 *
260 *  NOTE: SHes can be big or little endian, the default is big endian
261 */
262
263/* __LITTLE_ENDIAN__ is defined if -ml is given to gcc */
264#if defined(__LITTLE_ENDIAN__)
265#define CPU_BIG_ENDIAN                           FALSE
266#define CPU_LITTLE_ENDIAN                        TRUE
267#else
268#define CPU_BIG_ENDIAN                           TRUE
269#define CPU_LITTLE_ENDIAN                        FALSE
270#endif
271
272/*
273 *  The following defines the number of bits actually used in the
274 *  interrupt field of the task mode.  How those bits map to the
275 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
276 */
277
278#define CPU_MODES_INTERRUPT_MASK   0x0000000f
279
280#define CPU_PER_CPU_CONTROL_SIZE 0
281
282/*
283 *  Processor defined structures required for cpukit/score.
284 */
285
286/* may need to put some structures here.  */
287
288typedef struct {
289  /* There is no CPU specific per-CPU state */
290} CPU_Per_CPU_control;
291
292/*
293 * Contexts
294 *
295 *  Generally there are 2 types of context to save.
296 *     1. Interrupt registers to save
297 *     2. Task level registers to save
298 *
299 *  This means we have the following 3 context items:
300 *     1. task level context stuff::  Context_Control
301 *     2. floating point task stuff:: Context_Control_fp
302 *     3. special interrupt level context :: Context_Control_interrupt
303 *
304 *  On some processors, it is cost-effective to save only the callee
305 *  preserved registers during a task context switch.  This means
306 *  that the ISR code needs to save those registers which do not
307 *  persist across function calls.  It is not mandatory to make this
308 *  distinctions between the caller/callee saves registers for the
309 *  purpose of minimizing context saved during task switch and on interrupts.
310 *  If the cost of saving extra registers is minimal, simplicity is the
311 *  choice.  Save the same context on interrupt entry as for tasks in
312 *  this case.
313 *
314 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
315 *  care should be used in designing the context area.
316 *
317 *  On some CPUs with hardware floating point support, the Context_Control_fp
318 *  structure will not be used or it simply consist of an array of a
319 *  fixed number of bytes.   This is done when the floating point context
320 *  is dumped by a "FP save context" type instruction and the format
321 *  is not really defined by the CPU.  In this case, there is no need
322 *  to figure out the exact format -- only the size.  Of course, although
323 *  this is enough information for RTEMS, it is probably not enough for
324 *  a debugger such as gdb.  But that is another problem.
325 */
326
327typedef struct {
328  uint32_t   *r15;      /* stack pointer */
329
330  uint32_t   macl;
331  uint32_t   mach;
332  uint32_t   *pr;
333
334  uint32_t   *r14;      /* frame pointer/call saved */
335
336  uint32_t   r13;       /* call saved */
337  uint32_t   r12;       /* call saved */
338  uint32_t   r11;       /* call saved */
339  uint32_t   r10;       /* call saved */
340  uint32_t   r9;        /* call saved */
341  uint32_t   r8;        /* call saved */
342
343  uint32_t   *r7;       /* arg in */
344  uint32_t   *r6;       /* arg in */
345
346#if 0
347  uint32_t   *r5;       /* arg in */
348  uint32_t   *r4;       /* arg in */
349#endif
350
351  uint32_t   *r3;       /* scratch */
352  uint32_t   *r2;       /* scratch */
353  uint32_t   *r1;       /* scratch */
354
355  uint32_t   *r0;       /* arg return */
356
357  uint32_t   gbr;
358  uint32_t   sr;
359
360} Context_Control;
361
362#define _CPU_Context_Get_SP( _context ) \
363  (_context)->r15
364
365typedef struct {
366#if SH_HAS_FPU
367#ifdef SH4_USE_X_REGISTERS
368  union {
369    float f[16];
370    double d[8];
371  } x;
372#endif
373  union {
374    float f[16];
375    double d[8];
376  } r;
377  float fpul;       /* fp communication register */
378  uint32_t   fpscr; /* fp control register */
379#endif /* SH_HAS_FPU */
380} Context_Control_fp;
381
382typedef struct {
383} CPU_Interrupt_frame;
384
385/*
386 *  This variable is optional.  It is used on CPUs on which it is difficult
387 *  to generate an "uninitialized" FP context.  It is filled in by
388 *  _CPU_Initialize and copied into the task's FP context area during
389 *  _CPU_Context_Initialize.
390 */
391
392#if SH_HAS_FPU
393SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
394#endif
395
396/*
397 *  Nothing prevents the porter from declaring more CPU specific variables.
398 */
399
400/* XXX: if needed, put more variables here */
401SCORE_EXTERN void CPU_delay( uint32_t   microseconds );
402
403/*
404 *  The size of the floating point context area.  On some CPUs this
405 *  will not be a "sizeof" because the format of the floating point
406 *  area is not defined -- only the size is.  This is usually on
407 *  CPUs with a "floating point save context" instruction.
408 */
409
410#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
411
412/*
413 *  Amount of extra stack (above minimum stack size) required by
414 *  MPCI receive server thread.  Remember that in a multiprocessor
415 *  system this thread must exist and be able to process all directives.
416 */
417
418#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
419
420/*
421 *  This defines the number of entries in the ISR_Vector_table managed
422 *  by RTEMS.
423 */
424
425#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
426#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
427
428/*
429 *  This is defined if the port has a special way to report the ISR nesting
430 *  level.  Most ports maintain the variable _ISR_Nest_level.
431 */
432
433#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
434
435/*
436 *  Should be large enough to run all RTEMS tests.  This ensures
437 *  that a "reasonable" small application should not have any problems.
438 *
439 *  We have been able to run the sptests with this value, but have not
440 *  been able to run the tmtest suite.
441 */
442
443#define CPU_STACK_MINIMUM_SIZE          4096
444
445#define CPU_SIZEOF_POINTER 4
446
447/*
448 *  CPU's worst alignment requirement for data types on a byte boundary.  This
449 *  alignment does not take into account the requirements for the stack.
450 */
451#if defined(__SH4__)
452/* FIXME: sh3 and SH3E? */
453#define CPU_ALIGNMENT              8
454#else
455#define CPU_ALIGNMENT              4
456#endif
457
458/*
459 *  This number corresponds to the byte alignment requirement for the
460 *  heap handler.  This alignment requirement may be stricter than that
461 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
462 *  common for the heap to follow the same alignment requirement as
463 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
464 *  then this should be set to CPU_ALIGNMENT.
465 *
466 *  NOTE:  This does not have to be a power of 2.  It does have to
467 *         be greater or equal to than CPU_ALIGNMENT.
468 */
469
470#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
471
472/*
473 *  This number corresponds to the byte alignment requirement for memory
474 *  buffers allocated by the partition manager.  This alignment requirement
475 *  may be stricter than that for the data types alignment specified by
476 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
477 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
478 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
479 *
480 *  NOTE:  This does not have to be a power of 2.  It does have to
481 *         be greater or equal to than CPU_ALIGNMENT.
482 */
483
484#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
485
486/*
487 *  This number corresponds to the byte alignment requirement for the
488 *  stack.  This alignment requirement may be stricter than that for the
489 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
490 *  is strict enough for the stack, then this should be set to 0.
491 *
492 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
493 */
494
495#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
496
497/*
498 *  ISR handler macros
499 */
500
501/*
502 *  Support routine to initialize the RTEMS vector table after it is allocated.
503 *
504 *  SH Specific Information: NONE
505 */
506
507#define _CPU_Initialize_vectors()
508
509/*
510 *  Disable all interrupts for an RTEMS critical section.  The previous
511 *  level is returned in _level.
512 */
513
514#define _CPU_ISR_Disable( _level) \
515  sh_disable_interrupts( _level )
516
517/*
518 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
519 *  This indicates the end of an RTEMS critical section.  The parameter
520 *  _level is not modified.
521 */
522
523#define _CPU_ISR_Enable( _level) \
524   sh_enable_interrupts( _level)
525
526/*
527 *  This temporarily restores the interrupt to _level before immediately
528 *  disabling them again.  This is used to divide long RTEMS critical
529 *  sections into two or more parts.  The parameter _level is not
530 * modified.
531 */
532
533#define _CPU_ISR_Flash( _level) \
534  sh_flash_interrupts( _level)
535
536/*
537 *  Map interrupt level in task mode onto the hardware that the CPU
538 *  actually provides.  Currently, interrupt levels which do not
539 *  map onto the CPU in a generic fashion are undefined.  Someday,
540 *  it would be nice if these were "mapped" by the application
541 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
542 *  8 - 255 would be available for bsp/application specific meaning.
543 *  This could be used to manage a programmable interrupt controller
544 *  via the rtems_task_mode directive.
545 */
546
547#define _CPU_ISR_Set_level( _newlevel) \
548  sh_set_interrupt_level(_newlevel)
549
550uint32_t   _CPU_ISR_Get_level( void );
551
552/* end of ISR handler macros */
553
554/* Context handler macros */
555
556/*
557 *  Initialize the context to a state suitable for starting a
558 *  task after a context restore operation.  Generally, this
559 *  involves:
560 *
561 *     - setting a starting address
562 *     - preparing the stack
563 *     - preparing the stack and frame pointers
564 *     - setting the proper interrupt level in the context
565 *     - initializing the floating point context
566 *
567 *  This routine generally does not set any unnecessary register
568 *  in the context.  The state of the "general data" registers is
569 *  undefined at task start time.
570 *
571 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
572 *        point thread.  This is typically only used on CPUs where the
573 *        FPU may be easily disabled by software such as on the SPARC
574 *        where the PSR contains an enable FPU bit.
575 */
576
577/*
578 * FIXME: defined as a function for debugging - should be a macro
579 */
580SCORE_EXTERN void _CPU_Context_Initialize(
581  Context_Control       *_the_context,
582  void                  *_stack_base,
583  uint32_t              _size,
584  uint32_t              _isr,
585  void    (*_entry_point)(void),
586  int                   _is_fp,
587  void                  *_tls_area );
588
589/*
590 *  This routine is responsible for somehow restarting the currently
591 *  executing task.  If you are lucky, then all that is necessary
592 *  is restoring the context.  Otherwise, there will need to be
593 *  a special assembly routine which does something special in this
594 *  case.  Context_Restore should work most of the time.  It will
595 *  not work if restarting self conflicts with the stack frame
596 *  assumptions of restoring a context.
597 */
598
599#define _CPU_Context_Restart_self( _the_context ) \
600   _CPU_Context_restore( (_the_context) );
601
602/*
603 *  The purpose of this macro is to allow the initial pointer into
604 *  a floating point context area (used to save the floating point
605 *  context) to be at an arbitrary place in the floating point
606 *  context area.
607 *
608 *  This is necessary because some FP units are designed to have
609 *  their context saved as a stack which grows into lower addresses.
610 *  Other FP units can be saved by simply moving registers into offsets
611 *  from the base of the context area.  Finally some FP units provide
612 *  a "dump context" instruction which could fill in from high to low
613 *  or low to high based on the whim of the CPU designers.
614 */
615
616#define _CPU_Context_Fp_start( _base, _offset ) \
617   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
618
619/*
620 *  This routine initializes the FP context area passed to it to.
621 *  There are a few standard ways in which to initialize the
622 *  floating point context.  The code included for this macro assumes
623 *  that this is a CPU in which a "initial" FP context was saved into
624 *  _CPU_Null_fp_context and it simply copies it to the destination
625 *  context passed to it.
626 *
627 *  Other models include (1) not doing anything, and (2) putting
628 *  a "null FP status word" in the correct place in the FP context.
629 *  SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have.
630 */
631
632#if SH_HAS_FPU
633#define _CPU_Context_Initialize_fp( _destination ) \
634  do { \
635     *(*(_destination)) = _CPU_Null_fp_context;\
636  } while(0)
637#else
638#define _CPU_Context_Initialize_fp( _destination ) \
639  {  }
640#endif
641
642/* end of Context handler macros */
643
644/* Fatal Error manager macros */
645
646/*
647 * FIXME: Trap32 ???
648 *
649 *  This routine copies _error into a known place -- typically a stack
650 *  location or a register, optionally disables interrupts, and
651 *  invokes a Trap32 Instruction which returns to the breakpoint
652 *  routine of cmon.
653 */
654
655#ifdef BSP_FATAL_HALT
656  /* we manage the fatal error in the board support package */
657  void bsp_fatal_halt( uint32_t   _error);
658#define _CPU_Fatal_halt( _source, _error ) bsp_fatal_halt( _error)
659#else
660#define _CPU_Fatal_halt( _source, _error)\
661{ \
662  __asm__ volatile("mov.l %0,r0"::"m" (_error)); \
663  __asm__ volatile("mov #1, r4"); \
664  __asm__ volatile("trapa #34"); \
665}
666#endif
667
668/* end of Fatal Error manager macros */
669
670/* Bitfield handler macros */
671
672/*
673 *  This routine sets _output to the bit number of the first bit
674 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
675 *  This type may be either 16 or 32 bits wide although only the 16
676 *  least significant bits will be used.
677 *
678 *  There are a number of variables in using a "find first bit" type
679 *  instruction.
680 *
681 *    (1) What happens when run on a value of zero?
682 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
683 *    (3) The numbering may be zero or one based.
684 *    (4) The "find first bit" instruction may search from MSB or LSB.
685 *
686 *  RTEMS guarantees that (1) will never happen so it is not a concern.
687 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
688 *  _CPU_Priority_bits_index().  These three form a set of routines
689 *  which must logically operate together.  Bits in the _value are
690 *  set and cleared based on masks built by _CPU_Priority_mask().
691 *  The basic major and minor values calculated by _Priority_Major()
692 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
693 *  to properly range between the values returned by the "find first bit"
694 *  instruction.  This makes it possible for _Priority_Get_highest() to
695 *  calculate the major and directly index into the minor table.
696 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
697 *  is the first bit found.
698 *
699 *  This entire "find first bit" and mapping process depends heavily
700 *  on the manner in which a priority is broken into a major and minor
701 *  components with the major being the 4 MSB of a priority and minor
702 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
703 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
704 *  to the lowest priority.
705 *
706 *  If your CPU does not have a "find first bit" instruction, then
707 *  there are ways to make do without it.  Here are a handful of ways
708 *  to implement this in software:
709 *
710 *    - a series of 16 bit test instructions
711 *    - a "binary search using if's"
712 *    - _number = 0
713 *      if _value > 0x00ff
714 *        _value >>=8
715 *        _number = 8;
716 *
717 *      if _value > 0x0000f
718 *        _value >=8
719 *        _number += 4
720 *
721 *      _number += bit_set_table[ _value ]
722 *
723 *    where bit_set_table[ 16 ] has values which indicate the first
724 *      bit set
725 */
726
727#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
728#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
729
730#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
731
732extern uint8_t   _bit_set_table[];
733
734#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
735  { \
736      _output = 0;\
737      if(_value > 0x00ff) \
738      { _value >>= 8; _output = 8; } \
739      if(_value > 0x000f) \
740        { _output += 4; _value >>= 4; } \
741      _output += _bit_set_table[ _value]; }
742
743#endif
744
745/* end of Bitfield handler macros */
746
747/*
748 *  This routine builds the mask which corresponds to the bit fields
749 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
750 *  for that routine.
751 */
752
753#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
754
755#define _CPU_Priority_Mask( _bit_number ) \
756  ( 1 << (_bit_number) )
757
758#endif
759
760/*
761 *  This routine translates the bit numbers returned by
762 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
763 *  a major or minor component of a priority.  See the discussion
764 *  for that routine.
765 */
766
767#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
768
769#define _CPU_Priority_bits_index( _priority ) \
770  (_priority)
771
772#endif
773
774/* end of Priority handler macros */
775
776/* functions */
777
778/*
779 *  @brief CPU Initialize
780 *
781 *  _CPU_Initialize
782 *
783 *  This routine performs CPU dependent initialization.
784 */
785void _CPU_Initialize(void);
786
787/*
788 *  _CPU_ISR_install_raw_handler
789 *
790 *  This routine installs a "raw" interrupt handler directly into the
791 *  processor's vector table.
792 */
793
794void _CPU_ISR_install_raw_handler(
795  uint32_t    vector,
796  proc_ptr    new_handler,
797  proc_ptr   *old_handler
798);
799
800/*
801 *  _CPU_ISR_install_vector
802 *
803 *  This routine installs an interrupt vector.
804 */
805
806void _CPU_ISR_install_vector(
807  uint32_t    vector,
808  proc_ptr    new_handler,
809  proc_ptr   *old_handler
810);
811
812/*
813 *  _CPU_Install_interrupt_stack
814 *
815 *  This routine installs the hardware interrupt stack pointer.
816 *
817 *  NOTE:  It needs only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
818 *         is TRUE.
819 */
820
821void _CPU_Install_interrupt_stack( void );
822
823/*
824 *  _CPU_Thread_Idle_body
825 *
826 *  This routine is the CPU dependent IDLE thread body.
827 *
828 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
829 *         is TRUE.
830 */
831
832void *_CPU_Thread_Idle_body( uintptr_t ignored );
833
834/*
835 *  _CPU_Context_switch
836 *
837 *  This routine switches from the run context to the heir context.
838 */
839
840void _CPU_Context_switch(
841  Context_Control  *run,
842  Context_Control  *heir
843);
844
845/*
846 *  _CPU_Context_restore
847 *
848 *  This routine is generally used only to restart self in an
849 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
850 */
851
852void _CPU_Context_restore(
853  Context_Control *new_context
854) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
855
856/*
857 *  @brief This routine saves the floating point context passed to it.
858 *
859 *  _CPU_Context_save_fp
860 *
861 */
862void _CPU_Context_save_fp(
863  Context_Control_fp **fp_context_ptr
864);
865
866/*
867 *  @brief This routine restores the floating point context passed to it.
868 *
869 *  _CPU_Context_restore_fp
870 *
871 */
872void _CPU_Context_restore_fp(
873  Context_Control_fp **fp_context_ptr
874);
875
876static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
877{
878  /* TODO */
879}
880
881static inline void _CPU_Context_validate( uintptr_t pattern )
882{
883  while (1) {
884    /* TODO */
885  }
886}
887
888/* FIXME */
889typedef CPU_Interrupt_frame CPU_Exception_frame;
890
891void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
892
893typedef uint32_t CPU_Counter_ticks;
894
895CPU_Counter_ticks _CPU_Counter_read( void );
896
897static inline CPU_Counter_ticks _CPU_Counter_difference(
898  CPU_Counter_ticks second,
899  CPU_Counter_ticks first
900)
901{
902  return second - first;
903}
904
905#ifdef __cplusplus
906}
907#endif
908
909#endif
Note: See TracBrowser for help on using the repository browser.