source: rtems/cpukit/score/cpu/sh/rtems/score/cpu.h @ 22ddca1f

4.104.114.84.95
Last change on this file since 22ddca1f was 22ddca1f, checked in by Ralf Corsepius <ralf.corsepius@…>, on 02/19/05 at 06:29:39

2005-02-19 Ralf Corsepius <ralf.corsepius@…>

  • rtems/score/cpu.h: Remove traces from NO_CPU.
  • Property mode set to 100644
File size: 28.9 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the Hitachi SH
7 *  processor.
8 *
9 *  Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and
10 *           Bernd Becker (becker@faw.uni-ulm.de)
11 *
12 *  COPYRIGHT (c) 1997-1998, FAW Ulm, Germany
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
17 *
18 *
19 *  COPYRIGHT (c) 1998-2001.
20 *  On-Line Applications Research Corporation (OAR).
21 *
22 *  The license and distribution terms for this file may be
23 *  found in the file LICENSE in this distribution or at
24 *  http://www.rtems.com/license/LICENSE.
25 *
26 *  $Id$
27 */
28
29#ifndef _RTEMS_SCORE_CPU_H
30#define _RTEMS_SCORE_CPU_H
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#include <rtems/score/sh.h>              /* pick up machine definitions */
37#ifndef ASM
38#include <rtems/score/types.h>
39#endif
40#if 0 && defined(__SH4__)
41#include <rtems/score/sh4_regs.h>
42#endif
43
44/* conditional compilation parameters */
45
46/*
47 *  Should the calls to _Thread_Enable_dispatch be inlined?
48 *
49 *  If TRUE, then they are inlined.
50 *  If FALSE, then a subroutine call is made.
51 *
52 *  Basically this is an example of the classic trade-off of size
53 *  versus speed.  Inlining the call (TRUE) typically increases the
54 *  size of RTEMS while speeding up the enabling of dispatching.
55 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
56 *  only be 0 or 1 unless you are in an interrupt handler and that
57 *  interrupt handler invokes the executive.]  When not inlined
58 *  something calls _Thread_Enable_dispatch which in turns calls
59 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
60 *  one subroutine call is avoided entirely.]
61 */
62
63#define CPU_INLINE_ENABLE_DISPATCH       FALSE
64
65/*
66 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
67 *  be unrolled one time?  In unrolled each iteration of the loop examines
68 *  two "nodes" on the chain being searched.  Otherwise, only one node
69 *  is examined per iteration.
70 *
71 *  If TRUE, then the loops are unrolled.
72 *  If FALSE, then the loops are not unrolled.
73 *
74 *  The primary factor in making this decision is the cost of disabling
75 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
76 *  body of the loop.  On some CPUs, the flash is more expensive than
77 *  one iteration of the loop body.  In this case, it might be desirable
78 *  to unroll the loop.  It is important to note that on some CPUs, this
79 *  code is the longest interrupt disable period in RTEMS.  So it is
80 *  necessary to strike a balance when setting this parameter.
81 */
82
83#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
84
85/*
86 *  Does RTEMS manage a dedicated interrupt stack in software?
87 *
88 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
89 *  If FALSE, nothing is done.
90 *
91 *  If the CPU supports a dedicated interrupt stack in hardware,
92 *  then it is generally the responsibility of the BSP to allocate it
93 *  and set it up.
94 *
95 *  If the CPU does not support a dedicated interrupt stack, then
96 *  the porter has two options: (1) execute interrupts on the
97 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
98 *  interrupt stack.
99 *
100 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
101 *
102 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
103 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
104 *  possible that both are FALSE for a particular CPU.  Although it
105 *  is unclear what that would imply about the interrupt processing
106 *  procedure on that CPU.
107 */
108
109#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
110#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
111
112/*
113 * We define the interrupt stack in the linker script
114 */
115#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
116
117/*
118 *  Does the RTEMS invoke the user's ISR with the vector number and
119 *  a pointer to the saved interrupt frame (1) or just the vector
120 *  number (0)?
121 */
122
123#define CPU_ISR_PASSES_FRAME_POINTER 0
124
125/*
126 *  Does the CPU have hardware floating point?
127 *
128 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
129 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
130 *
131 *  We currently support sh1 only, which has no FPU, other SHes have an FPU
132 *
133 *  The macro name "SH_HAS_FPU" should be made CPU specific.
134 *  It indicates whether or not this CPU model has FP support.  For
135 *  example, it would be possible to have an i386_nofp CPU model
136 *  which set this to false to indicate that you have an i386 without
137 *  an i387 and wish to leave floating point support out of RTEMS.
138 */
139
140#if SH_HAS_FPU
141#define CPU_HARDWARE_FP TRUE
142#define CPU_SOFTWARE_FP FALSE
143#else
144#define CPU_SOFTWARE_FP FALSE
145#define CPU_HARDWARE_FP FALSE
146#endif
147
148/*
149 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
150 *
151 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
152 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
153 *
154 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
155 */
156
157#if SH_HAS_FPU
158#define CPU_ALL_TASKS_ARE_FP     TRUE
159#else
160#define CPU_ALL_TASKS_ARE_FP     FALSE
161#endif
162
163/*
164 *  Should the IDLE task have a floating point context?
165 *
166 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
167 *  and it has a floating point context which is switched in and out.
168 *  If FALSE, then the IDLE task does not have a floating point context.
169 *
170 *  Setting this to TRUE negatively impacts the time required to preempt
171 *  the IDLE task from an interrupt because the floating point context
172 *  must be saved as part of the preemption.
173 */
174
175#if SH_HAS_FPU
176#define CPU_IDLE_TASK_IS_FP     TRUE
177#else
178#define CPU_IDLE_TASK_IS_FP      FALSE
179#endif
180
181/*
182 *  Should the saving of the floating point registers be deferred
183 *  until a context switch is made to another different floating point
184 *  task?
185 *
186 *  If TRUE, then the floating point context will not be stored until
187 *  necessary.  It will remain in the floating point registers and not
188 *  disturned until another floating point task is switched to.
189 *
190 *  If FALSE, then the floating point context is saved when a floating
191 *  point task is switched out and restored when the next floating point
192 *  task is restored.  The state of the floating point registers between
193 *  those two operations is not specified.
194 *
195 *  If the floating point context does NOT have to be saved as part of
196 *  interrupt dispatching, then it should be safe to set this to TRUE.
197 *
198 *  Setting this flag to TRUE results in using a different algorithm
199 *  for deciding when to save and restore the floating point context.
200 *  The deferred FP switch algorithm minimizes the number of times
201 *  the FP context is saved and restored.  The FP context is not saved
202 *  until a context switch is made to another, different FP task.
203 *  Thus in a system with only one FP task, the FP context will never
204 *  be saved or restored.
205 */
206
207#if SH_HAS_FPU
208#define CPU_USE_DEFERRED_FP_SWITCH      FALSE
209#else
210#define CPU_USE_DEFERRED_FP_SWITCH      TRUE
211#endif
212
213/*
214 *  Does this port provide a CPU dependent IDLE task implementation?
215 *
216 *  If TRUE, then the routine _CPU_Thread_Idle_body
217 *  must be provided and is the default IDLE thread body instead of
218 *  _CPU_Thread_Idle_body.
219 *
220 *  If FALSE, then use the generic IDLE thread body if the BSP does
221 *  not provide one.
222 *
223 *  This is intended to allow for supporting processors which have
224 *  a low power or idle mode.  When the IDLE thread is executed, then
225 *  the CPU can be powered down.
226 *
227 *  The order of precedence for selecting the IDLE thread body is:
228 *
229 *    1.  BSP provided
230 *    2.  CPU dependent (if provided)
231 *    3.  generic (if no BSP and no CPU dependent)
232 */
233
234#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
235
236/*
237 *  Does the stack grow up (toward higher addresses) or down
238 *  (toward lower addresses)?
239 *
240 *  If TRUE, then the grows upward.
241 *  If FALSE, then the grows toward smaller addresses.
242 */
243
244#define CPU_STACK_GROWS_UP               FALSE
245
246/*
247 *  The following is the variable attribute used to force alignment
248 *  of critical RTEMS structures.  On some processors it may make
249 *  sense to have these aligned on tighter boundaries than
250 *  the minimum requirements of the compiler in order to have as
251 *  much of the critical data area as possible in a cache line.
252 *
253 *  The placement of this macro in the declaration of the variables
254 *  is based on the syntactically requirements of the GNU C
255 *  "__attribute__" extension.  For example with GNU C, use
256 *  the following to force a structures to a 32 byte boundary.
257 *
258 *      __attribute__ ((aligned (32)))
259 *
260 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
261 *         To benefit from using this, the data must be heavily
262 *         used so it will stay in the cache and used frequently enough
263 *         in the executive to justify turning this on.
264 */
265
266#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned(16)))
267
268/*
269 *  Define what is required to specify how the network to host conversion
270 *  routines are handled.
271 *
272 *  NOTE: SHes can be big or little endian, the default is big endian
273 */
274
275#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
276
277/* __LITTLE_ENDIAN__ is defined if -ml is given to gcc */
278#if defined(__LITTLE_ENDIAN__)
279#define CPU_BIG_ENDIAN                           FALSE
280#define CPU_LITTLE_ENDIAN                        TRUE
281#else
282#define CPU_BIG_ENDIAN                           TRUE
283#define CPU_LITTLE_ENDIAN                        FALSE
284#endif
285 
286/*
287 *  The following defines the number of bits actually used in the
288 *  interrupt field of the task mode.  How those bits map to the
289 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
290 */
291
292#define CPU_MODES_INTERRUPT_MASK   0x0000000f
293
294/*
295 *  Processor defined structures required for cpukit/score.
296 */
297
298/* may need to put some structures here.  */
299
300/*
301 * Contexts
302 *
303 *  Generally there are 2 types of context to save.
304 *     1. Interrupt registers to save
305 *     2. Task level registers to save
306 *
307 *  This means we have the following 3 context items:
308 *     1. task level context stuff::  Context_Control
309 *     2. floating point task stuff:: Context_Control_fp
310 *     3. special interrupt level context :: Context_Control_interrupt
311 *
312 *  On some processors, it is cost-effective to save only the callee
313 *  preserved registers during a task context switch.  This means
314 *  that the ISR code needs to save those registers which do not
315 *  persist across function calls.  It is not mandatory to make this
316 *  distinctions between the caller/callee saves registers for the
317 *  purpose of minimizing context saved during task switch and on interrupts.
318 *  If the cost of saving extra registers is minimal, simplicity is the
319 *  choice.  Save the same context on interrupt entry as for tasks in
320 *  this case.
321 *
322 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
323 *  care should be used in designing the context area.
324 *
325 *  On some CPUs with hardware floating point support, the Context_Control_fp
326 *  structure will not be used or it simply consist of an array of a
327 *  fixed number of bytes.   This is done when the floating point context
328 *  is dumped by a "FP save context" type instruction and the format
329 *  is not really defined by the CPU.  In this case, there is no need
330 *  to figure out the exact format -- only the size.  Of course, although
331 *  this is enough information for RTEMS, it is probably not enough for
332 *  a debugger such as gdb.  But that is another problem.
333 */
334
335typedef struct {
336  uint32_t   *r15;      /* stack pointer */
337
338  uint32_t   macl;
339  uint32_t   mach;
340  uint32_t   *pr;
341
342  uint32_t   *r14;      /* frame pointer/call saved */
343
344  uint32_t   r13;       /* call saved */
345  uint32_t   r12;       /* call saved */
346  uint32_t   r11;       /* call saved */
347  uint32_t   r10;       /* call saved */
348  uint32_t   r9;        /* call saved */
349  uint32_t   r8;        /* call saved */
350
351  uint32_t   *r7;       /* arg in */
352  uint32_t   *r6;       /* arg in */
353
354#if 0
355  uint32_t   *r5;       /* arg in */
356  uint32_t   *r4;       /* arg in */
357#endif
358
359  uint32_t   *r3;       /* scratch */
360  uint32_t   *r2;       /* scratch */
361  uint32_t   *r1;       /* scratch */
362
363  uint32_t   *r0;       /* arg return */
364
365  uint32_t   gbr;
366  uint32_t   sr;
367
368} Context_Control;
369
370typedef struct {
371#if SH_HAS_FPU
372#ifdef SH4_USE_X_REGISTERS
373  union {
374    float f[16];
375    double d[8];
376  } x;
377#endif
378  union {
379    float f[16];
380    double d[8];
381  } r;
382  float fpul;       /* fp communication register */
383  uint32_t   fpscr; /* fp control register */
384#endif /* SH_HAS_FPU */
385} Context_Control_fp;
386
387typedef struct {
388} CPU_Interrupt_frame;
389
390
391/*
392 *  The following table contains the information required to configure
393 *  the SH processor specific parameters.
394 */
395
396typedef struct {
397  void       (*pretasking_hook)( void );
398  void       (*predriver_hook)( void );
399  void       (*postdriver_hook)( void );
400  void       (*idle_task)( void );
401  boolean      do_zero_of_workspace;
402  uint32_t     idle_task_stack_size;
403  uint32_t     interrupt_stack_size;
404  uint32_t     extra_mpci_receive_server_stack;
405  void *     (*stack_allocate_hook)( uint32_t   );
406  void       (*stack_free_hook)( void* );
407  /* end of fields required on all CPUs */
408  uint32_t      clicks_per_second ; /* cpu frequency in Hz */
409}   rtems_cpu_table;
410
411/*
412 *  Macros to access required entires in the CPU Table are in
413 *  the file rtems/system.h.
414 */
415
416/*
417 *  Macros to access SH specific additions to the CPU Table
418 */
419
420#define rtems_cpu_configuration_get_clicks_per_second() \
421  (_CPU_Table.clicks_per_second)
422   
423/*
424 *  This variable is optional.  It is used on CPUs on which it is difficult
425 *  to generate an "uninitialized" FP context.  It is filled in by
426 *  _CPU_Initialize and copied into the task's FP context area during
427 *  _CPU_Context_Initialize.
428 */
429
430#if SH_HAS_FPU
431SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
432#endif
433
434/*
435 *  On some CPUs, RTEMS supports a software managed interrupt stack.
436 *  This stack is allocated by the Interrupt Manager and the switch
437 *  is performed in _ISR_Handler.  These variables contain pointers
438 *  to the lowest and highest addresses in the chunk of memory allocated
439 *  for the interrupt stack.  Since it is unknown whether the stack
440 *  grows up or down (in general), this give the CPU dependent
441 *  code the option of picking the version it wants to use.
442 *
443 *  NOTE: These two variables are required if the macro
444 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
445 */
446
447SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
448SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
449
450/*
451 *  With some compilation systems, it is difficult if not impossible to
452 *  call a high-level language routine from assembly language.  This
453 *  is especially true of commercial Ada compilers and name mangling
454 *  C++ ones.  This variable can be optionally defined by the CPU porter
455 *  and contains the address of the routine _Thread_Dispatch.  This
456 *  can make it easier to invoke that routine at the end of the interrupt
457 *  sequence (if a dispatch is necessary).
458 */
459
460SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
461
462/*
463 *  Nothing prevents the porter from declaring more CPU specific variables.
464 */
465
466/* XXX: if needed, put more variables here */
467SCORE_EXTERN void CPU_delay( uint32_t   microseconds );
468
469/*
470 *  The size of the floating point context area.  On some CPUs this
471 *  will not be a "sizeof" because the format of the floating point
472 *  area is not defined -- only the size is.  This is usually on
473 *  CPUs with a "floating point save context" instruction.
474 */
475
476#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
477
478/*
479 *  Amount of extra stack (above minimum stack size) required by
480 *  MPCI receive server thread.  Remember that in a multiprocessor
481 *  system this thread must exist and be able to process all directives.
482 */
483
484#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
485
486/*
487 *  This defines the number of entries in the ISR_Vector_table managed
488 *  by RTEMS.
489 */
490
491#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
492#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
493
494/*
495 *  This is defined if the port has a special way to report the ISR nesting
496 *  level.  Most ports maintain the variable _ISR_Nest_level.
497 */
498
499#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
500
501/*
502 *  Should be large enough to run all RTEMS tests.  This insures
503 *  that a "reasonable" small application should not have any problems.
504 *
505 *  We have been able to run the sptests with this value, but have not
506 *  been able to run the tmtest suite.
507 */
508
509#define CPU_STACK_MINIMUM_SIZE          4096
510
511/*
512 *  CPU's worst alignment requirement for data types on a byte boundary.  This
513 *  alignment does not take into account the requirements for the stack.
514 */
515#if defined(__SH4__)
516/* FIXME: sh3 and SH3E? */
517#define CPU_ALIGNMENT              8
518#else
519#define CPU_ALIGNMENT              4
520#endif
521
522/*
523 *  This number corresponds to the byte alignment requirement for the
524 *  heap handler.  This alignment requirement may be stricter than that
525 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
526 *  common for the heap to follow the same alignment requirement as
527 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
528 *  then this should be set to CPU_ALIGNMENT.
529 *
530 *  NOTE:  This does not have to be a power of 2.  It does have to
531 *         be greater or equal to than CPU_ALIGNMENT.
532 */
533
534#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
535
536/*
537 *  This number corresponds to the byte alignment requirement for memory
538 *  buffers allocated by the partition manager.  This alignment requirement
539 *  may be stricter than that for the data types alignment specified by
540 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
541 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
542 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
543 *
544 *  NOTE:  This does not have to be a power of 2.  It does have to
545 *         be greater or equal to than CPU_ALIGNMENT.
546 */
547
548#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
549
550/*
551 *  This number corresponds to the byte alignment requirement for the
552 *  stack.  This alignment requirement may be stricter than that for the
553 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
554 *  is strict enough for the stack, then this should be set to 0.
555 *
556 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
557 */
558
559#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
560
561/*
562 *  ISR handler macros
563 */
564
565/*
566 *  Support routine to initialize the RTEMS vector table after it is allocated.
567 *
568 *  SH Specific Information: NONE
569 */
570 
571#define _CPU_Initialize_vectors()
572 
573/*
574 *  Disable all interrupts for an RTEMS critical section.  The previous
575 *  level is returned in _level.
576 */
577
578#define _CPU_ISR_Disable( _level) \
579  sh_disable_interrupts( _level )
580
581/*
582 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
583 *  This indicates the end of an RTEMS critical section.  The parameter
584 *  _level is not modified.
585 */
586
587#define _CPU_ISR_Enable( _level) \
588   sh_enable_interrupts( _level)
589
590/*
591 *  This temporarily restores the interrupt to _level before immediately
592 *  disabling them again.  This is used to divide long RTEMS critical
593 *  sections into two or more parts.  The parameter _level is not
594 * modified.
595 */
596
597#define _CPU_ISR_Flash( _level) \
598  sh_flash_interrupts( _level)
599
600/*
601 *  Map interrupt level in task mode onto the hardware that the CPU
602 *  actually provides.  Currently, interrupt levels which do not
603 *  map onto the CPU in a generic fashion are undefined.  Someday,
604 *  it would be nice if these were "mapped" by the application
605 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
606 *  8 - 255 would be available for bsp/application specific meaning.
607 *  This could be used to manage a programmable interrupt controller
608 *  via the rtems_task_mode directive.
609 */
610
611#define _CPU_ISR_Set_level( _newlevel) \
612  sh_set_interrupt_level(_newlevel)
613
614uint32_t   _CPU_ISR_Get_level( void );
615
616/* end of ISR handler macros */
617
618/* Context handler macros */
619
620/*
621 *  Initialize the context to a state suitable for starting a
622 *  task after a context restore operation.  Generally, this
623 *  involves:
624 *
625 *     - setting a starting address
626 *     - preparing the stack
627 *     - preparing the stack and frame pointers
628 *     - setting the proper interrupt level in the context
629 *     - initializing the floating point context
630 *
631 *  This routine generally does not set any unnecessary register
632 *  in the context.  The state of the "general data" registers is
633 *  undefined at task start time.
634 *
635 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
636 *        point thread.  This is typically only used on CPUs where the
637 *        FPU may be easily disabled by software such as on the SPARC
638 *        where the PSR contains an enable FPU bit.
639 */
640
641/*
642 * FIXME: defined as a function for debugging - should be a macro
643 */
644SCORE_EXTERN void _CPU_Context_Initialize(
645  Context_Control       *_the_context,
646  void                  *_stack_base,
647  uint32_t              _size,
648  uint32_t              _isr,
649  void    (*_entry_point)(void),
650  int                   _is_fp );
651
652/*
653 *  This routine is responsible for somehow restarting the currently
654 *  executing task.  If you are lucky, then all that is necessary
655 *  is restoring the context.  Otherwise, there will need to be
656 *  a special assembly routine which does something special in this
657 *  case.  Context_Restore should work most of the time.  It will
658 *  not work if restarting self conflicts with the stack frame
659 *  assumptions of restoring a context.
660 */
661
662#define _CPU_Context_Restart_self( _the_context ) \
663   _CPU_Context_restore( (_the_context) );
664
665/*
666 *  The purpose of this macro is to allow the initial pointer into
667 *  a floating point context area (used to save the floating point
668 *  context) to be at an arbitrary place in the floating point
669 *  context area.
670 *
671 *  This is necessary because some FP units are designed to have
672 *  their context saved as a stack which grows into lower addresses.
673 *  Other FP units can be saved by simply moving registers into offsets
674 *  from the base of the context area.  Finally some FP units provide
675 *  a "dump context" instruction which could fill in from high to low
676 *  or low to high based on the whim of the CPU designers.
677 */
678
679#define _CPU_Context_Fp_start( _base, _offset ) \
680   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
681
682/*
683 *  This routine initializes the FP context area passed to it to.
684 *  There are a few standard ways in which to initialize the
685 *  floating point context.  The code included for this macro assumes
686 *  that this is a CPU in which a "initial" FP context was saved into
687 *  _CPU_Null_fp_context and it simply copies it to the destination
688 *  context passed to it.
689 *
690 *  Other models include (1) not doing anything, and (2) putting
691 *  a "null FP status word" in the correct place in the FP context.
692 *  SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have.
693 */
694
695#if SH_HAS_FPU
696#define _CPU_Context_Initialize_fp( _destination ) \
697  do { \
698     *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context;\
699  } while(0)
700#else
701#define _CPU_Context_Initialize_fp( _destination ) \
702  {  }
703#endif
704
705/* end of Context handler macros */
706
707/* Fatal Error manager macros */
708
709/*
710 * FIXME: Trap32 ???
711 *
712 *  This routine copies _error into a known place -- typically a stack
713 *  location or a register, optionally disables interrupts, and
714 *  invokes a Trap32 Instruction which returns to the breakpoint
715 *  routine of cmon.
716 */
717
718#ifdef BSP_FATAL_HALT
719  /* we manage the fatal error in the board support package */
720  void bsp_fatal_halt( uint32_t   _error);
721#define _CPU_Fatal_halt( _error ) bsp_fatal_halt( _error)
722#else
723#define _CPU_Fatal_halt( _error)\
724{ \
725  asm volatile("mov.l %0,r0"::"m" (_error)); \
726  asm volatile("mov #1, r4"); \
727  asm volatile("trapa #34"); \
728}
729#endif
730
731/* end of Fatal Error manager macros */
732
733/* Bitfield handler macros */
734
735/*
736 *  This routine sets _output to the bit number of the first bit
737 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
738 *  This type may be either 16 or 32 bits wide although only the 16
739 *  least significant bits will be used.
740 *
741 *  There are a number of variables in using a "find first bit" type
742 *  instruction.
743 *
744 *    (1) What happens when run on a value of zero?
745 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
746 *    (3) The numbering may be zero or one based.
747 *    (4) The "find first bit" instruction may search from MSB or LSB.
748 *
749 *  RTEMS guarantees that (1) will never happen so it is not a concern.
750 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
751 *  _CPU_Priority_bits_index().  These three form a set of routines
752 *  which must logically operate together.  Bits in the _value are
753 *  set and cleared based on masks built by _CPU_Priority_mask().
754 *  The basic major and minor values calculated by _Priority_Major()
755 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
756 *  to properly range between the values returned by the "find first bit"
757 *  instruction.  This makes it possible for _Priority_Get_highest() to
758 *  calculate the major and directly index into the minor table.
759 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
760 *  is the first bit found.
761 *
762 *  This entire "find first bit" and mapping process depends heavily
763 *  on the manner in which a priority is broken into a major and minor
764 *  components with the major being the 4 MSB of a priority and minor
765 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
766 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
767 *  to the lowest priority.
768 *
769 *  If your CPU does not have a "find first bit" instruction, then
770 *  there are ways to make do without it.  Here are a handful of ways
771 *  to implement this in software:
772 *
773 *    - a series of 16 bit test instructions
774 *    - a "binary search using if's"
775 *    - _number = 0
776 *      if _value > 0x00ff
777 *        _value >>=8
778 *        _number = 8;
779 *
780 *      if _value > 0x0000f
781 *        _value >=8
782 *        _number += 4
783 *
784 *      _number += bit_set_table[ _value ]
785 *
786 *    where bit_set_table[ 16 ] has values which indicate the first
787 *      bit set
788 */
789
790#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
791#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
792
793#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
794
795extern uint8_t   _bit_set_table[];
796
797#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
798  { \
799      _output = 0;\
800      if(_value > 0x00ff) \
801      { _value >>= 8; _output = 8; } \
802      if(_value > 0x000f) \
803        { _output += 4; _value >>= 4; } \
804      _output += _bit_set_table[ _value]; }
805
806#endif
807
808/* end of Bitfield handler macros */
809
810/*
811 *  This routine builds the mask which corresponds to the bit fields
812 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
813 *  for that routine.
814 */
815
816#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
817
818#define _CPU_Priority_Mask( _bit_number ) \
819  ( 1 << (_bit_number) )
820
821#endif
822
823/*
824 *  This routine translates the bit numbers returned by
825 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
826 *  a major or minor component of a priority.  See the discussion
827 *  for that routine.
828 */
829
830#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
831
832#define _CPU_Priority_bits_index( _priority ) \
833  (_priority)
834
835#endif
836
837/* end of Priority handler macros */
838
839/* functions */
840
841/*
842 *  _CPU_Initialize
843 *
844 *  This routine performs CPU dependent initialization.
845 */
846
847void _CPU_Initialize(
848  rtems_cpu_table  *cpu_table,
849  void      (*thread_dispatch)
850);
851
852/*
853 *  _CPU_ISR_install_raw_handler
854 *
855 *  This routine installs a "raw" interrupt handler directly into the
856 *  processor's vector table.
857 */
858 
859void _CPU_ISR_install_raw_handler(
860  uint32_t    vector,
861  proc_ptr    new_handler,
862  proc_ptr   *old_handler
863);
864
865/*
866 *  _CPU_ISR_install_vector
867 *
868 *  This routine installs an interrupt vector.
869 */
870
871void _CPU_ISR_install_vector(
872  uint32_t    vector,
873  proc_ptr    new_handler,
874  proc_ptr   *old_handler
875);
876
877/*
878 *  _CPU_Install_interrupt_stack
879 *
880 *  This routine installs the hardware interrupt stack pointer.
881 *
882 *  NOTE:  It needs only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
883 *         is TRUE.
884 */
885
886void _CPU_Install_interrupt_stack( void );
887
888/*
889 *  _CPU_Thread_Idle_body
890 *
891 *  This routine is the CPU dependent IDLE thread body.
892 *
893 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
894 *         is TRUE.
895 */
896
897void _CPU_Thread_Idle_body( void );
898
899/*
900 *  _CPU_Context_switch
901 *
902 *  This routine switches from the run context to the heir context.
903 */
904
905void _CPU_Context_switch(
906  Context_Control  *run,
907  Context_Control  *heir
908);
909
910/*
911 *  _CPU_Context_restore
912 *
913 *  This routine is generally used only to restart self in an
914 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
915 */
916
917void _CPU_Context_restore(
918  Context_Control *new_context
919);
920
921/*
922 *  _CPU_Context_save_fp
923 *
924 *  This routine saves the floating point context passed to it.
925 */
926
927void _CPU_Context_save_fp(
928  void **fp_context_ptr
929);
930
931/*
932 *  _CPU_Context_restore_fp
933 *
934 *  This routine restores the floating point context passed to it.
935 */
936
937void _CPU_Context_restore_fp(
938  void **fp_context_ptr
939);
940
941
942#ifdef __cplusplus
943}
944#endif
945
946#endif
Note: See TracBrowser for help on using the repository browser.