source: rtems/cpukit/score/cpu/sh/rtems/score/cpu.h @ 01b32d4

5
Last change on this file since 01b32d4 was 01b32d4, checked in by Sebastian Huber <sebastian.huber@…>, on 01/25/16 at 07:54:17

score: Delete obsolete CPU_TIMESTAMP_* defines

Update #2271.

  • Property mode set to 100644
File size: 26.8 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the Hitachi SH
7 *  processor.
8 *
9 *  Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and
10 *           Bernd Becker (becker@faw.uni-ulm.de)
11 *
12 *  COPYRIGHT (c) 1997-1998, FAW Ulm, Germany
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
17 *
18 *
19 *  COPYRIGHT (c) 1998-2006.
20 *  On-Line Applications Research Corporation (OAR).
21 *
22 *  The license and distribution terms for this file may be
23 *  found in the file LICENSE in this distribution or at
24 *  http://www.rtems.org/license/LICENSE.
25 */
26
27#ifndef _RTEMS_SCORE_CPU_H
28#define _RTEMS_SCORE_CPU_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34#include <rtems/score/types.h>
35#include <rtems/score/sh.h>
36
37/* conditional compilation parameters */
38
39/*
40 *  Should the calls to _Thread_Enable_dispatch be inlined?
41 *
42 *  If TRUE, then they are inlined.
43 *  If FALSE, then a subroutine call is made.
44 *
45 *  Basically this is an example of the classic trade-off of size
46 *  versus speed.  Inlining the call (TRUE) typically increases the
47 *  size of RTEMS while speeding up the enabling of dispatching.
48 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
49 *  only be 0 or 1 unless you are in an interrupt handler and that
50 *  interrupt handler invokes the executive.]  When not inlined
51 *  something calls _Thread_Enable_dispatch which in turns calls
52 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
53 *  one subroutine call is avoided entirely.]
54 */
55
56#define CPU_INLINE_ENABLE_DISPATCH       FALSE
57
58/*
59 *  Does the CPU follow the simple vectored interrupt model?
60 *
61 *  If TRUE, then RTEMS allocates the vector table it internally manages.
62 *  If FALSE, then the BSP is assumed to allocate and manage the vector
63 *  table
64 *
65 *  SH Specific Information:
66 *
67 *  XXX document implementation including references if appropriate
68 */
69#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
70
71/*
72 *  Does RTEMS manage a dedicated interrupt stack in software?
73 *
74 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
75 *  If FALSE, nothing is done.
76 *
77 *  If the CPU supports a dedicated interrupt stack in hardware,
78 *  then it is generally the responsibility of the BSP to allocate it
79 *  and set it up.
80 *
81 *  If the CPU does not support a dedicated interrupt stack, then
82 *  the porter has two options: (1) execute interrupts on the
83 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
84 *  interrupt stack.
85 *
86 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
87 *
88 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
89 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
90 *  possible that both are FALSE for a particular CPU.  Although it
91 *  is unclear what that would imply about the interrupt processing
92 *  procedure on that CPU.
93 */
94
95#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
96#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
97
98/*
99 * We define the interrupt stack in the linker script
100 */
101#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
102
103/*
104 *  Does the RTEMS invoke the user's ISR with the vector number and
105 *  a pointer to the saved interrupt frame (1) or just the vector
106 *  number (0)?
107 */
108
109#define CPU_ISR_PASSES_FRAME_POINTER 0
110
111/*
112 *  Does the CPU have hardware floating point?
113 *
114 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
115 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
116 *
117 *  We currently support sh1 only, which has no FPU, other SHes have an FPU
118 *
119 *  The macro name "SH_HAS_FPU" should be made CPU specific.
120 *  It indicates whether or not this CPU model has FP support.  For
121 *  example, it would be possible to have an i386_nofp CPU model
122 *  which set this to false to indicate that you have an i386 without
123 *  an i387 and wish to leave floating point support out of RTEMS.
124 */
125
126#if SH_HAS_FPU
127#define CPU_HARDWARE_FP TRUE
128#define CPU_SOFTWARE_FP FALSE
129#else
130#define CPU_SOFTWARE_FP FALSE
131#define CPU_HARDWARE_FP FALSE
132#endif
133
134/*
135 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
136 *
137 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
138 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
139 *
140 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
141 */
142
143#if SH_HAS_FPU
144#define CPU_ALL_TASKS_ARE_FP     TRUE
145#else
146#define CPU_ALL_TASKS_ARE_FP     FALSE
147#endif
148
149/*
150 *  Should the IDLE task have a floating point context?
151 *
152 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
153 *  and it has a floating point context which is switched in and out.
154 *  If FALSE, then the IDLE task does not have a floating point context.
155 *
156 *  Setting this to TRUE negatively impacts the time required to preempt
157 *  the IDLE task from an interrupt because the floating point context
158 *  must be saved as part of the preemption.
159 */
160
161#if SH_HAS_FPU
162#define CPU_IDLE_TASK_IS_FP     TRUE
163#else
164#define CPU_IDLE_TASK_IS_FP      FALSE
165#endif
166
167/*
168 *  Should the saving of the floating point registers be deferred
169 *  until a context switch is made to another different floating point
170 *  task?
171 *
172 *  If TRUE, then the floating point context will not be stored until
173 *  necessary.  It will remain in the floating point registers and not
174 *  disturned until another floating point task is switched to.
175 *
176 *  If FALSE, then the floating point context is saved when a floating
177 *  point task is switched out and restored when the next floating point
178 *  task is restored.  The state of the floating point registers between
179 *  those two operations is not specified.
180 *
181 *  If the floating point context does NOT have to be saved as part of
182 *  interrupt dispatching, then it should be safe to set this to TRUE.
183 *
184 *  Setting this flag to TRUE results in using a different algorithm
185 *  for deciding when to save and restore the floating point context.
186 *  The deferred FP switch algorithm minimizes the number of times
187 *  the FP context is saved and restored.  The FP context is not saved
188 *  until a context switch is made to another, different FP task.
189 *  Thus in a system with only one FP task, the FP context will never
190 *  be saved or restored.
191 */
192
193#if SH_HAS_FPU
194#define CPU_USE_DEFERRED_FP_SWITCH      FALSE
195#else
196#define CPU_USE_DEFERRED_FP_SWITCH      TRUE
197#endif
198
199/*
200 *  Does this port provide a CPU dependent IDLE task implementation?
201 *
202 *  If TRUE, then the routine _CPU_Thread_Idle_body
203 *  must be provided and is the default IDLE thread body instead of
204 *  _CPU_Thread_Idle_body.
205 *
206 *  If FALSE, then use the generic IDLE thread body if the BSP does
207 *  not provide one.
208 *
209 *  This is intended to allow for supporting processors which have
210 *  a low power or idle mode.  When the IDLE thread is executed, then
211 *  the CPU can be powered down.
212 *
213 *  The order of precedence for selecting the IDLE thread body is:
214 *
215 *    1.  BSP provided
216 *    2.  CPU dependent (if provided)
217 *    3.  generic (if no BSP and no CPU dependent)
218 */
219
220#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
221
222/*
223 *  Does the stack grow up (toward higher addresses) or down
224 *  (toward lower addresses)?
225 *
226 *  If TRUE, then the grows upward.
227 *  If FALSE, then the grows toward smaller addresses.
228 */
229
230#define CPU_STACK_GROWS_UP               FALSE
231
232/*
233 *  The following is the variable attribute used to force alignment
234 *  of critical RTEMS structures.  On some processors it may make
235 *  sense to have these aligned on tighter boundaries than
236 *  the minimum requirements of the compiler in order to have as
237 *  much of the critical data area as possible in a cache line.
238 *
239 *  The placement of this macro in the declaration of the variables
240 *  is based on the syntactically requirements of the GNU C
241 *  "__attribute__" extension.  For example with GNU C, use
242 *  the following to force a structures to a 32 byte boundary.
243 *
244 *      __attribute__ ((aligned (32)))
245 *
246 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
247 *         To benefit from using this, the data must be heavily
248 *         used so it will stay in the cache and used frequently enough
249 *         in the executive to justify turning this on.
250 */
251
252#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned(16)))
253
254/*
255 *  Define what is required to specify how the network to host conversion
256 *  routines are handled.
257 *
258 *  NOTE: SHes can be big or little endian, the default is big endian
259 */
260
261/* __LITTLE_ENDIAN__ is defined if -ml is given to gcc */
262#if defined(__LITTLE_ENDIAN__)
263#define CPU_BIG_ENDIAN                           FALSE
264#define CPU_LITTLE_ENDIAN                        TRUE
265#else
266#define CPU_BIG_ENDIAN                           TRUE
267#define CPU_LITTLE_ENDIAN                        FALSE
268#endif
269
270/*
271 *  The following defines the number of bits actually used in the
272 *  interrupt field of the task mode.  How those bits map to the
273 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
274 */
275
276#define CPU_MODES_INTERRUPT_MASK   0x0000000f
277
278#define CPU_PER_CPU_CONTROL_SIZE 0
279
280/*
281 *  Processor defined structures required for cpukit/score.
282 */
283
284/* may need to put some structures here.  */
285
286typedef struct {
287  /* There is no CPU specific per-CPU state */
288} CPU_Per_CPU_control;
289
290/*
291 * Contexts
292 *
293 *  Generally there are 2 types of context to save.
294 *     1. Interrupt registers to save
295 *     2. Task level registers to save
296 *
297 *  This means we have the following 3 context items:
298 *     1. task level context stuff::  Context_Control
299 *     2. floating point task stuff:: Context_Control_fp
300 *     3. special interrupt level context :: Context_Control_interrupt
301 *
302 *  On some processors, it is cost-effective to save only the callee
303 *  preserved registers during a task context switch.  This means
304 *  that the ISR code needs to save those registers which do not
305 *  persist across function calls.  It is not mandatory to make this
306 *  distinctions between the caller/callee saves registers for the
307 *  purpose of minimizing context saved during task switch and on interrupts.
308 *  If the cost of saving extra registers is minimal, simplicity is the
309 *  choice.  Save the same context on interrupt entry as for tasks in
310 *  this case.
311 *
312 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
313 *  care should be used in designing the context area.
314 *
315 *  On some CPUs with hardware floating point support, the Context_Control_fp
316 *  structure will not be used or it simply consist of an array of a
317 *  fixed number of bytes.   This is done when the floating point context
318 *  is dumped by a "FP save context" type instruction and the format
319 *  is not really defined by the CPU.  In this case, there is no need
320 *  to figure out the exact format -- only the size.  Of course, although
321 *  this is enough information for RTEMS, it is probably not enough for
322 *  a debugger such as gdb.  But that is another problem.
323 */
324
325typedef struct {
326  uint32_t   *r15;      /* stack pointer */
327
328  uint32_t   macl;
329  uint32_t   mach;
330  uint32_t   *pr;
331
332  uint32_t   *r14;      /* frame pointer/call saved */
333
334  uint32_t   r13;       /* call saved */
335  uint32_t   r12;       /* call saved */
336  uint32_t   r11;       /* call saved */
337  uint32_t   r10;       /* call saved */
338  uint32_t   r9;        /* call saved */
339  uint32_t   r8;        /* call saved */
340
341  uint32_t   *r7;       /* arg in */
342  uint32_t   *r6;       /* arg in */
343
344#if 0
345  uint32_t   *r5;       /* arg in */
346  uint32_t   *r4;       /* arg in */
347#endif
348
349  uint32_t   *r3;       /* scratch */
350  uint32_t   *r2;       /* scratch */
351  uint32_t   *r1;       /* scratch */
352
353  uint32_t   *r0;       /* arg return */
354
355  uint32_t   gbr;
356  uint32_t   sr;
357
358} Context_Control;
359
360#define _CPU_Context_Get_SP( _context ) \
361  (_context)->r15
362
363typedef struct {
364#if SH_HAS_FPU
365#ifdef SH4_USE_X_REGISTERS
366  union {
367    float f[16];
368    double d[8];
369  } x;
370#endif
371  union {
372    float f[16];
373    double d[8];
374  } r;
375  float fpul;       /* fp communication register */
376  uint32_t   fpscr; /* fp control register */
377#endif /* SH_HAS_FPU */
378} Context_Control_fp;
379
380typedef struct {
381} CPU_Interrupt_frame;
382
383/*
384 *  This variable is optional.  It is used on CPUs on which it is difficult
385 *  to generate an "uninitialized" FP context.  It is filled in by
386 *  _CPU_Initialize and copied into the task's FP context area during
387 *  _CPU_Context_Initialize.
388 */
389
390#if SH_HAS_FPU
391SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
392#endif
393
394/*
395 *  Nothing prevents the porter from declaring more CPU specific variables.
396 */
397
398/* XXX: if needed, put more variables here */
399SCORE_EXTERN void CPU_delay( uint32_t   microseconds );
400
401/*
402 *  The size of the floating point context area.  On some CPUs this
403 *  will not be a "sizeof" because the format of the floating point
404 *  area is not defined -- only the size is.  This is usually on
405 *  CPUs with a "floating point save context" instruction.
406 */
407
408#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
409
410/*
411 *  Amount of extra stack (above minimum stack size) required by
412 *  MPCI receive server thread.  Remember that in a multiprocessor
413 *  system this thread must exist and be able to process all directives.
414 */
415
416#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
417
418/*
419 *  This defines the number of entries in the ISR_Vector_table managed
420 *  by RTEMS.
421 */
422
423#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
424#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
425
426/*
427 *  This is defined if the port has a special way to report the ISR nesting
428 *  level.  Most ports maintain the variable _ISR_Nest_level.
429 */
430
431#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
432
433/*
434 *  Should be large enough to run all RTEMS tests.  This ensures
435 *  that a "reasonable" small application should not have any problems.
436 *
437 *  We have been able to run the sptests with this value, but have not
438 *  been able to run the tmtest suite.
439 */
440
441#define CPU_STACK_MINIMUM_SIZE          4096
442
443#define CPU_SIZEOF_POINTER 4
444
445/*
446 *  CPU's worst alignment requirement for data types on a byte boundary.  This
447 *  alignment does not take into account the requirements for the stack.
448 */
449#if defined(__SH4__)
450/* FIXME: sh3 and SH3E? */
451#define CPU_ALIGNMENT              8
452#else
453#define CPU_ALIGNMENT              4
454#endif
455
456/*
457 *  This number corresponds to the byte alignment requirement for the
458 *  heap handler.  This alignment requirement may be stricter than that
459 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
460 *  common for the heap to follow the same alignment requirement as
461 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
462 *  then this should be set to CPU_ALIGNMENT.
463 *
464 *  NOTE:  This does not have to be a power of 2.  It does have to
465 *         be greater or equal to than CPU_ALIGNMENT.
466 */
467
468#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
469
470/*
471 *  This number corresponds to the byte alignment requirement for memory
472 *  buffers allocated by the partition manager.  This alignment requirement
473 *  may be stricter than that for the data types alignment specified by
474 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
475 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
476 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
477 *
478 *  NOTE:  This does not have to be a power of 2.  It does have to
479 *         be greater or equal to than CPU_ALIGNMENT.
480 */
481
482#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
483
484/*
485 *  This number corresponds to the byte alignment requirement for the
486 *  stack.  This alignment requirement may be stricter than that for the
487 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
488 *  is strict enough for the stack, then this should be set to 0.
489 *
490 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
491 */
492
493#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
494
495/*
496 *  ISR handler macros
497 */
498
499/*
500 *  Support routine to initialize the RTEMS vector table after it is allocated.
501 *
502 *  SH Specific Information: NONE
503 */
504
505#define _CPU_Initialize_vectors()
506
507/*
508 *  Disable all interrupts for an RTEMS critical section.  The previous
509 *  level is returned in _level.
510 */
511
512#define _CPU_ISR_Disable( _level) \
513  sh_disable_interrupts( _level )
514
515/*
516 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
517 *  This indicates the end of an RTEMS critical section.  The parameter
518 *  _level is not modified.
519 */
520
521#define _CPU_ISR_Enable( _level) \
522   sh_enable_interrupts( _level)
523
524/*
525 *  This temporarily restores the interrupt to _level before immediately
526 *  disabling them again.  This is used to divide long RTEMS critical
527 *  sections into two or more parts.  The parameter _level is not
528 * modified.
529 */
530
531#define _CPU_ISR_Flash( _level) \
532  sh_flash_interrupts( _level)
533
534/*
535 *  Map interrupt level in task mode onto the hardware that the CPU
536 *  actually provides.  Currently, interrupt levels which do not
537 *  map onto the CPU in a generic fashion are undefined.  Someday,
538 *  it would be nice if these were "mapped" by the application
539 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
540 *  8 - 255 would be available for bsp/application specific meaning.
541 *  This could be used to manage a programmable interrupt controller
542 *  via the rtems_task_mode directive.
543 */
544
545#define _CPU_ISR_Set_level( _newlevel) \
546  sh_set_interrupt_level(_newlevel)
547
548uint32_t   _CPU_ISR_Get_level( void );
549
550/* end of ISR handler macros */
551
552/* Context handler macros */
553
554/*
555 *  Initialize the context to a state suitable for starting a
556 *  task after a context restore operation.  Generally, this
557 *  involves:
558 *
559 *     - setting a starting address
560 *     - preparing the stack
561 *     - preparing the stack and frame pointers
562 *     - setting the proper interrupt level in the context
563 *     - initializing the floating point context
564 *
565 *  This routine generally does not set any unnecessary register
566 *  in the context.  The state of the "general data" registers is
567 *  undefined at task start time.
568 *
569 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
570 *        point thread.  This is typically only used on CPUs where the
571 *        FPU may be easily disabled by software such as on the SPARC
572 *        where the PSR contains an enable FPU bit.
573 */
574
575/*
576 * FIXME: defined as a function for debugging - should be a macro
577 */
578SCORE_EXTERN void _CPU_Context_Initialize(
579  Context_Control       *_the_context,
580  void                  *_stack_base,
581  uint32_t              _size,
582  uint32_t              _isr,
583  void    (*_entry_point)(void),
584  int                   _is_fp,
585  void                  *_tls_area );
586
587/*
588 *  This routine is responsible for somehow restarting the currently
589 *  executing task.  If you are lucky, then all that is necessary
590 *  is restoring the context.  Otherwise, there will need to be
591 *  a special assembly routine which does something special in this
592 *  case.  Context_Restore should work most of the time.  It will
593 *  not work if restarting self conflicts with the stack frame
594 *  assumptions of restoring a context.
595 */
596
597#define _CPU_Context_Restart_self( _the_context ) \
598   _CPU_Context_restore( (_the_context) );
599
600/*
601 *  The purpose of this macro is to allow the initial pointer into
602 *  a floating point context area (used to save the floating point
603 *  context) to be at an arbitrary place in the floating point
604 *  context area.
605 *
606 *  This is necessary because some FP units are designed to have
607 *  their context saved as a stack which grows into lower addresses.
608 *  Other FP units can be saved by simply moving registers into offsets
609 *  from the base of the context area.  Finally some FP units provide
610 *  a "dump context" instruction which could fill in from high to low
611 *  or low to high based on the whim of the CPU designers.
612 */
613
614#define _CPU_Context_Fp_start( _base, _offset ) \
615   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
616
617/*
618 *  This routine initializes the FP context area passed to it to.
619 *  There are a few standard ways in which to initialize the
620 *  floating point context.  The code included for this macro assumes
621 *  that this is a CPU in which a "initial" FP context was saved into
622 *  _CPU_Null_fp_context and it simply copies it to the destination
623 *  context passed to it.
624 *
625 *  Other models include (1) not doing anything, and (2) putting
626 *  a "null FP status word" in the correct place in the FP context.
627 *  SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have.
628 */
629
630#if SH_HAS_FPU
631#define _CPU_Context_Initialize_fp( _destination ) \
632  do { \
633     *(*(_destination)) = _CPU_Null_fp_context;\
634  } while(0)
635#else
636#define _CPU_Context_Initialize_fp( _destination ) \
637  {  }
638#endif
639
640/* end of Context handler macros */
641
642/* Fatal Error manager macros */
643
644/*
645 * FIXME: Trap32 ???
646 *
647 *  This routine copies _error into a known place -- typically a stack
648 *  location or a register, optionally disables interrupts, and
649 *  invokes a Trap32 Instruction which returns to the breakpoint
650 *  routine of cmon.
651 */
652
653#ifdef BSP_FATAL_HALT
654  /* we manage the fatal error in the board support package */
655  void bsp_fatal_halt( uint32_t   _error);
656#define _CPU_Fatal_halt( _source, _error ) bsp_fatal_halt( _error)
657#else
658#define _CPU_Fatal_halt( _source, _error)\
659{ \
660  __asm__ volatile("mov.l %0,r0"::"m" (_error)); \
661  __asm__ volatile("mov #1, r4"); \
662  __asm__ volatile("trapa #34"); \
663}
664#endif
665
666/* end of Fatal Error manager macros */
667
668/* Bitfield handler macros */
669
670/*
671 *  This routine sets _output to the bit number of the first bit
672 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
673 *  This type may be either 16 or 32 bits wide although only the 16
674 *  least significant bits will be used.
675 *
676 *  There are a number of variables in using a "find first bit" type
677 *  instruction.
678 *
679 *    (1) What happens when run on a value of zero?
680 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
681 *    (3) The numbering may be zero or one based.
682 *    (4) The "find first bit" instruction may search from MSB or LSB.
683 *
684 *  RTEMS guarantees that (1) will never happen so it is not a concern.
685 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
686 *  _CPU_Priority_bits_index().  These three form a set of routines
687 *  which must logically operate together.  Bits in the _value are
688 *  set and cleared based on masks built by _CPU_Priority_mask().
689 *  The basic major and minor values calculated by _Priority_Major()
690 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
691 *  to properly range between the values returned by the "find first bit"
692 *  instruction.  This makes it possible for _Priority_Get_highest() to
693 *  calculate the major and directly index into the minor table.
694 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
695 *  is the first bit found.
696 *
697 *  This entire "find first bit" and mapping process depends heavily
698 *  on the manner in which a priority is broken into a major and minor
699 *  components with the major being the 4 MSB of a priority and minor
700 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
701 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
702 *  to the lowest priority.
703 *
704 *  If your CPU does not have a "find first bit" instruction, then
705 *  there are ways to make do without it.  Here are a handful of ways
706 *  to implement this in software:
707 *
708 *    - a series of 16 bit test instructions
709 *    - a "binary search using if's"
710 *    - _number = 0
711 *      if _value > 0x00ff
712 *        _value >>=8
713 *        _number = 8;
714 *
715 *      if _value > 0x0000f
716 *        _value >=8
717 *        _number += 4
718 *
719 *      _number += bit_set_table[ _value ]
720 *
721 *    where bit_set_table[ 16 ] has values which indicate the first
722 *      bit set
723 */
724
725#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
726#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
727
728#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
729
730extern uint8_t   _bit_set_table[];
731
732#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
733  { \
734      _output = 0;\
735      if(_value > 0x00ff) \
736      { _value >>= 8; _output = 8; } \
737      if(_value > 0x000f) \
738        { _output += 4; _value >>= 4; } \
739      _output += _bit_set_table[ _value]; }
740
741#endif
742
743/* end of Bitfield handler macros */
744
745/*
746 *  This routine builds the mask which corresponds to the bit fields
747 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
748 *  for that routine.
749 */
750
751#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
752
753#define _CPU_Priority_Mask( _bit_number ) \
754  ( 1 << (_bit_number) )
755
756#endif
757
758/*
759 *  This routine translates the bit numbers returned by
760 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
761 *  a major or minor component of a priority.  See the discussion
762 *  for that routine.
763 */
764
765#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
766
767#define _CPU_Priority_bits_index( _priority ) \
768  (_priority)
769
770#endif
771
772/* end of Priority handler macros */
773
774/* functions */
775
776/*
777 *  @brief CPU Initialize
778 *
779 *  _CPU_Initialize
780 *
781 *  This routine performs CPU dependent initialization.
782 */
783void _CPU_Initialize(void);
784
785/*
786 *  _CPU_ISR_install_raw_handler
787 *
788 *  This routine installs a "raw" interrupt handler directly into the
789 *  processor's vector table.
790 */
791
792void _CPU_ISR_install_raw_handler(
793  uint32_t    vector,
794  proc_ptr    new_handler,
795  proc_ptr   *old_handler
796);
797
798/*
799 *  _CPU_ISR_install_vector
800 *
801 *  This routine installs an interrupt vector.
802 */
803
804void _CPU_ISR_install_vector(
805  uint32_t    vector,
806  proc_ptr    new_handler,
807  proc_ptr   *old_handler
808);
809
810/*
811 *  _CPU_Install_interrupt_stack
812 *
813 *  This routine installs the hardware interrupt stack pointer.
814 *
815 *  NOTE:  It needs only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
816 *         is TRUE.
817 */
818
819void _CPU_Install_interrupt_stack( void );
820
821/*
822 *  _CPU_Thread_Idle_body
823 *
824 *  This routine is the CPU dependent IDLE thread body.
825 *
826 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
827 *         is TRUE.
828 */
829
830void *_CPU_Thread_Idle_body( uintptr_t ignored );
831
832/*
833 *  _CPU_Context_switch
834 *
835 *  This routine switches from the run context to the heir context.
836 */
837
838void _CPU_Context_switch(
839  Context_Control  *run,
840  Context_Control  *heir
841);
842
843/*
844 *  _CPU_Context_restore
845 *
846 *  This routine is generally used only to restart self in an
847 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
848 */
849
850void _CPU_Context_restore(
851  Context_Control *new_context
852) RTEMS_NO_RETURN;
853
854/*
855 *  @brief This routine saves the floating point context passed to it.
856 *
857 *  _CPU_Context_save_fp
858 *
859 */
860void _CPU_Context_save_fp(
861  Context_Control_fp **fp_context_ptr
862);
863
864/*
865 *  @brief This routine restores the floating point context passed to it.
866 *
867 *  _CPU_Context_restore_fp
868 *
869 */
870void _CPU_Context_restore_fp(
871  Context_Control_fp **fp_context_ptr
872);
873
874static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
875{
876  /* TODO */
877}
878
879static inline void _CPU_Context_validate( uintptr_t pattern )
880{
881  while (1) {
882    /* TODO */
883  }
884}
885
886/* FIXME */
887typedef CPU_Interrupt_frame CPU_Exception_frame;
888
889void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
890
891typedef uint32_t CPU_Counter_ticks;
892
893CPU_Counter_ticks _CPU_Counter_read( void );
894
895static inline CPU_Counter_ticks _CPU_Counter_difference(
896  CPU_Counter_ticks second,
897  CPU_Counter_ticks first
898)
899{
900  return second - first;
901}
902
903#ifdef __cplusplus
904}
905#endif
906
907#endif
Note: See TracBrowser for help on using the repository browser.