source: rtems/cpukit/score/cpu/sh/include/rtems/score/cpu.h @ 8b65b574

Last change on this file since 8b65b574 was 8b65b574, checked in by Sebastian Huber <sebastian.huber@…>, on 07/28/21 at 12:41:32

score: Canonicalize _CPU_Fatal_halt()

Move _CPU_Fatal_halt() declaration to <rtems/score/cpuimpl.h> and make sure it
is a proper declaration of a function which does not return. Fix the type of
the error code. If necessary, add the implementation to cpu.c. Implementing
_CPU_Fatal_halt() as a function makes it possible to wrap this function for
example to fully test _Terminate().

  • Property mode set to 100644
File size: 16.8 KB
Line 
1/**
2 * @file
3 */
4
5/*
6 *  This include file contains information pertaining to the Hitachi SH
7 *  processor.
8 *
9 *  Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and
10 *           Bernd Becker (becker@faw.uni-ulm.de)
11 *
12 *  COPYRIGHT (c) 1997-1998, FAW Ulm, Germany
13 *
14 *  This program is distributed in the hope that it will be useful,
15 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
17 *
18 *
19 *  COPYRIGHT (c) 1998-2006.
20 *  On-Line Applications Research Corporation (OAR).
21 *
22 *  The license and distribution terms for this file may be
23 *  found in the file LICENSE in this distribution or at
24 *  http://www.rtems.org/license/LICENSE.
25 */
26
27#ifndef _RTEMS_SCORE_CPU_H
28#define _RTEMS_SCORE_CPU_H
29
30#ifdef __cplusplus
31extern "C" {
32#endif
33
34#include <rtems/score/basedefs.h>
35#include <rtems/score/sh.h>
36
37/* conditional compilation parameters */
38
39/*
40 *  Does the CPU follow the simple vectored interrupt model?
41 *
42 *  If TRUE, then RTEMS allocates the vector table it internally manages.
43 *  If FALSE, then the BSP is assumed to allocate and manage the vector
44 *  table
45 *
46 *  SH Specific Information:
47 *
48 *  XXX document implementation including references if appropriate
49 */
50#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
51
52/*
53 *  Does the RTEMS invoke the user's ISR with the vector number and
54 *  a pointer to the saved interrupt frame (1) or just the vector
55 *  number (0)?
56 */
57
58#define CPU_ISR_PASSES_FRAME_POINTER FALSE
59
60/*
61 *  Does the CPU have hardware floating point?
62 *
63 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
64 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
65 *
66 *  We currently support sh1 only, which has no FPU, other SHes have an FPU
67 *
68 *  The macro name "SH_HAS_FPU" should be made CPU specific.
69 *  It indicates whether or not this CPU model has FP support.  For
70 *  example, it would be possible to have an i386_nofp CPU model
71 *  which set this to false to indicate that you have an i386 without
72 *  an i387 and wish to leave floating point support out of RTEMS.
73 */
74
75#if SH_HAS_FPU
76#define CPU_HARDWARE_FP TRUE
77#define CPU_SOFTWARE_FP FALSE
78#else
79#define CPU_SOFTWARE_FP FALSE
80#define CPU_HARDWARE_FP FALSE
81#endif
82
83/*
84 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
85 *
86 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
87 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
88 *
89 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
90 */
91
92#if SH_HAS_FPU
93#define CPU_ALL_TASKS_ARE_FP     TRUE
94#else
95#define CPU_ALL_TASKS_ARE_FP     FALSE
96#endif
97
98/*
99 *  Should the IDLE task have a floating point context?
100 *
101 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
102 *  and it has a floating point context which is switched in and out.
103 *  If FALSE, then the IDLE task does not have a floating point context.
104 *
105 *  Setting this to TRUE negatively impacts the time required to preempt
106 *  the IDLE task from an interrupt because the floating point context
107 *  must be saved as part of the preemption.
108 */
109
110#if SH_HAS_FPU
111#define CPU_IDLE_TASK_IS_FP     TRUE
112#else
113#define CPU_IDLE_TASK_IS_FP      FALSE
114#endif
115
116/*
117 *  Should the saving of the floating point registers be deferred
118 *  until a context switch is made to another different floating point
119 *  task?
120 *
121 *  If TRUE, then the floating point context will not be stored until
122 *  necessary.  It will remain in the floating point registers and not
123 *  disturned until another floating point task is switched to.
124 *
125 *  If FALSE, then the floating point context is saved when a floating
126 *  point task is switched out and restored when the next floating point
127 *  task is restored.  The state of the floating point registers between
128 *  those two operations is not specified.
129 *
130 *  If the floating point context does NOT have to be saved as part of
131 *  interrupt dispatching, then it should be safe to set this to TRUE.
132 *
133 *  Setting this flag to TRUE results in using a different algorithm
134 *  for deciding when to save and restore the floating point context.
135 *  The deferred FP switch algorithm minimizes the number of times
136 *  the FP context is saved and restored.  The FP context is not saved
137 *  until a context switch is made to another, different FP task.
138 *  Thus in a system with only one FP task, the FP context will never
139 *  be saved or restored.
140 */
141
142#if SH_HAS_FPU
143#define CPU_USE_DEFERRED_FP_SWITCH      FALSE
144#else
145#define CPU_USE_DEFERRED_FP_SWITCH      TRUE
146#endif
147
148#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
149
150/*
151 *  Does the stack grow up (toward higher addresses) or down
152 *  (toward lower addresses)?
153 *
154 *  If TRUE, then the grows upward.
155 *  If FALSE, then the grows toward smaller addresses.
156 */
157
158#define CPU_STACK_GROWS_UP               FALSE
159
160/* FIXME: Is this the right value? */
161#define CPU_CACHE_LINE_BYTES 16
162
163#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
164
165/*
166 *  The following defines the number of bits actually used in the
167 *  interrupt field of the task mode.  How those bits map to the
168 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
169 */
170
171#define CPU_MODES_INTERRUPT_MASK   0x0000000f
172
173#define CPU_MAXIMUM_PROCESSORS 32
174
175/*
176 *  Processor defined structures required for cpukit/score.
177 */
178
179/* may need to put some structures here.  */
180
181/*
182 * Contexts
183 *
184 *  Generally there are 2 types of context to save.
185 *     1. Interrupt registers to save
186 *     2. Task level registers to save
187 *
188 *  This means we have the following 3 context items:
189 *     1. task level context stuff::  Context_Control
190 *     2. floating point task stuff:: Context_Control_fp
191 *     3. special interrupt level context :: Context_Control_interrupt
192 *
193 *  On some processors, it is cost-effective to save only the callee
194 *  preserved registers during a task context switch.  This means
195 *  that the ISR code needs to save those registers which do not
196 *  persist across function calls.  It is not mandatory to make this
197 *  distinctions between the caller/callee saves registers for the
198 *  purpose of minimizing context saved during task switch and on interrupts.
199 *  If the cost of saving extra registers is minimal, simplicity is the
200 *  choice.  Save the same context on interrupt entry as for tasks in
201 *  this case.
202 *
203 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
204 *  care should be used in designing the context area.
205 *
206 *  On some CPUs with hardware floating point support, the Context_Control_fp
207 *  structure will not be used or it simply consist of an array of a
208 *  fixed number of bytes.   This is done when the floating point context
209 *  is dumped by a "FP save context" type instruction and the format
210 *  is not really defined by the CPU.  In this case, there is no need
211 *  to figure out the exact format -- only the size.  Of course, although
212 *  this is enough information for RTEMS, it is probably not enough for
213 *  a debugger such as gdb.  But that is another problem.
214 */
215
216typedef struct {
217  uint32_t   *r15;      /* stack pointer */
218
219  uint32_t   macl;
220  uint32_t   mach;
221  uint32_t   *pr;
222
223  uint32_t   *r14;      /* frame pointer/call saved */
224
225  uint32_t   r13;       /* call saved */
226  uint32_t   r12;       /* call saved */
227  uint32_t   r11;       /* call saved */
228  uint32_t   r10;       /* call saved */
229  uint32_t   r9;        /* call saved */
230  uint32_t   r8;        /* call saved */
231
232  uint32_t   *r7;       /* arg in */
233  uint32_t   *r6;       /* arg in */
234
235#if 0
236  uint32_t   *r5;       /* arg in */
237  uint32_t   *r4;       /* arg in */
238#endif
239
240  uint32_t   *r3;       /* scratch */
241  uint32_t   *r2;       /* scratch */
242  uint32_t   *r1;       /* scratch */
243
244  uint32_t   *r0;       /* arg return */
245
246  uint32_t   gbr;
247  uint32_t   sr;
248
249} Context_Control;
250
251#define _CPU_Context_Get_SP( _context ) \
252  (_context)->r15
253
254typedef struct {
255#if SH_HAS_FPU
256#ifdef SH4_USE_X_REGISTERS
257  union {
258    float f[16];
259    double d[8];
260  } x;
261#endif
262  union {
263    float f[16];
264    double d[8];
265  } r;
266  float fpul;       /* fp communication register */
267  uint32_t   fpscr; /* fp control register */
268#endif /* SH_HAS_FPU */
269} Context_Control_fp;
270
271typedef struct {
272} CPU_Interrupt_frame;
273
274/*
275 *  This variable is optional.  It is used on CPUs on which it is difficult
276 *  to generate an "uninitialized" FP context.  It is filled in by
277 *  _CPU_Initialize and copied into the task's FP context area during
278 *  _CPU_Context_Initialize.
279 */
280
281#if SH_HAS_FPU
282extern Context_Control_fp _CPU_Null_fp_context;
283#endif
284
285/*
286 *  Nothing prevents the porter from declaring more CPU specific variables.
287 */
288
289/* XXX: if needed, put more variables here */
290void CPU_delay( uint32_t   microseconds );
291
292/*
293 *  The size of the floating point context area.  On some CPUs this
294 *  will not be a "sizeof" because the format of the floating point
295 *  area is not defined -- only the size is.  This is usually on
296 *  CPUs with a "floating point save context" instruction.
297 */
298
299#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
300
301/*
302 *  Amount of extra stack (above minimum stack size) required by
303 *  MPCI receive server thread.  Remember that in a multiprocessor
304 *  system this thread must exist and be able to process all directives.
305 */
306
307#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
308
309/*
310 *  This defines the number of entries in the ISR_Vector_table managed
311 *  by RTEMS.
312 */
313
314#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
315#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
316
317/*
318 *  This is defined if the port has a special way to report the ISR nesting
319 *  level.  Most ports maintain the variable _ISR_Nest_level.
320 */
321
322#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
323
324/*
325 *  Should be large enough to run all RTEMS tests.  This ensures
326 *  that a "reasonable" small application should not have any problems.
327 *
328 *  We have been able to run the sptests with this value, but have not
329 *  been able to run the tmtest suite.
330 */
331
332#define CPU_STACK_MINIMUM_SIZE          4096
333
334#define CPU_SIZEOF_POINTER 4
335
336/*
337 *  CPU's worst alignment requirement for data types on a byte boundary.  This
338 *  alignment does not take into account the requirements for the stack.
339 */
340#if defined(__SH4__)
341/* FIXME: sh3 and SH3E? */
342#define CPU_ALIGNMENT              8
343#else
344#define CPU_ALIGNMENT              4
345#endif
346
347/*
348 *  This number corresponds to the byte alignment requirement for the
349 *  heap handler.  This alignment requirement may be stricter than that
350 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
351 *  common for the heap to follow the same alignment requirement as
352 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
353 *  then this should be set to CPU_ALIGNMENT.
354 *
355 *  NOTE:  This does not have to be a power of 2.  It does have to
356 *         be greater or equal to than CPU_ALIGNMENT.
357 */
358
359#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
360
361#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
362
363#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
364
365/*
366 *  ISR handler macros
367 */
368
369/*
370 *  Disable all interrupts for an RTEMS critical section.  The previous
371 *  level is returned in _level.
372 */
373
374#define _CPU_ISR_Disable( _level) \
375  sh_disable_interrupts( _level )
376
377/*
378 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
379 *  This indicates the end of an RTEMS critical section.  The parameter
380 *  _level is not modified.
381 */
382
383#define _CPU_ISR_Enable( _level) \
384   sh_enable_interrupts( _level)
385
386/*
387 *  This temporarily restores the interrupt to _level before immediately
388 *  disabling them again.  This is used to divide long RTEMS critical
389 *  sections into two or more parts.  The parameter _level is not
390 * modified.
391 */
392
393#define _CPU_ISR_Flash( _level) \
394  sh_flash_interrupts( _level)
395
396RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
397{
398  sh_get_interrupt_level( level );
399  return level == 0;
400}
401
402/*
403 *  Map interrupt level in task mode onto the hardware that the CPU
404 *  actually provides.  Currently, interrupt levels which do not
405 *  map onto the CPU in a generic fashion are undefined.  Someday,
406 *  it would be nice if these were "mapped" by the application
407 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
408 *  8 - 255 would be available for bsp/application specific meaning.
409 *  This could be used to manage a programmable interrupt controller
410 *  via the rtems_task_mode directive.
411 */
412
413#define _CPU_ISR_Set_level( _newlevel) \
414  sh_set_interrupt_level(_newlevel)
415
416uint32_t   _CPU_ISR_Get_level( void );
417
418/* end of ISR handler macros */
419
420/* Context handler macros */
421
422/*
423 *  Initialize the context to a state suitable for starting a
424 *  task after a context restore operation.  Generally, this
425 *  involves:
426 *
427 *     - setting a starting address
428 *     - preparing the stack
429 *     - preparing the stack and frame pointers
430 *     - setting the proper interrupt level in the context
431 *     - initializing the floating point context
432 *
433 *  This routine generally does not set any unnecessary register
434 *  in the context.  The state of the "general data" registers is
435 *  undefined at task start time.
436 *
437 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
438 *        point thread.  This is typically only used on CPUs where the
439 *        FPU may be easily disabled by software such as on the SPARC
440 *        where the PSR contains an enable FPU bit.
441 */
442
443/*
444 * FIXME: defined as a function for debugging - should be a macro
445 */
446void _CPU_Context_Initialize(
447  Context_Control       *_the_context,
448  void                  *_stack_base,
449  uint32_t              _size,
450  uint32_t              _isr,
451  void    (*_entry_point)(void),
452  int                   _is_fp,
453  void                  *_tls_area );
454
455/*
456 *  This routine is responsible for somehow restarting the currently
457 *  executing task.  If you are lucky, then all that is necessary
458 *  is restoring the context.  Otherwise, there will need to be
459 *  a special assembly routine which does something special in this
460 *  case.  Context_Restore should work most of the time.  It will
461 *  not work if restarting self conflicts with the stack frame
462 *  assumptions of restoring a context.
463 */
464
465#define _CPU_Context_Restart_self( _the_context ) \
466   _CPU_Context_restore( (_the_context) );
467
468/*
469 *  This routine initializes the FP context area passed to it to.
470 *  There are a few standard ways in which to initialize the
471 *  floating point context.  The code included for this macro assumes
472 *  that this is a CPU in which a "initial" FP context was saved into
473 *  _CPU_Null_fp_context and it simply copies it to the destination
474 *  context passed to it.
475 *
476 *  Other models include (1) not doing anything, and (2) putting
477 *  a "null FP status word" in the correct place in the FP context.
478 *  SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have.
479 */
480
481#if SH_HAS_FPU
482#define _CPU_Context_Initialize_fp( _destination ) \
483  do { \
484     *(*(_destination)) = _CPU_Null_fp_context;\
485  } while(0)
486#else
487#define _CPU_Context_Initialize_fp( _destination ) \
488  {  }
489#endif
490
491/* end of Context handler macros */
492
493#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
494
495#define CPU_USE_LIBC_INIT_FINI_ARRAY FALSE
496
497/* functions */
498
499/*
500 *  @brief CPU Initialize
501 *
502 *  _CPU_Initialize
503 *
504 *  This routine performs CPU dependent initialization.
505 */
506void _CPU_Initialize(void);
507
508typedef void ( *CPU_ISR_raw_handler )( void );
509
510extern CPU_ISR_raw_handler _Hardware_isr_Table[];
511
512void _CPU_ISR_install_raw_handler(
513  uint32_t             vector,
514  CPU_ISR_raw_handler  new_handler,
515  CPU_ISR_raw_handler *old_handler
516);
517
518typedef void ( *CPU_ISR_handler )( uint32_t );
519
520void _CPU_ISR_install_vector(
521  uint32_t         vector,
522  CPU_ISR_handler  new_handler,
523  CPU_ISR_handler *old_handler
524);
525
526void *_CPU_Thread_Idle_body( uintptr_t ignored );
527
528/*
529 *  _CPU_Context_switch
530 *
531 *  This routine switches from the run context to the heir context.
532 */
533
534void _CPU_Context_switch(
535  Context_Control  *run,
536  Context_Control  *heir
537);
538
539/*
540 *  _CPU_Context_restore
541 *
542 *  This routine is generally used only to restart self in an
543 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
544 */
545
546RTEMS_NO_RETURN void _CPU_Context_restore( Context_Control *new_context );
547
548/*
549 *  @brief This routine saves the floating point context passed to it.
550 *
551 *  _CPU_Context_save_fp
552 *
553 */
554void _CPU_Context_save_fp(
555  Context_Control_fp **fp_context_ptr
556);
557
558/*
559 *  @brief This routine restores the floating point context passed to it.
560 *
561 *  _CPU_Context_restore_fp
562 *
563 */
564void _CPU_Context_restore_fp(
565  Context_Control_fp **fp_context_ptr
566);
567
568/* FIXME */
569typedef CPU_Interrupt_frame CPU_Exception_frame;
570
571void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
572
573typedef uint32_t CPU_Counter_ticks;
574
575uint32_t _CPU_Counter_frequency( void );
576
577CPU_Counter_ticks _CPU_Counter_read( void );
578
579static inline CPU_Counter_ticks _CPU_Counter_difference(
580  CPU_Counter_ticks second,
581  CPU_Counter_ticks first
582)
583{
584  return second - first;
585}
586
587/** Type that can store a 32-bit integer or a pointer. */
588typedef uintptr_t CPU_Uint32ptr;
589
590/** Types related to SH specific ISRs */
591typedef void sh_isr;
592typedef void ( *sh_isr_entry )( void );
593
594#ifdef __cplusplus
595}
596#endif
597
598#endif
Note: See TracBrowser for help on using the repository browser.