source: rtems/cpukit/score/cpu/powerpc/rtems/score/cpu.h @ f570b071

4.115
Last change on this file since f570b071 was f570b071, checked in by Sebastian Huber <sebastian.huber@…>, on 04/01/14 at 08:20:01

score: Rename Priority_bit_map_Control

Rename Priority_bit_map_Control in Priority_bit_map_Word.

  • Property mode set to 100644
File size: 34.9 KB
Line 
1/**
2 * @file
3 *
4 * @brief PowerPC CPU Department Source
5 */
6
7/*
8 *  COPYRIGHT (c) 1989-2012.
9 *  On-Line Applications Research Corporation (OAR).
10 *
11 *  COPYRIGHT (c) 1995 i-cubed ltd.
12 *
13 *  To anyone who acknowledges that this file is provided "AS IS"
14 *  without any express or implied warranty:
15 *      permission to use, copy, modify, and distribute this file
16 *      for any purpose is hereby granted without fee, provided that
17 *      the above copyright notice and this notice appears in all
18 *      copies, and that the name of i-cubed limited not be used in
19 *      advertising or publicity pertaining to distribution of the
20 *      software without specific, written prior permission.
21 *      i-cubed limited makes no representations about the suitability
22 *      of this software for any purpose.
23 *
24 *  Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
25 *
26 *  Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
27 *
28 *  Copyright (c) 2010-2013 embedded brains GmbH.
29 *
30 *  The license and distribution terms for this file may be
31 *  found in the file LICENSE in this distribution or at
32 *  http://www.rtems.org/license/LICENSE.
33 */
34
35#ifndef _RTEMS_SCORE_CPU_H
36#define _RTEMS_SCORE_CPU_H
37
38#include <rtems/score/types.h>
39#include <rtems/score/powerpc.h>
40#include <rtems/powerpc/registers.h>
41
42#ifndef ASM
43  #include <string.h> /* for memset() */
44#endif
45
46#ifdef __cplusplus
47extern "C" {
48#endif
49
50/* conditional compilation parameters */
51
52/*
53 *  Should the calls to _Thread_Enable_dispatch be inlined?
54 *
55 *  If TRUE, then they are inlined.
56 *  If FALSE, then a subroutine call is made.
57 *
58 *  Basically this is an example of the classic trade-off of size
59 *  versus speed.  Inlining the call (TRUE) typically increases the
60 *  size of RTEMS while speeding up the enabling of dispatching.
61 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
62 *  only be 0 or 1 unless you are in an interrupt handler and that
63 *  interrupt handler invokes the executive.]  When not inlined
64 *  something calls _Thread_Enable_dispatch which in turns calls
65 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
66 *  one subroutine call is avoided entirely.]
67 */
68
69#define CPU_INLINE_ENABLE_DISPATCH       FALSE
70
71/*
72 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
73 *  be unrolled one time?  In unrolled each iteration of the loop examines
74 *  two "nodes" on the chain being searched.  Otherwise, only one node
75 *  is examined per iteration.
76 *
77 *  If TRUE, then the loops are unrolled.
78 *  If FALSE, then the loops are not unrolled.
79 *
80 *  The primary factor in making this decision is the cost of disabling
81 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
82 *  body of the loop.  On some CPUs, the flash is more expensive than
83 *  one iteration of the loop body.  In this case, it might be desirable
84 *  to unroll the loop.  It is important to note that on some CPUs, this
85 *  code is the longest interrupt disable period in RTEMS.  So it is
86 *  necessary to strike a balance when setting this parameter.
87 */
88
89#define CPU_UNROLL_ENQUEUE_PRIORITY      FALSE
90
91/*
92 *  Does this port provide a CPU dependent IDLE task implementation?
93 *
94 *  If TRUE, then the routine _CPU_Thread_Idle_body
95 *  must be provided and is the default IDLE thread body instead of
96 *  _CPU_Thread_Idle_body.
97 *
98 *  If FALSE, then use the generic IDLE thread body if the BSP does
99 *  not provide one.
100 *
101 *  This is intended to allow for supporting processors which have
102 *  a low power or idle mode.  When the IDLE thread is executed, then
103 *  the CPU can be powered down.
104 *
105 *  The order of precedence for selecting the IDLE thread body is:
106 *
107 *    1.  BSP provided
108 *    2.  CPU dependent (if provided)
109 *    3.  generic (if no BSP and no CPU dependent)
110 */
111
112#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
113
114/*
115 *  Does the stack grow up (toward higher addresses) or down
116 *  (toward lower addresses)?
117 *
118 *  If TRUE, then the grows upward.
119 *  If FALSE, then the grows toward smaller addresses.
120 */
121
122#define CPU_STACK_GROWS_UP               FALSE
123
124/*
125 *  The following is the variable attribute used to force alignment
126 *  of critical RTEMS structures.  On some processors it may make
127 *  sense to have these aligned on tighter boundaries than
128 *  the minimum requirements of the compiler in order to have as
129 *  much of the critical data area as possible in a cache line.
130 *
131 *  The placement of this macro in the declaration of the variables
132 *  is based on the syntactically requirements of the GNU C
133 *  "__attribute__" extension.  For example with GNU C, use
134 *  the following to force a structures to a 32 byte boundary.
135 *
136 *      __attribute__ ((aligned (32)))
137 *
138 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
139 *         To benefit from using this, the data must be heavily
140 *         used so it will stay in the cache and used frequently enough
141 *         in the executive to justify turning this on.
142 */
143
144#define CPU_STRUCTURE_ALIGNMENT \
145  __attribute__ ((aligned (PPC_STRUCTURE_ALIGNMENT)))
146
147#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
148
149/*
150 *  Define what is required to specify how the network to host conversion
151 *  routines are handled.
152 */
153
154#if defined(__BIG_ENDIAN__) || defined(_BIG_ENDIAN)
155#define CPU_BIG_ENDIAN                           TRUE
156#define CPU_LITTLE_ENDIAN                        FALSE
157#else
158#define CPU_BIG_ENDIAN                           FALSE
159#define CPU_LITTLE_ENDIAN                        TRUE
160#endif
161
162/*
163 *  Does the CPU have hardware floating point?
164 *
165 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
166 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
167 *
168 *  If there is a FP coprocessor such as the i387 or mc68881, then
169 *  the answer is TRUE.
170 *
171 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
172 *  It indicates whether or not this CPU model has FP support.  For
173 *  example, it would be possible to have an i386_nofp CPU model
174 *  which set this to false to indicate that you have an i386 without
175 *  an i387 and wish to leave floating point support out of RTEMS.
176 */
177
178#if ( PPC_HAS_FPU == 1 )
179#define CPU_HARDWARE_FP     TRUE
180#define CPU_SOFTWARE_FP     FALSE
181#else
182#define CPU_HARDWARE_FP     FALSE
183#define CPU_SOFTWARE_FP     FALSE
184#endif
185
186/*
187 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
188 *
189 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
190 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
191 *
192 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
193 *
194 *  PowerPC Note: It appears the GCC can implicitly generate FPU
195 *  and Altivec instructions when you least expect them.  So make
196 *  all tasks floating point.
197 */
198
199#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
200
201/*
202 *  Should the IDLE task have a floating point context?
203 *
204 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
205 *  and it has a floating point context which is switched in and out.
206 *  If FALSE, then the IDLE task does not have a floating point context.
207 *
208 *  Setting this to TRUE negatively impacts the time required to preempt
209 *  the IDLE task from an interrupt because the floating point context
210 *  must be saved as part of the preemption.
211 */
212
213#define CPU_IDLE_TASK_IS_FP      FALSE
214
215#define CPU_PER_CPU_CONTROL_SIZE 0
216
217/*
218 *  Processor defined structures required for cpukit/score.
219 */
220
221/*
222 * Contexts
223 *
224 *  Generally there are 2 types of context to save.
225 *     1. Interrupt registers to save
226 *     2. Task level registers to save
227 *
228 *  This means we have the following 3 context items:
229 *     1. task level context stuff::  Context_Control
230 *     2. floating point task stuff:: Context_Control_fp
231 *     3. special interrupt level context :: Context_Control_interrupt
232 *
233 *  On some processors, it is cost-effective to save only the callee
234 *  preserved registers during a task context switch.  This means
235 *  that the ISR code needs to save those registers which do not
236 *  persist across function calls.  It is not mandatory to make this
237 *  distinctions between the caller/callee saves registers for the
238 *  purpose of minimizing context saved during task switch and on interrupts.
239 *  If the cost of saving extra registers is minimal, simplicity is the
240 *  choice.  Save the same context on interrupt entry as for tasks in
241 *  this case.
242 *
243 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
244 *  care should be used in designing the context area.
245 *
246 *  On some CPUs with hardware floating point support, the Context_Control_fp
247 *  structure will not be used or it simply consist of an array of a
248 *  fixed number of bytes.   This is done when the floating point context
249 *  is dumped by a "FP save context" type instruction and the format
250 *  is not really defined by the CPU.  In this case, there is no need
251 *  to figure out the exact format -- only the size.  Of course, although
252 *  this is enough information for RTEMS, it is probably not enough for
253 *  a debugger such as gdb.  But that is another problem.
254 */
255
256#ifndef __SPE__
257  #define PPC_GPR_TYPE uint32_t
258  #define PPC_GPR_SIZE 4
259  #define PPC_GPR_LOAD lwz
260  #define PPC_GPR_STORE stw
261#else
262  #define PPC_GPR_TYPE uint64_t
263  #define PPC_GPR_SIZE 8
264  #define PPC_GPR_LOAD evldd
265  #define PPC_GPR_STORE evstdd
266#endif
267
268#define PPC_DEFAULT_CACHE_LINE_SIZE 32
269
270#ifndef ASM
271
272typedef struct {
273  /* There is no CPU specific per-CPU state */
274} CPU_Per_CPU_control;
275
276/*
277 * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
278 * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
279 * Linux and Embedded")
280 */
281typedef struct {
282  uint32_t gpr1;
283  uint32_t msr;
284  uint32_t lr;
285  uint32_t cr;
286  PPC_GPR_TYPE gpr14;
287  PPC_GPR_TYPE gpr15;
288  PPC_GPR_TYPE gpr16;
289  PPC_GPR_TYPE gpr17;
290  PPC_GPR_TYPE gpr18;
291  PPC_GPR_TYPE gpr19;
292  PPC_GPR_TYPE gpr20;
293  PPC_GPR_TYPE gpr21;
294  PPC_GPR_TYPE gpr22;
295  PPC_GPR_TYPE gpr23;
296  PPC_GPR_TYPE gpr24;
297  PPC_GPR_TYPE gpr25;
298  PPC_GPR_TYPE gpr26;
299  PPC_GPR_TYPE gpr27;
300  PPC_GPR_TYPE gpr28;
301  PPC_GPR_TYPE gpr29;
302  PPC_GPR_TYPE gpr30;
303  PPC_GPR_TYPE gpr31;
304  uint32_t gpr2;
305  #ifdef __ALTIVEC__
306    /*
307     * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
308     * and padding to ensure cache-alignment.  Unfortunately, we can't verify
309     * the cache line size here in the cpukit but altivec support code will
310     * produce an error if this is ever different from 32 bytes.
311     *
312     * Note: it is the BSP/CPU-support's responsibility to save/restore
313     *       volatile vregs across interrupts and exceptions.
314     */
315    uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
316  #endif
317} ppc_context;
318
319typedef struct {
320  uint8_t context [
321    PPC_DEFAULT_CACHE_LINE_SIZE
322      + sizeof(ppc_context)
323      + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
324        ? 0
325          : PPC_DEFAULT_CACHE_LINE_SIZE
326            - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
327  ];
328} Context_Control;
329
330static inline ppc_context *ppc_get_context( Context_Control *context )
331{
332  uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
333  uintptr_t mask = clsz - 1;
334  uintptr_t addr = (uintptr_t) context;
335
336  return (ppc_context *) ((addr & ~mask) + clsz);
337}
338
339#define _CPU_Context_Get_SP( _context ) \
340  ppc_get_context(_context)->gpr1
341#endif /* ASM */
342
343#define PPC_CONTEXT_OFFSET_GPR1 32
344#define PPC_CONTEXT_OFFSET_MSR 36
345#define PPC_CONTEXT_OFFSET_LR 40
346#define PPC_CONTEXT_OFFSET_CR 44
347
348#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
349  (((gpr) - 14) * PPC_GPR_SIZE + 48)
350
351#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
352#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
353#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
354#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
355#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
356#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
357#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
358#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
359#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
360#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
361#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
362#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
363#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
364#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
365#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
366#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
367#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
368#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
369#define PPC_CONTEXT_OFFSET_GPR2 PPC_CONTEXT_GPR_OFFSET( 32 )
370
371#ifndef ASM
372typedef struct {
373    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
374     * procedure calls.  However, this would mean that the interrupt
375     * frame had to hold f0-f13, and the fpscr.  And as the majority
376     * of tasks will not have an FP context, we will save the whole
377     * context here.
378     */
379#if (PPC_HAS_DOUBLE == 1)
380    double      f[32];
381    uint64_t    fpscr;
382#else
383    float       f[32];
384    uint32_t    fpscr;
385#endif
386} Context_Control_fp;
387
388typedef struct CPU_Interrupt_frame {
389    uint32_t   stacklink;       /* Ensure this is a real frame (also reg1 save) */
390    uint32_t   calleeLr;        /* link register used by callees: SVR4/EABI */
391
392    /* This is what is left out of the primary contexts */
393    uint32_t   gpr0;
394    uint32_t   gpr2;            /* play safe */
395    uint32_t   gpr3;
396    uint32_t   gpr4;
397    uint32_t   gpr5;
398    uint32_t   gpr6;
399    uint32_t   gpr7;
400    uint32_t   gpr8;
401    uint32_t   gpr9;
402    uint32_t   gpr10;
403    uint32_t   gpr11;
404    uint32_t   gpr12;
405    uint32_t   gpr13;   /* Play safe */
406    uint32_t   gpr28;   /* For internal use by the IRQ handler */
407    uint32_t   gpr29;   /* For internal use by the IRQ handler */
408    uint32_t   gpr30;   /* For internal use by the IRQ handler */
409    uint32_t   gpr31;   /* For internal use by the IRQ handler */
410    uint32_t   cr;      /* Bits of this are volatile, so no-one may save */
411    uint32_t   ctr;
412    uint32_t   xer;
413    uint32_t   lr;
414    uint32_t   pc;
415    uint32_t   msr;
416    uint32_t   pad[3];
417} CPU_Interrupt_frame;
418
419#endif /* ASM */
420
421/*
422 *  Does the CPU follow the simple vectored interrupt model?
423 *
424 *  If TRUE, then RTEMS allocates the vector table it internally manages.
425 *  If FALSE, then the BSP is assumed to allocate and manage the vector
426 *  table
427 *
428 *  PowerPC Specific Information:
429 *
430 *  The PowerPC and x86 were the first to use the PIC interrupt model.
431 *  They do not use the simple vectored interrupt model.
432 */
433#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
434
435/*
436 *  Does RTEMS manage a dedicated interrupt stack in software?
437 *
438 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
439 *  If FALSE, nothing is done.
440 *
441 *  If the CPU supports a dedicated interrupt stack in hardware,
442 *  then it is generally the responsibility of the BSP to allocate it
443 *  and set it up.
444 *
445 *  If the CPU does not support a dedicated interrupt stack, then
446 *  the porter has two options: (1) execute interrupts on the
447 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
448 *  interrupt stack.
449 *
450 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
451 *
452 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
453 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
454 *  possible that both are FALSE for a particular CPU.  Although it
455 *  is unclear what that would imply about the interrupt processing
456 *  procedure on that CPU.
457 */
458
459#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
460
461/*
462 *  Does this CPU have hardware support for a dedicated interrupt stack?
463 *
464 *  If TRUE, then it must be installed during initialization.
465 *  If FALSE, then no installation is performed.
466 *
467 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
468 *
469 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
470 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
471 *  possible that both are FALSE for a particular CPU.  Although it
472 *  is unclear what that would imply about the interrupt processing
473 *  procedure on that CPU.
474 */
475
476#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
477
478/*
479 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
480 *
481 *  If TRUE, then the memory is allocated during initialization.
482 *  If FALSE, then the memory is allocated during initialization.
483 *
484 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
485 */
486
487#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
488
489/*
490 *  Does the RTEMS invoke the user's ISR with the vector number and
491 *  a pointer to the saved interrupt frame (1) or just the vector
492 *  number (0)?
493 */
494
495#define CPU_ISR_PASSES_FRAME_POINTER 0
496
497/*
498 *  Should the saving of the floating point registers be deferred
499 *  until a context switch is made to another different floating point
500 *  task?
501 *
502 *  If TRUE, then the floating point context will not be stored until
503 *  necessary.  It will remain in the floating point registers and not
504 *  disturned until another floating point task is switched to.
505 *
506 *  If FALSE, then the floating point context is saved when a floating
507 *  point task is switched out and restored when the next floating point
508 *  task is restored.  The state of the floating point registers between
509 *  those two operations is not specified.
510 *
511 *  If the floating point context does NOT have to be saved as part of
512 *  interrupt dispatching, then it should be safe to set this to TRUE.
513 *
514 *  Setting this flag to TRUE results in using a different algorithm
515 *  for deciding when to save and restore the floating point context.
516 *  The deferred FP switch algorithm minimizes the number of times
517 *  the FP context is saved and restored.  The FP context is not saved
518 *  until a context switch is made to another, different FP task.
519 *  Thus in a system with only one FP task, the FP context will never
520 *  be saved or restored.
521 *
522 *  Note, however that compilers may use floating point registers/
523 *  instructions for optimization or they may save/restore FP registers
524 *  on the stack. You must not use deferred switching in these cases
525 *  and on the PowerPC attempting to do so will raise a "FP unavailable"
526 *  exception.
527 */
528/*
529 *  ACB Note:  This could make debugging tricky..
530 */
531
532/* conservative setting (FALSE); probably doesn't affect performance too much */
533#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
534
535/*
536 *  Processor defined structures required for cpukit/score.
537 */
538
539#ifndef ASM
540
541/*
542 *  This variable is optional.  It is used on CPUs on which it is difficult
543 *  to generate an "uninitialized" FP context.  It is filled in by
544 *  _CPU_Initialize and copied into the task's FP context area during
545 *  _CPU_Context_Initialize.
546 */
547
548/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */
549
550#endif /* ndef ASM */
551
552/*
553 *  This defines the number of levels and the mask used to pick those
554 *  bits out of a thread mode.
555 */
556
557#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
558#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
559
560/*
561 *  Nothing prevents the porter from declaring more CPU specific variables.
562 */
563
564#ifndef ASM
565
566SCORE_EXTERN struct {
567  uint32_t      *Disable_level;
568  void          *Stack;
569  volatile bool *Switch_necessary;
570  bool          *Signal;
571
572} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;
573
574#endif /* ndef ASM */
575
576/*
577 *  The size of the floating point context area.  On some CPUs this
578 *  will not be a "sizeof" because the format of the floating point
579 *  area is not defined -- only the size is.  This is usually on
580 *  CPUs with a "floating point save context" instruction.
581 */
582
583#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
584
585/*
586 * (Optional) # of bytes for libmisc/stackchk to check
587 * If not specifed, then it defaults to something reasonable
588 * for most architectures.
589 */
590
591#define CPU_STACK_CHECK_SIZE    (128)
592
593/*
594 *  Amount of extra stack (above minimum stack size) required by
595 *  MPCI receive server thread.  Remember that in a multiprocessor
596 *  system this thread must exist and be able to process all directives.
597 */
598
599#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
600
601/*
602 *  This defines the number of entries in the ISR_Vector_table managed
603 *  by RTEMS.
604 *
605 *  NOTE: CPU_INTERRUPT_NUMBER_OF_VECTORS and
606 *        CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER are only used on
607 *        Simple Vectored Architectures and thus are not defined
608 *        for this architecture.
609 */
610
611/*
612 *  This is defined if the port has a special way to report the ISR nesting
613 *  level.  Most ports maintain the variable _ISR_Nest_level. Note that
614 *  this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
615 *  being maintained (e.g. watchdog queues).
616 */
617
618#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
619
620/*
621 *  ISR handler macros
622 */
623
624/*
625 *  Disable all interrupts for an RTEMS critical section.  The previous
626 *  level is returned in _isr_cookie.
627 */
628
629#ifndef ASM
630
631static inline uint32_t   _CPU_ISR_Get_level( void )
632{
633  register unsigned int msr;
634  _CPU_MSR_GET(msr);
635  if (msr & MSR_EE) return 0;
636  else  return 1;
637}
638
639static inline void _CPU_ISR_Set_level( uint32_t   level )
640{
641  register unsigned int msr;
642  _CPU_MSR_GET(msr);
643  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
644    msr |= ppc_interrupt_get_disable_mask();
645  }
646  else {
647    msr &= ~ppc_interrupt_get_disable_mask();
648  }
649  _CPU_MSR_SET(msr);
650}
651
652void BSP_panic(char *);
653
654/* Fatal Error manager macros */
655
656/*
657 *  This routine copies _error into a known place -- typically a stack
658 *  location or a register, optionally disables interrupts, and
659 *  halts/stops the CPU.
660 */
661
662void _BSP_Fatal_error(unsigned int);
663
664#endif /* ASM */
665
666#define _CPU_Fatal_halt( _error ) \
667  _BSP_Fatal_error(_error)
668
669/* end of Fatal Error manager macros */
670
671/*
672 * SPRG0 was previously used to make sure that the BSP fixed the PR288 bug.
673 * Now SPRG0 is devoted to the interrupt disable mask.
674 */
675
676#define PPC_BSP_HAS_FIXED_PR288 ppc_this_is_now_the_interrupt_disable_mask
677
678/*
679 *  Should be large enough to run all RTEMS tests.  This ensures
680 *  that a "reasonable" small application should not have any problems.
681 */
682
683#define CPU_STACK_MINIMUM_SIZE          (1024*8)
684
685#define CPU_SIZEOF_POINTER 4
686
687/*
688 *  CPU's worst alignment requirement for data types on a byte boundary.  This
689 *  alignment does not take into account the requirements for the stack.
690 */
691
692#define CPU_ALIGNMENT              (PPC_ALIGNMENT)
693
694/*
695 *  This number corresponds to the byte alignment requirement for the
696 *  heap handler.  This alignment requirement may be stricter than that
697 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
698 *  common for the heap to follow the same alignment requirement as
699 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
700 *  then this should be set to CPU_ALIGNMENT.
701 *
702 *  NOTE:  This does not have to be a power of 2.  It does have to
703 *         be greater or equal to than CPU_ALIGNMENT.
704 */
705
706#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)
707
708/*
709 *  This number corresponds to the byte alignment requirement for memory
710 *  buffers allocated by the partition manager.  This alignment requirement
711 *  may be stricter than that for the data types alignment specified by
712 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
713 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
714 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
715 *
716 *  NOTE:  This does not have to be a power of 2.  It does have to
717 *         be greater or equal to than CPU_ALIGNMENT.
718 */
719
720#define CPU_PARTITION_ALIGNMENT    (PPC_ALIGNMENT)
721
722/*
723 *  This number corresponds to the byte alignment requirement for the
724 *  stack.  This alignment requirement may be stricter than that for the
725 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
726 *  is strict enough for the stack, then this should be set to 0.
727 *
728 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
729 */
730
731#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)
732
733#ifndef ASM
734/*  The following routine swaps the endian format of an unsigned int.
735 *  It must be static because it is referenced indirectly.
736 *
737 *  This version will work on any processor, but if there is a better
738 *  way for your CPU PLEASE use it.  The most common way to do this is to:
739 *
740 *     swap least significant two bytes with 16-bit rotate
741 *     swap upper and lower 16-bits
742 *     swap most significant two bytes with 16-bit rotate
743 *
744 *  Some CPUs have special instructions which swap a 32-bit quantity in
745 *  a single instruction (e.g. i486).  It is probably best to avoid
746 *  an "endian swapping control bit" in the CPU.  One good reason is
747 *  that interrupts would probably have to be disabled to ensure that
748 *  an interrupt does not try to access the same "chunk" with the wrong
749 *  endian.  Another good reason is that on some CPUs, the endian bit
750 *  endianness for ALL fetches -- both code and data -- so the code
751 *  will be fetched incorrectly.
752 */
753
754static inline uint32_t CPU_swap_u32(
755  uint32_t value
756)
757{
758  uint32_t   swapped;
759
760  __asm__ volatile("rlwimi %0,%1,8,24,31;"
761               "rlwimi %0,%1,24,16,23;"
762               "rlwimi %0,%1,8,8,15;"
763               "rlwimi %0,%1,24,0,7;" :
764               "=&r" ((swapped)) : "r" ((value)));
765
766  return( swapped );
767}
768
769#define CPU_swap_u16( value ) \
770  (((value&0xff) << 8) | ((value >> 8)&0xff))
771
772typedef uint32_t CPU_Counter_ticks;
773
774static inline CPU_Counter_ticks _CPU_Counter_read( void )
775{
776  CPU_Counter_ticks value;
777
778#ifdef ppc8540
779  /* Book E has no mftb */
780  __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
781#else
782  __asm__ volatile( "mftb %0" : "=r" (value) );
783#endif
784
785  return value;
786}
787
788static inline CPU_Counter_ticks _CPU_Counter_difference(
789  CPU_Counter_ticks second,
790  CPU_Counter_ticks first
791)
792{
793  return second - first;
794}
795
796#endif /* ASM */
797
798
799#ifndef ASM
800/* Context handler macros */
801
802/*
803 *  Initialize the context to a state suitable for starting a
804 *  task after a context restore operation.  Generally, this
805 *  involves:
806 *
807 *     - setting a starting address
808 *     - preparing the stack
809 *     - preparing the stack and frame pointers
810 *     - setting the proper interrupt level in the context
811 *     - initializing the floating point context
812 *
813 *  This routine generally does not set any unnecessary register
814 *  in the context.  The state of the "general data" registers is
815 *  undefined at task start time.
816 */
817
818void _CPU_Context_Initialize(
819  Context_Control  *the_context,
820  uint32_t         *stack_base,
821  uint32_t          size,
822  uint32_t          new_level,
823  void             *entry_point,
824  bool              is_fp,
825  void             *tls_area
826);
827
828/*
829 *  This routine is responsible for somehow restarting the currently
830 *  executing task.  If you are lucky, then all that is necessary
831 *  is restoring the context.  Otherwise, there will need to be
832 *  a special assembly routine which does something special in this
833 *  case.  Context_Restore should work most of the time.  It will
834 *  not work if restarting self conflicts with the stack frame
835 *  assumptions of restoring a context.
836 */
837
838#define _CPU_Context_Restart_self( _the_context ) \
839   _CPU_Context_restore( (_the_context) );
840
841/*
842 *  The purpose of this macro is to allow the initial pointer into
843 *  a floating point context area (used to save the floating point
844 *  context) to be at an arbitrary place in the floating point
845 *  context area.
846 *
847 *  This is necessary because some FP units are designed to have
848 *  their context saved as a stack which grows into lower addresses.
849 *  Other FP units can be saved by simply moving registers into offsets
850 *  from the base of the context area.  Finally some FP units provide
851 *  a "dump context" instruction which could fill in from high to low
852 *  or low to high based on the whim of the CPU designers.
853 */
854
855#define _CPU_Context_Fp_start( _base, _offset ) \
856   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
857
858/*
859 *  This routine initializes the FP context area passed to it to.
860 *  There are a few standard ways in which to initialize the
861 *  floating point context.  The code included for this macro assumes
862 *  that this is a CPU in which a "initial" FP context was saved into
863 *  _CPU_Null_fp_context and it simply copies it to the destination
864 *  context passed to it.
865 *
866 *  Other models include (1) not doing anything, and (2) putting
867 *  a "null FP status word" in the correct place in the FP context.
868 */
869
870#define _CPU_Context_Initialize_fp( _destination ) \
871  memset( *(_destination), 0, sizeof( **(_destination) ) )
872
873/* end of Context handler macros */
874#endif /* ASM */
875
876#ifndef ASM
877/* Bitfield handler macros */
878
879/*
880 *  This routine sets _output to the bit number of the first bit
881 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
882 *  This type may be either 16 or 32 bits wide although only the 16
883 *  least significant bits will be used.
884 *
885 *  There are a number of variables in using a "find first bit" type
886 *  instruction.
887 *
888 *    (1) What happens when run on a value of zero?
889 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
890 *    (3) The numbering may be zero or one based.
891 *    (4) The "find first bit" instruction may search from MSB or LSB.
892 *
893 *  RTEMS guarantees that (1) will never happen so it is not a concern.
894 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
895 *  _CPU_Priority_Bits_index().  These three form a set of routines
896 *  which must logically operate together.  Bits in the _value are
897 *  set and cleared based on masks built by _CPU_Priority_mask().
898 *  The basic major and minor values calculated by _Priority_Major()
899 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
900 *  to properly range between the values returned by the "find first bit"
901 *  instruction.  This makes it possible for _Priority_Get_highest() to
902 *  calculate the major and directly index into the minor table.
903 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
904 *  is the first bit found.
905 *
906 *  This entire "find first bit" and mapping process depends heavily
907 *  on the manner in which a priority is broken into a major and minor
908 *  components with the major being the 4 MSB of a priority and minor
909 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
910 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
911 *  to the lowest priority.
912 *
913 *  If your CPU does not have a "find first bit" instruction, then
914 *  there are ways to make do without it.  Here are a handful of ways
915 *  to implement this in software:
916 *
917 *    - a series of 16 bit test instructions
918 *    - a "binary search using if's"
919 *    - _number = 0
920 *      if _value > 0x00ff
921 *        _value >>=8
922 *        _number = 8;
923 *
924 *      if _value > 0x0000f
925 *        _value >=8
926 *        _number += 4
927 *
928 *      _number += bit_set_table[ _value ]
929 *
930 *    where bit_set_table[ 16 ] has values which indicate the first
931 *      bit set
932 */
933
934#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
935  { \
936    __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
937                  "1" ((_value))); \
938  }
939
940/* end of Bitfield handler macros */
941
942/*
943 *  This routine builds the mask which corresponds to the bit fields
944 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
945 *  for that routine.
946 */
947
948#define _CPU_Priority_Mask( _bit_number ) \
949  ( 0x80000000 >> (_bit_number) )
950
951/*
952 *  This routine translates the bit numbers returned by
953 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
954 *  a major or minor component of a priority.  See the discussion
955 *  for that routine.
956 */
957
958#define _CPU_Priority_bits_index( _priority ) \
959  (_priority)
960
961/* end of Priority handler macros */
962#endif /* ASM */
963
964/* functions */
965
966#ifndef ASM
967
968/*
969 *  _CPU_Initialize
970 *
971 *  This routine performs CPU dependent initialization.
972 */
973
974void _CPU_Initialize(void);
975
976/*
977 *  _CPU_ISR_install_vector
978 *
979 *  This routine installs an interrupt vector.
980 */
981
982void _CPU_ISR_install_vector(
983  uint32_t    vector,
984  proc_ptr    new_handler,
985  proc_ptr   *old_handler
986);
987
988/*
989 *  _CPU_Context_switch
990 *
991 *  This routine switches from the run context to the heir context.
992 */
993
994void _CPU_Context_switch(
995  Context_Control  *run,
996  Context_Control  *heir
997);
998
999/*
1000 *  _CPU_Context_restore
1001 *
1002 *  This routine is generallu used only to restart self in an
1003 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1004 *
1005 *  NOTE: May be unnecessary to reload some registers.
1006 */
1007
1008void _CPU_Context_restore(
1009  Context_Control *new_context
1010) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1011
1012/*
1013 *  _CPU_Context_save_fp
1014 *
1015 *  This routine saves the floating point context passed to it.
1016 */
1017
1018void _CPU_Context_save_fp(
1019  Context_Control_fp **fp_context_ptr
1020);
1021
1022/*
1023 *  _CPU_Context_restore_fp
1024 *
1025 *  This routine restores the floating point context passed to it.
1026 */
1027
1028void _CPU_Context_restore_fp(
1029  Context_Control_fp **fp_context_ptr
1030);
1031
1032void _CPU_Context_volatile_clobber( uintptr_t pattern );
1033
1034void _CPU_Context_validate( uintptr_t pattern );
1035
1036#ifdef RTEMS_SMP
1037  uint32_t _CPU_SMP_Initialize( uint32_t configured_cpu_count );
1038
1039  static inline uint32_t _CPU_SMP_Get_current_processor( void )
1040  {
1041    uint32_t pir;
1042
1043    /* Use Book E Processor ID Register (PIR) */
1044    __asm__ volatile (
1045      "mfspr %[pir], 286"
1046      : [pir] "=&r" (pir)
1047    );
1048
1049    return pir;
1050  }
1051
1052  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1053
1054  static inline void _CPU_SMP_Processor_event_broadcast( void )
1055  {
1056    __asm__ volatile ( "" : : : "memory" );
1057  }
1058
1059  static inline void _CPU_SMP_Processor_event_receive( void )
1060  {
1061    __asm__ volatile ( "" : : : "memory" );
1062  }
1063#endif
1064
1065typedef struct {
1066  uint32_t EXC_SRR0;
1067  uint32_t EXC_SRR1;
1068  uint32_t _EXC_number;
1069  uint32_t EXC_CR;
1070  uint32_t EXC_CTR;
1071  uint32_t EXC_XER;
1072  uint32_t EXC_LR;
1073  #ifdef __SPE__
1074    uint32_t EXC_SPEFSCR;
1075    uint64_t EXC_ACC;
1076  #endif
1077  PPC_GPR_TYPE GPR0;
1078  PPC_GPR_TYPE GPR1;
1079  PPC_GPR_TYPE GPR2;
1080  PPC_GPR_TYPE GPR3;
1081  PPC_GPR_TYPE GPR4;
1082  PPC_GPR_TYPE GPR5;
1083  PPC_GPR_TYPE GPR6;
1084  PPC_GPR_TYPE GPR7;
1085  PPC_GPR_TYPE GPR8;
1086  PPC_GPR_TYPE GPR9;
1087  PPC_GPR_TYPE GPR10;
1088  PPC_GPR_TYPE GPR11;
1089  PPC_GPR_TYPE GPR12;
1090  PPC_GPR_TYPE GPR13;
1091  PPC_GPR_TYPE GPR14;
1092  PPC_GPR_TYPE GPR15;
1093  PPC_GPR_TYPE GPR16;
1094  PPC_GPR_TYPE GPR17;
1095  PPC_GPR_TYPE GPR18;
1096  PPC_GPR_TYPE GPR19;
1097  PPC_GPR_TYPE GPR20;
1098  PPC_GPR_TYPE GPR21;
1099  PPC_GPR_TYPE GPR22;
1100  PPC_GPR_TYPE GPR23;
1101  PPC_GPR_TYPE GPR24;
1102  PPC_GPR_TYPE GPR25;
1103  PPC_GPR_TYPE GPR26;
1104  PPC_GPR_TYPE GPR27;
1105  PPC_GPR_TYPE GPR28;
1106  PPC_GPR_TYPE GPR29;
1107  PPC_GPR_TYPE GPR30;
1108  PPC_GPR_TYPE GPR31;
1109} CPU_Exception_frame;
1110
1111void _BSP_Exception_frame_print( const CPU_Exception_frame *frame );
1112
1113static inline void _CPU_Exception_frame_print(
1114  const CPU_Exception_frame *frame
1115)
1116{
1117  _BSP_Exception_frame_print( frame );
1118}
1119
1120/*
1121 * _CPU_Initialize_altivec()
1122 *
1123 * Global altivec-related initialization.
1124 */
1125void
1126_CPU_Initialize_altivec(void);
1127
1128/*
1129 * _CPU_Context_switch_altivec
1130 *
1131 * This routine switches the altivec contexts passed to it.
1132 */
1133
1134void
1135_CPU_Context_switch_altivec(
1136  ppc_context *from,
1137  ppc_context *to
1138);
1139
1140/*
1141 * _CPU_Context_restore_altivec
1142 *
1143 * This routine restores the altivec context passed to it.
1144 */
1145
1146void
1147_CPU_Context_restore_altivec(
1148  ppc_context *ctxt
1149);
1150
1151/*
1152 * _CPU_Context_initialize_altivec
1153 *
1154 * This routine initializes the altivec context passed to it.
1155 */
1156
1157void
1158_CPU_Context_initialize_altivec(
1159  ppc_context *ctxt
1160);
1161
1162void _CPU_Fatal_error(
1163  uint32_t   _error
1164);
1165
1166#endif /* ASM */
1167
1168#ifdef __cplusplus
1169}
1170#endif
1171
1172#endif /* _RTEMS_SCORE_CPU_H */
Note: See TracBrowser for help on using the repository browser.