source: rtems/cpukit/score/cpu/powerpc/rtems/score/cpu.h @ e2fcb7d

4.115
Last change on this file since e2fcb7d was e2fcb7d, checked in by Nick Withers <nick.withers@…>, on 07/15/15 at 06:55:42

powerpc: Fix _CPU_Counter_read()

The mftb is not available on Book E processors. Use SPR 268 instead.

Close #2369.

  • Property mode set to 100644
File size: 38.8 KB
Line 
1/**
2 * @file
3 *
4 * @brief PowerPC CPU Department Source
5 */
6
7/*
8 *  COPYRIGHT (c) 1989-2012.
9 *  On-Line Applications Research Corporation (OAR).
10 *
11 *  COPYRIGHT (c) 1995 i-cubed ltd.
12 *
13 *  To anyone who acknowledges that this file is provided "AS IS"
14 *  without any express or implied warranty:
15 *      permission to use, copy, modify, and distribute this file
16 *      for any purpose is hereby granted without fee, provided that
17 *      the above copyright notice and this notice appears in all
18 *      copies, and that the name of i-cubed limited not be used in
19 *      advertising or publicity pertaining to distribution of the
20 *      software without specific, written prior permission.
21 *      i-cubed limited makes no representations about the suitability
22 *      of this software for any purpose.
23 *
24 *  Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
25 *
26 *  Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
27 *
28 *  Copyright (c) 2010-2013 embedded brains GmbH.
29 *
30 *  The license and distribution terms for this file may be
31 *  found in the file LICENSE in this distribution or at
32 *  http://www.rtems.org/license/LICENSE.
33 */
34
35#ifndef _RTEMS_SCORE_CPU_H
36#define _RTEMS_SCORE_CPU_H
37
38#include <rtems/score/types.h>
39#include <rtems/score/powerpc.h>
40#include <rtems/powerpc/registers.h>
41
42#ifndef ASM
43  #include <string.h> /* for memset() */
44#endif
45
46#ifdef __cplusplus
47extern "C" {
48#endif
49
50/* conditional compilation parameters */
51
52/*
53 *  Should the calls to _Thread_Enable_dispatch be inlined?
54 *
55 *  If TRUE, then they are inlined.
56 *  If FALSE, then a subroutine call is made.
57 *
58 *  Basically this is an example of the classic trade-off of size
59 *  versus speed.  Inlining the call (TRUE) typically increases the
60 *  size of RTEMS while speeding up the enabling of dispatching.
61 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
62 *  only be 0 or 1 unless you are in an interrupt handler and that
63 *  interrupt handler invokes the executive.]  When not inlined
64 *  something calls _Thread_Enable_dispatch which in turns calls
65 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
66 *  one subroutine call is avoided entirely.]
67 */
68
69#define CPU_INLINE_ENABLE_DISPATCH       FALSE
70
71/*
72 *  Does this port provide a CPU dependent IDLE task implementation?
73 *
74 *  If TRUE, then the routine _CPU_Thread_Idle_body
75 *  must be provided and is the default IDLE thread body instead of
76 *  _CPU_Thread_Idle_body.
77 *
78 *  If FALSE, then use the generic IDLE thread body if the BSP does
79 *  not provide one.
80 *
81 *  This is intended to allow for supporting processors which have
82 *  a low power or idle mode.  When the IDLE thread is executed, then
83 *  the CPU can be powered down.
84 *
85 *  The order of precedence for selecting the IDLE thread body is:
86 *
87 *    1.  BSP provided
88 *    2.  CPU dependent (if provided)
89 *    3.  generic (if no BSP and no CPU dependent)
90 */
91
92#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
93
94/*
95 *  Does the stack grow up (toward higher addresses) or down
96 *  (toward lower addresses)?
97 *
98 *  If TRUE, then the grows upward.
99 *  If FALSE, then the grows toward smaller addresses.
100 */
101
102#define CPU_STACK_GROWS_UP               FALSE
103
104/*
105 *  The following is the variable attribute used to force alignment
106 *  of critical RTEMS structures.  On some processors it may make
107 *  sense to have these aligned on tighter boundaries than
108 *  the minimum requirements of the compiler in order to have as
109 *  much of the critical data area as possible in a cache line.
110 *
111 *  The placement of this macro in the declaration of the variables
112 *  is based on the syntactically requirements of the GNU C
113 *  "__attribute__" extension.  For example with GNU C, use
114 *  the following to force a structures to a 32 byte boundary.
115 *
116 *      __attribute__ ((aligned (32)))
117 *
118 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
119 *         To benefit from using this, the data must be heavily
120 *         used so it will stay in the cache and used frequently enough
121 *         in the executive to justify turning this on.
122 */
123
124#define CPU_STRUCTURE_ALIGNMENT \
125  __attribute__ ((aligned (PPC_STRUCTURE_ALIGNMENT)))
126
127#define CPU_TIMESTAMP_USE_STRUCT_TIMESPEC TRUE
128
129/*
130 *  Define what is required to specify how the network to host conversion
131 *  routines are handled.
132 */
133
134#if defined(__BIG_ENDIAN__) || defined(_BIG_ENDIAN)
135#define CPU_BIG_ENDIAN                           TRUE
136#define CPU_LITTLE_ENDIAN                        FALSE
137#else
138#define CPU_BIG_ENDIAN                           FALSE
139#define CPU_LITTLE_ENDIAN                        TRUE
140#endif
141
142/*
143 *  Does the CPU have hardware floating point?
144 *
145 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
146 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
147 *
148 *  If there is a FP coprocessor such as the i387 or mc68881, then
149 *  the answer is TRUE.
150 *
151 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
152 *  It indicates whether or not this CPU model has FP support.  For
153 *  example, it would be possible to have an i386_nofp CPU model
154 *  which set this to false to indicate that you have an i386 without
155 *  an i387 and wish to leave floating point support out of RTEMS.
156 */
157
158#if ( PPC_HAS_FPU == 1 )
159#define CPU_HARDWARE_FP     TRUE
160#define CPU_SOFTWARE_FP     FALSE
161#else
162#define CPU_HARDWARE_FP     FALSE
163#define CPU_SOFTWARE_FP     FALSE
164#endif
165
166/*
167 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
168 *
169 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
170 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
171 *
172 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
173 *
174 *  PowerPC Note: It appears the GCC can implicitly generate FPU
175 *  and Altivec instructions when you least expect them.  So make
176 *  all tasks floating point.
177 */
178
179#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
180
181/*
182 *  Should the IDLE task have a floating point context?
183 *
184 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
185 *  and it has a floating point context which is switched in and out.
186 *  If FALSE, then the IDLE task does not have a floating point context.
187 *
188 *  Setting this to TRUE negatively impacts the time required to preempt
189 *  the IDLE task from an interrupt because the floating point context
190 *  must be saved as part of the preemption.
191 */
192
193#define CPU_IDLE_TASK_IS_FP      FALSE
194
195#define CPU_PER_CPU_CONTROL_SIZE 0
196
197/*
198 *  Processor defined structures required for cpukit/score.
199 */
200
201/*
202 * Contexts
203 *
204 *  Generally there are 2 types of context to save.
205 *     1. Interrupt registers to save
206 *     2. Task level registers to save
207 *
208 *  This means we have the following 3 context items:
209 *     1. task level context stuff::  Context_Control
210 *     2. floating point task stuff:: Context_Control_fp
211 *     3. special interrupt level context :: Context_Control_interrupt
212 *
213 *  On some processors, it is cost-effective to save only the callee
214 *  preserved registers during a task context switch.  This means
215 *  that the ISR code needs to save those registers which do not
216 *  persist across function calls.  It is not mandatory to make this
217 *  distinctions between the caller/callee saves registers for the
218 *  purpose of minimizing context saved during task switch and on interrupts.
219 *  If the cost of saving extra registers is minimal, simplicity is the
220 *  choice.  Save the same context on interrupt entry as for tasks in
221 *  this case.
222 *
223 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
224 *  care should be used in designing the context area.
225 *
226 *  On some CPUs with hardware floating point support, the Context_Control_fp
227 *  structure will not be used or it simply consist of an array of a
228 *  fixed number of bytes.   This is done when the floating point context
229 *  is dumped by a "FP save context" type instruction and the format
230 *  is not really defined by the CPU.  In this case, there is no need
231 *  to figure out the exact format -- only the size.  Of course, although
232 *  this is enough information for RTEMS, it is probably not enough for
233 *  a debugger such as gdb.  But that is another problem.
234 */
235
236#ifndef __SPE__
237  #define PPC_GPR_TYPE uint32_t
238  #define PPC_GPR_SIZE 4
239  #define PPC_GPR_LOAD lwz
240  #define PPC_GPR_STORE stw
241#else
242  #define PPC_GPR_TYPE uint64_t
243  #define PPC_GPR_SIZE 8
244  #define PPC_GPR_LOAD evldd
245  #define PPC_GPR_STORE evstdd
246#endif
247
248#ifndef ASM
249
250typedef struct {
251  /* There is no CPU specific per-CPU state */
252} CPU_Per_CPU_control;
253
254/*
255 * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
256 * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
257 * Linux and Embedded")
258 */
259typedef struct {
260  uint32_t gpr1;
261  uint32_t msr;
262  uint32_t lr;
263  uint32_t cr;
264  PPC_GPR_TYPE gpr14;
265  PPC_GPR_TYPE gpr15;
266  PPC_GPR_TYPE gpr16;
267  PPC_GPR_TYPE gpr17;
268  PPC_GPR_TYPE gpr18;
269  PPC_GPR_TYPE gpr19;
270  PPC_GPR_TYPE gpr20;
271  PPC_GPR_TYPE gpr21;
272  PPC_GPR_TYPE gpr22;
273  PPC_GPR_TYPE gpr23;
274  PPC_GPR_TYPE gpr24;
275  PPC_GPR_TYPE gpr25;
276  PPC_GPR_TYPE gpr26;
277  PPC_GPR_TYPE gpr27;
278  PPC_GPR_TYPE gpr28;
279  PPC_GPR_TYPE gpr29;
280  PPC_GPR_TYPE gpr30;
281  PPC_GPR_TYPE gpr31;
282  uint32_t gpr2;
283  #if defined(PPC_MULTILIB_ALTIVEC)
284    uint32_t reserved_for_alignment;
285    uint8_t v20[16];
286    uint8_t v21[16];
287    uint8_t v22[16];
288    uint8_t v23[16];
289    uint8_t v24[16];
290    uint8_t v25[16];
291    uint8_t v26[16];
292    uint8_t v27[16];
293    uint8_t v28[16];
294    uint8_t v29[16];
295    uint8_t v30[16];
296    uint8_t v31[16];
297    uint32_t vrsave;
298  #elif defined(__ALTIVEC__)
299    /*
300     * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
301     * and padding to ensure cache-alignment.  Unfortunately, we can't verify
302     * the cache line size here in the cpukit but altivec support code will
303     * produce an error if this is ever different from 32 bytes.
304     *
305     * Note: it is the BSP/CPU-support's responsibility to save/restore
306     *       volatile vregs across interrupts and exceptions.
307     */
308    uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
309  #endif
310  #if defined(PPC_MULTILIB_FPU)
311    double f14;
312    double f15;
313    double f16;
314    double f17;
315    double f18;
316    double f19;
317    double f20;
318    double f21;
319    double f22;
320    double f23;
321    double f24;
322    double f25;
323    double f26;
324    double f27;
325    double f28;
326    double f29;
327    double f30;
328    double f31;
329  #endif
330  #if defined(RTEMS_SMP)
331    /*
332     * This item is at the structure end, so that we can use dcbz for the
333     * previous items to optimize the context switch.  We must not set this
334     * item to zero via the dcbz.
335     */
336    volatile uint32_t is_executing;
337  #endif
338} ppc_context;
339
340typedef struct {
341  uint8_t context [
342    PPC_DEFAULT_CACHE_LINE_SIZE
343      + sizeof(ppc_context)
344      + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
345        ? 0
346          : PPC_DEFAULT_CACHE_LINE_SIZE
347            - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
348  ];
349} Context_Control;
350
351static inline ppc_context *ppc_get_context( const Context_Control *context )
352{
353  uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
354  uintptr_t mask = clsz - 1;
355  uintptr_t addr = (uintptr_t) context;
356
357  return (ppc_context *) ((addr & ~mask) + clsz);
358}
359
360#define _CPU_Context_Get_SP( _context ) \
361  ppc_get_context(_context)->gpr1
362
363#ifdef RTEMS_SMP
364  static inline bool _CPU_Context_Get_is_executing(
365    const Context_Control *context
366  )
367  {
368    return ppc_get_context(context)->is_executing;
369  }
370
371  static inline void _CPU_Context_Set_is_executing(
372    Context_Control *context,
373    bool is_executing
374  )
375  {
376    ppc_get_context(context)->is_executing = is_executing;
377  }
378#endif
379#endif /* ASM */
380
381#define PPC_CONTEXT_OFFSET_GPR1 (PPC_DEFAULT_CACHE_LINE_SIZE + 0)
382#define PPC_CONTEXT_OFFSET_MSR (PPC_DEFAULT_CACHE_LINE_SIZE + 4)
383#define PPC_CONTEXT_OFFSET_LR (PPC_DEFAULT_CACHE_LINE_SIZE + 8)
384#define PPC_CONTEXT_OFFSET_CR (PPC_DEFAULT_CACHE_LINE_SIZE + 12)
385
386#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
387  (((gpr) - 14) * PPC_GPR_SIZE + PPC_DEFAULT_CACHE_LINE_SIZE + 16)
388
389#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
390#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
391#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
392#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
393#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
394#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
395#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
396#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
397#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
398#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
399#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
400#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
401#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
402#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
403#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
404#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
405#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
406#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
407#define PPC_CONTEXT_OFFSET_GPR2 PPC_CONTEXT_GPR_OFFSET( 32 )
408
409#ifdef PPC_MULTILIB_ALTIVEC
410  #define PPC_CONTEXT_OFFSET_V( v ) \
411    ( ( ( v ) - 20 ) * 16 + PPC_DEFAULT_CACHE_LINE_SIZE + 96 )
412  #define PPC_CONTEXT_OFFSET_V20 PPC_CONTEXT_OFFSET_V( 20 )
413  #define PPC_CONTEXT_OFFSET_V21 PPC_CONTEXT_OFFSET_V( 21 )
414  #define PPC_CONTEXT_OFFSET_V22 PPC_CONTEXT_OFFSET_V( 22 )
415  #define PPC_CONTEXT_OFFSET_V23 PPC_CONTEXT_OFFSET_V( 23 )
416  #define PPC_CONTEXT_OFFSET_V24 PPC_CONTEXT_OFFSET_V( 24 )
417  #define PPC_CONTEXT_OFFSET_V25 PPC_CONTEXT_OFFSET_V( 25 )
418  #define PPC_CONTEXT_OFFSET_V26 PPC_CONTEXT_OFFSET_V( 26 )
419  #define PPC_CONTEXT_OFFSET_V27 PPC_CONTEXT_OFFSET_V( 27 )
420  #define PPC_CONTEXT_OFFSET_V28 PPC_CONTEXT_OFFSET_V( 28 )
421  #define PPC_CONTEXT_OFFSET_V29 PPC_CONTEXT_OFFSET_V( 29 )
422  #define PPC_CONTEXT_OFFSET_V30 PPC_CONTEXT_OFFSET_V( 30 )
423  #define PPC_CONTEXT_OFFSET_V31 PPC_CONTEXT_OFFSET_V( 31 )
424  #define PPC_CONTEXT_OFFSET_VRSAVE PPC_CONTEXT_OFFSET_V( 32 )
425  #define PPC_CONTEXT_OFFSET_F( f ) \
426    ( ( ( f ) - 14 ) * 8 + PPC_DEFAULT_CACHE_LINE_SIZE + 296 )
427#else
428  #define PPC_CONTEXT_OFFSET_F( f ) \
429    ( ( ( f ) - 14 ) * 8 + PPC_DEFAULT_CACHE_LINE_SIZE + 96 )
430#endif
431
432#ifdef PPC_MULTILIB_FPU
433  #define PPC_CONTEXT_OFFSET_F14 PPC_CONTEXT_OFFSET_F( 14 )
434  #define PPC_CONTEXT_OFFSET_F15 PPC_CONTEXT_OFFSET_F( 15 )
435  #define PPC_CONTEXT_OFFSET_F16 PPC_CONTEXT_OFFSET_F( 16 )
436  #define PPC_CONTEXT_OFFSET_F17 PPC_CONTEXT_OFFSET_F( 17 )
437  #define PPC_CONTEXT_OFFSET_F18 PPC_CONTEXT_OFFSET_F( 18 )
438  #define PPC_CONTEXT_OFFSET_F19 PPC_CONTEXT_OFFSET_F( 19 )
439  #define PPC_CONTEXT_OFFSET_F20 PPC_CONTEXT_OFFSET_F( 20 )
440  #define PPC_CONTEXT_OFFSET_F21 PPC_CONTEXT_OFFSET_F( 21 )
441  #define PPC_CONTEXT_OFFSET_F22 PPC_CONTEXT_OFFSET_F( 22 )
442  #define PPC_CONTEXT_OFFSET_F23 PPC_CONTEXT_OFFSET_F( 23 )
443  #define PPC_CONTEXT_OFFSET_F24 PPC_CONTEXT_OFFSET_F( 24 )
444  #define PPC_CONTEXT_OFFSET_F25 PPC_CONTEXT_OFFSET_F( 25 )
445  #define PPC_CONTEXT_OFFSET_F26 PPC_CONTEXT_OFFSET_F( 26 )
446  #define PPC_CONTEXT_OFFSET_F27 PPC_CONTEXT_OFFSET_F( 27 )
447  #define PPC_CONTEXT_OFFSET_F28 PPC_CONTEXT_OFFSET_F( 28 )
448  #define PPC_CONTEXT_OFFSET_F29 PPC_CONTEXT_OFFSET_F( 29 )
449  #define PPC_CONTEXT_OFFSET_F30 PPC_CONTEXT_OFFSET_F( 30 )
450  #define PPC_CONTEXT_OFFSET_F31 PPC_CONTEXT_OFFSET_F( 31 )
451#endif
452
453#if defined(PPC_MULTILIB_FPU)
454  #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_F( 32 )
455#elif defined(PPC_MULTILIB_ALTIVEC)
456  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_OFFSET_VRSAVE + 4)
457#else
458  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_GPR_OFFSET( 32 ) + 4)
459#endif
460
461#ifdef RTEMS_SMP
462  #define PPC_CONTEXT_OFFSET_IS_EXECUTING PPC_CONTEXT_VOLATILE_SIZE
463#endif
464
465#ifndef ASM
466typedef struct {
467#if (PPC_HAS_FPU == 1)
468    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
469     * procedure calls.  However, this would mean that the interrupt
470     * frame had to hold f0-f13, and the fpscr.  And as the majority
471     * of tasks will not have an FP context, we will save the whole
472     * context here.
473     */
474#if (PPC_HAS_DOUBLE == 1)
475    double      f[32];
476    uint64_t    fpscr;
477#else
478    float       f[32];
479    uint32_t    fpscr;
480#endif
481#endif /* (PPC_HAS_FPU == 1) */
482} Context_Control_fp;
483
484typedef struct CPU_Interrupt_frame {
485    uint32_t   stacklink;       /* Ensure this is a real frame (also reg1 save) */
486    uint32_t   calleeLr;        /* link register used by callees: SVR4/EABI */
487
488    /* This is what is left out of the primary contexts */
489    uint32_t   gpr0;
490    uint32_t   gpr2;            /* play safe */
491    uint32_t   gpr3;
492    uint32_t   gpr4;
493    uint32_t   gpr5;
494    uint32_t   gpr6;
495    uint32_t   gpr7;
496    uint32_t   gpr8;
497    uint32_t   gpr9;
498    uint32_t   gpr10;
499    uint32_t   gpr11;
500    uint32_t   gpr12;
501    uint32_t   gpr13;   /* Play safe */
502    uint32_t   gpr28;   /* For internal use by the IRQ handler */
503    uint32_t   gpr29;   /* For internal use by the IRQ handler */
504    uint32_t   gpr30;   /* For internal use by the IRQ handler */
505    uint32_t   gpr31;   /* For internal use by the IRQ handler */
506    uint32_t   cr;      /* Bits of this are volatile, so no-one may save */
507    uint32_t   ctr;
508    uint32_t   xer;
509    uint32_t   lr;
510    uint32_t   pc;
511    uint32_t   msr;
512    uint32_t   pad[3];
513} CPU_Interrupt_frame;
514
515#endif /* ASM */
516
517/*
518 *  Does the CPU follow the simple vectored interrupt model?
519 *
520 *  If TRUE, then RTEMS allocates the vector table it internally manages.
521 *  If FALSE, then the BSP is assumed to allocate and manage the vector
522 *  table
523 *
524 *  PowerPC Specific Information:
525 *
526 *  The PowerPC and x86 were the first to use the PIC interrupt model.
527 *  They do not use the simple vectored interrupt model.
528 */
529#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
530
531/*
532 *  Does RTEMS manage a dedicated interrupt stack in software?
533 *
534 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
535 *  If FALSE, nothing is done.
536 *
537 *  If the CPU supports a dedicated interrupt stack in hardware,
538 *  then it is generally the responsibility of the BSP to allocate it
539 *  and set it up.
540 *
541 *  If the CPU does not support a dedicated interrupt stack, then
542 *  the porter has two options: (1) execute interrupts on the
543 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
544 *  interrupt stack.
545 *
546 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
547 *
548 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
549 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
550 *  possible that both are FALSE for a particular CPU.  Although it
551 *  is unclear what that would imply about the interrupt processing
552 *  procedure on that CPU.
553 */
554
555#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
556
557/*
558 *  Does this CPU have hardware support for a dedicated interrupt stack?
559 *
560 *  If TRUE, then it must be installed during initialization.
561 *  If FALSE, then no installation is performed.
562 *
563 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
564 *
565 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
566 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
567 *  possible that both are FALSE for a particular CPU.  Although it
568 *  is unclear what that would imply about the interrupt processing
569 *  procedure on that CPU.
570 */
571
572#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
573
574/*
575 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
576 *
577 *  If TRUE, then the memory is allocated during initialization.
578 *  If FALSE, then the memory is allocated during initialization.
579 *
580 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
581 */
582
583#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
584
585/*
586 *  Does the RTEMS invoke the user's ISR with the vector number and
587 *  a pointer to the saved interrupt frame (1) or just the vector
588 *  number (0)?
589 */
590
591#define CPU_ISR_PASSES_FRAME_POINTER 0
592
593/*
594 *  Should the saving of the floating point registers be deferred
595 *  until a context switch is made to another different floating point
596 *  task?
597 *
598 *  If TRUE, then the floating point context will not be stored until
599 *  necessary.  It will remain in the floating point registers and not
600 *  disturned until another floating point task is switched to.
601 *
602 *  If FALSE, then the floating point context is saved when a floating
603 *  point task is switched out and restored when the next floating point
604 *  task is restored.  The state of the floating point registers between
605 *  those two operations is not specified.
606 *
607 *  If the floating point context does NOT have to be saved as part of
608 *  interrupt dispatching, then it should be safe to set this to TRUE.
609 *
610 *  Setting this flag to TRUE results in using a different algorithm
611 *  for deciding when to save and restore the floating point context.
612 *  The deferred FP switch algorithm minimizes the number of times
613 *  the FP context is saved and restored.  The FP context is not saved
614 *  until a context switch is made to another, different FP task.
615 *  Thus in a system with only one FP task, the FP context will never
616 *  be saved or restored.
617 *
618 *  Note, however that compilers may use floating point registers/
619 *  instructions for optimization or they may save/restore FP registers
620 *  on the stack. You must not use deferred switching in these cases
621 *  and on the PowerPC attempting to do so will raise a "FP unavailable"
622 *  exception.
623 */
624/*
625 *  ACB Note:  This could make debugging tricky..
626 */
627
628/* conservative setting (FALSE); probably doesn't affect performance too much */
629#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
630
631/*
632 *  Processor defined structures required for cpukit/score.
633 */
634
635#ifndef ASM
636
637/*
638 *  This variable is optional.  It is used on CPUs on which it is difficult
639 *  to generate an "uninitialized" FP context.  It is filled in by
640 *  _CPU_Initialize and copied into the task's FP context area during
641 *  _CPU_Context_Initialize.
642 */
643
644/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */
645
646#endif /* ndef ASM */
647
648/*
649 *  This defines the number of levels and the mask used to pick those
650 *  bits out of a thread mode.
651 */
652
653#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
654#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
655
656/*
657 *  The size of the floating point context area.  On some CPUs this
658 *  will not be a "sizeof" because the format of the floating point
659 *  area is not defined -- only the size is.  This is usually on
660 *  CPUs with a "floating point save context" instruction.
661 */
662
663#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
664
665/*
666 * (Optional) # of bytes for libmisc/stackchk to check
667 * If not specifed, then it defaults to something reasonable
668 * for most architectures.
669 */
670
671#define CPU_STACK_CHECK_SIZE    (128)
672
673/*
674 *  Amount of extra stack (above minimum stack size) required by
675 *  MPCI receive server thread.  Remember that in a multiprocessor
676 *  system this thread must exist and be able to process all directives.
677 */
678
679#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
680
681/*
682 *  This is defined if the port has a special way to report the ISR nesting
683 *  level.  Most ports maintain the variable _ISR_Nest_level. Note that
684 *  this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
685 *  being maintained (e.g. watchdog queues).
686 */
687
688#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
689
690/*
691 *  ISR handler macros
692 */
693
694/*
695 *  Disable all interrupts for an RTEMS critical section.  The previous
696 *  level is returned in _isr_cookie.
697 */
698
699#ifndef ASM
700
701static inline uint32_t   _CPU_ISR_Get_level( void )
702{
703  register unsigned int msr;
704  _CPU_MSR_GET(msr);
705  if (msr & MSR_EE) return 0;
706  else  return 1;
707}
708
709static inline void _CPU_ISR_Set_level( uint32_t   level )
710{
711  register unsigned int msr;
712  _CPU_MSR_GET(msr);
713  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
714    msr |= ppc_interrupt_get_disable_mask();
715  }
716  else {
717    msr &= ~ppc_interrupt_get_disable_mask();
718  }
719  _CPU_MSR_SET(msr);
720}
721
722void BSP_panic(char *);
723
724/* Fatal Error manager macros */
725
726/*
727 *  This routine copies _error into a known place -- typically a stack
728 *  location or a register, optionally disables interrupts, and
729 *  halts/stops the CPU.
730 */
731
732void _BSP_Fatal_error(unsigned int);
733
734#endif /* ASM */
735
736#define _CPU_Fatal_halt( _source, _error ) \
737  _BSP_Fatal_error(_error)
738
739/* end of Fatal Error manager macros */
740
741/*
742 *  Should be large enough to run all RTEMS tests.  This ensures
743 *  that a "reasonable" small application should not have any problems.
744 */
745
746#define CPU_STACK_MINIMUM_SIZE          (1024*8)
747
748#define CPU_SIZEOF_POINTER 4
749
750/*
751 *  CPU's worst alignment requirement for data types on a byte boundary.  This
752 *  alignment does not take into account the requirements for the stack.
753 */
754
755#define CPU_ALIGNMENT              (PPC_ALIGNMENT)
756
757/*
758 *  This number corresponds to the byte alignment requirement for the
759 *  heap handler.  This alignment requirement may be stricter than that
760 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
761 *  common for the heap to follow the same alignment requirement as
762 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
763 *  then this should be set to CPU_ALIGNMENT.
764 *
765 *  NOTE:  This does not have to be a power of 2.  It does have to
766 *         be greater or equal to than CPU_ALIGNMENT.
767 */
768
769#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)
770
771/*
772 *  This number corresponds to the byte alignment requirement for memory
773 *  buffers allocated by the partition manager.  This alignment requirement
774 *  may be stricter than that for the data types alignment specified by
775 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
776 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
777 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
778 *
779 *  NOTE:  This does not have to be a power of 2.  It does have to
780 *         be greater or equal to than CPU_ALIGNMENT.
781 */
782
783#define CPU_PARTITION_ALIGNMENT    (PPC_ALIGNMENT)
784
785/*
786 *  This number corresponds to the byte alignment requirement for the
787 *  stack.  This alignment requirement may be stricter than that for the
788 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
789 *  is strict enough for the stack, then this should be set to 0.
790 *
791 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
792 */
793
794#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)
795
796#ifndef ASM
797/*  The following routine swaps the endian format of an unsigned int.
798 *  It must be static because it is referenced indirectly.
799 *
800 *  This version will work on any processor, but if there is a better
801 *  way for your CPU PLEASE use it.  The most common way to do this is to:
802 *
803 *     swap least significant two bytes with 16-bit rotate
804 *     swap upper and lower 16-bits
805 *     swap most significant two bytes with 16-bit rotate
806 *
807 *  Some CPUs have special instructions which swap a 32-bit quantity in
808 *  a single instruction (e.g. i486).  It is probably best to avoid
809 *  an "endian swapping control bit" in the CPU.  One good reason is
810 *  that interrupts would probably have to be disabled to ensure that
811 *  an interrupt does not try to access the same "chunk" with the wrong
812 *  endian.  Another good reason is that on some CPUs, the endian bit
813 *  endianness for ALL fetches -- both code and data -- so the code
814 *  will be fetched incorrectly.
815 */
816
817static inline uint32_t CPU_swap_u32(
818  uint32_t value
819)
820{
821  uint32_t   swapped;
822
823  __asm__ volatile("rlwimi %0,%1,8,24,31;"
824               "rlwimi %0,%1,24,16,23;"
825               "rlwimi %0,%1,8,8,15;"
826               "rlwimi %0,%1,24,0,7;" :
827               "=&r" ((swapped)) : "r" ((value)));
828
829  return( swapped );
830}
831
832#define CPU_swap_u16( value ) \
833  (((value&0xff) << 8) | ((value >> 8)&0xff))
834
835typedef uint32_t CPU_Counter_ticks;
836
837static inline CPU_Counter_ticks _CPU_Counter_read( void )
838{
839  CPU_Counter_ticks value;
840
841#if defined(ppc8540) || defined(__PPC_CPU_E6500__)
842  /* Use Alternate Time Base */
843  __asm__ volatile( "mfspr %0, 526" : "=r" (value) );
844#else
845  __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
846#endif
847
848  return value;
849}
850
851static inline CPU_Counter_ticks _CPU_Counter_difference(
852  CPU_Counter_ticks second,
853  CPU_Counter_ticks first
854)
855{
856  return second - first;
857}
858
859#endif /* ASM */
860
861
862#ifndef ASM
863/* Context handler macros */
864
865/*
866 *  Initialize the context to a state suitable for starting a
867 *  task after a context restore operation.  Generally, this
868 *  involves:
869 *
870 *     - setting a starting address
871 *     - preparing the stack
872 *     - preparing the stack and frame pointers
873 *     - setting the proper interrupt level in the context
874 *     - initializing the floating point context
875 *
876 *  This routine generally does not set any unnecessary register
877 *  in the context.  The state of the "general data" registers is
878 *  undefined at task start time.
879 */
880
881void _CPU_Context_Initialize(
882  Context_Control  *the_context,
883  uint32_t         *stack_base,
884  uint32_t          size,
885  uint32_t          new_level,
886  void             *entry_point,
887  bool              is_fp,
888  void             *tls_area
889);
890
891/*
892 *  This routine is responsible for somehow restarting the currently
893 *  executing task.  If you are lucky, then all that is necessary
894 *  is restoring the context.  Otherwise, there will need to be
895 *  a special assembly routine which does something special in this
896 *  case.  Context_Restore should work most of the time.  It will
897 *  not work if restarting self conflicts with the stack frame
898 *  assumptions of restoring a context.
899 */
900
901#define _CPU_Context_Restart_self( _the_context ) \
902   _CPU_Context_restore( (_the_context) );
903
904/*
905 *  The purpose of this macro is to allow the initial pointer into
906 *  a floating point context area (used to save the floating point
907 *  context) to be at an arbitrary place in the floating point
908 *  context area.
909 *
910 *  This is necessary because some FP units are designed to have
911 *  their context saved as a stack which grows into lower addresses.
912 *  Other FP units can be saved by simply moving registers into offsets
913 *  from the base of the context area.  Finally some FP units provide
914 *  a "dump context" instruction which could fill in from high to low
915 *  or low to high based on the whim of the CPU designers.
916 */
917
918#define _CPU_Context_Fp_start( _base, _offset ) \
919   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
920
921/*
922 *  This routine initializes the FP context area passed to it to.
923 *  There are a few standard ways in which to initialize the
924 *  floating point context.  The code included for this macro assumes
925 *  that this is a CPU in which a "initial" FP context was saved into
926 *  _CPU_Null_fp_context and it simply copies it to the destination
927 *  context passed to it.
928 *
929 *  Other models include (1) not doing anything, and (2) putting
930 *  a "null FP status word" in the correct place in the FP context.
931 */
932
933#define _CPU_Context_Initialize_fp( _destination ) \
934  memset( *(_destination), 0, sizeof( **(_destination) ) )
935
936/* end of Context handler macros */
937#endif /* ASM */
938
939#ifndef ASM
940/* Bitfield handler macros */
941
942/*
943 *  This routine sets _output to the bit number of the first bit
944 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
945 *  This type may be either 16 or 32 bits wide although only the 16
946 *  least significant bits will be used.
947 *
948 *  There are a number of variables in using a "find first bit" type
949 *  instruction.
950 *
951 *    (1) What happens when run on a value of zero?
952 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
953 *    (3) The numbering may be zero or one based.
954 *    (4) The "find first bit" instruction may search from MSB or LSB.
955 *
956 *  RTEMS guarantees that (1) will never happen so it is not a concern.
957 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
958 *  _CPU_Priority_Bits_index().  These three form a set of routines
959 *  which must logically operate together.  Bits in the _value are
960 *  set and cleared based on masks built by _CPU_Priority_mask().
961 *  The basic major and minor values calculated by _Priority_Major()
962 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
963 *  to properly range between the values returned by the "find first bit"
964 *  instruction.  This makes it possible for _Priority_Get_highest() to
965 *  calculate the major and directly index into the minor table.
966 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
967 *  is the first bit found.
968 *
969 *  This entire "find first bit" and mapping process depends heavily
970 *  on the manner in which a priority is broken into a major and minor
971 *  components with the major being the 4 MSB of a priority and minor
972 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
973 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
974 *  to the lowest priority.
975 *
976 *  If your CPU does not have a "find first bit" instruction, then
977 *  there are ways to make do without it.  Here are a handful of ways
978 *  to implement this in software:
979 *
980 *    - a series of 16 bit test instructions
981 *    - a "binary search using if's"
982 *    - _number = 0
983 *      if _value > 0x00ff
984 *        _value >>=8
985 *        _number = 8;
986 *
987 *      if _value > 0x0000f
988 *        _value >=8
989 *        _number += 4
990 *
991 *      _number += bit_set_table[ _value ]
992 *
993 *    where bit_set_table[ 16 ] has values which indicate the first
994 *      bit set
995 */
996
997#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
998  { \
999    __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
1000                  "1" ((_value))); \
1001  }
1002
1003/* end of Bitfield handler macros */
1004
1005/*
1006 *  This routine builds the mask which corresponds to the bit fields
1007 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
1008 *  for that routine.
1009 */
1010
1011#define _CPU_Priority_Mask( _bit_number ) \
1012  ( 0x80000000 >> (_bit_number) )
1013
1014/*
1015 *  This routine translates the bit numbers returned by
1016 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
1017 *  a major or minor component of a priority.  See the discussion
1018 *  for that routine.
1019 */
1020
1021#define _CPU_Priority_bits_index( _priority ) \
1022  (_priority)
1023
1024/* end of Priority handler macros */
1025#endif /* ASM */
1026
1027/* functions */
1028
1029#ifndef ASM
1030
1031/*
1032 *  _CPU_Initialize
1033 *
1034 *  This routine performs CPU dependent initialization.
1035 */
1036
1037void _CPU_Initialize(void);
1038
1039/*
1040 *  _CPU_ISR_install_vector
1041 *
1042 *  This routine installs an interrupt vector.
1043 */
1044
1045void _CPU_ISR_install_vector(
1046  uint32_t    vector,
1047  proc_ptr    new_handler,
1048  proc_ptr   *old_handler
1049);
1050
1051/*
1052 *  _CPU_Context_switch
1053 *
1054 *  This routine switches from the run context to the heir context.
1055 */
1056
1057void _CPU_Context_switch(
1058  Context_Control  *run,
1059  Context_Control  *heir
1060);
1061
1062/*
1063 *  _CPU_Context_restore
1064 *
1065 *  This routine is generallu used only to restart self in an
1066 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1067 *
1068 *  NOTE: May be unnecessary to reload some registers.
1069 */
1070
1071void _CPU_Context_restore(
1072  Context_Control *new_context
1073) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1074
1075/*
1076 *  _CPU_Context_save_fp
1077 *
1078 *  This routine saves the floating point context passed to it.
1079 */
1080
1081void _CPU_Context_save_fp(
1082  Context_Control_fp **fp_context_ptr
1083);
1084
1085/*
1086 *  _CPU_Context_restore_fp
1087 *
1088 *  This routine restores the floating point context passed to it.
1089 */
1090
1091void _CPU_Context_restore_fp(
1092  Context_Control_fp **fp_context_ptr
1093);
1094
1095void _CPU_Context_volatile_clobber( uintptr_t pattern );
1096
1097void _CPU_Context_validate( uintptr_t pattern );
1098
1099#ifdef RTEMS_SMP
1100  uint32_t _CPU_SMP_Initialize( void );
1101
1102  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1103
1104  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1105
1106  void _CPU_SMP_Prepare_start_multitasking( void );
1107
1108  static inline uint32_t _CPU_SMP_Get_current_processor( void )
1109  {
1110    uint32_t pir;
1111
1112    /* Use Book E Processor ID Register (PIR) */
1113    __asm__ volatile (
1114      "mfspr %[pir], 286"
1115      : [pir] "=&r" (pir)
1116    );
1117
1118    return pir;
1119  }
1120
1121  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1122
1123  static inline void _CPU_SMP_Processor_event_broadcast( void )
1124  {
1125    __asm__ volatile ( "" : : : "memory" );
1126  }
1127
1128  static inline void _CPU_SMP_Processor_event_receive( void )
1129  {
1130    __asm__ volatile ( "" : : : "memory" );
1131  }
1132#endif
1133
1134typedef struct {
1135  uint32_t EXC_SRR0;
1136  uint32_t EXC_SRR1;
1137  uint32_t _EXC_number;
1138  uint32_t EXC_CR;
1139  uint32_t EXC_CTR;
1140  uint32_t EXC_XER;
1141  uint32_t EXC_LR;
1142  #ifdef __SPE__
1143    uint32_t EXC_SPEFSCR;
1144    uint64_t EXC_ACC;
1145  #endif
1146  PPC_GPR_TYPE GPR0;
1147  PPC_GPR_TYPE GPR1;
1148  PPC_GPR_TYPE GPR2;
1149  PPC_GPR_TYPE GPR3;
1150  PPC_GPR_TYPE GPR4;
1151  PPC_GPR_TYPE GPR5;
1152  PPC_GPR_TYPE GPR6;
1153  PPC_GPR_TYPE GPR7;
1154  PPC_GPR_TYPE GPR8;
1155  PPC_GPR_TYPE GPR9;
1156  PPC_GPR_TYPE GPR10;
1157  PPC_GPR_TYPE GPR11;
1158  PPC_GPR_TYPE GPR12;
1159  PPC_GPR_TYPE GPR13;
1160  PPC_GPR_TYPE GPR14;
1161  PPC_GPR_TYPE GPR15;
1162  PPC_GPR_TYPE GPR16;
1163  PPC_GPR_TYPE GPR17;
1164  PPC_GPR_TYPE GPR18;
1165  PPC_GPR_TYPE GPR19;
1166  PPC_GPR_TYPE GPR20;
1167  PPC_GPR_TYPE GPR21;
1168  PPC_GPR_TYPE GPR22;
1169  PPC_GPR_TYPE GPR23;
1170  PPC_GPR_TYPE GPR24;
1171  PPC_GPR_TYPE GPR25;
1172  PPC_GPR_TYPE GPR26;
1173  PPC_GPR_TYPE GPR27;
1174  PPC_GPR_TYPE GPR28;
1175  PPC_GPR_TYPE GPR29;
1176  PPC_GPR_TYPE GPR30;
1177  PPC_GPR_TYPE GPR31;
1178  #if defined(PPC_MULTILIB_ALTIVEC) || defined(PPC_MULTILIB_FPU)
1179    uint32_t reserved_for_alignment;
1180  #endif
1181  #ifdef PPC_MULTILIB_ALTIVEC
1182    uint32_t VRSAVE;
1183
1184    /* This field must take stvewx/lvewx requirements into account */
1185    uint32_t VSCR;
1186
1187    uint8_t V0[16];
1188    uint8_t V1[16];
1189    uint8_t V2[16];
1190    uint8_t V3[16];
1191    uint8_t V4[16];
1192    uint8_t V5[16];
1193    uint8_t V6[16];
1194    uint8_t V7[16];
1195    uint8_t V8[16];
1196    uint8_t V9[16];
1197    uint8_t V10[16];
1198    uint8_t V11[16];
1199    uint8_t V12[16];
1200    uint8_t V13[16];
1201    uint8_t V14[16];
1202    uint8_t V15[16];
1203    uint8_t V16[16];
1204    uint8_t V17[16];
1205    uint8_t V18[16];
1206    uint8_t V19[16];
1207    uint8_t V20[16];
1208    uint8_t V21[16];
1209    uint8_t V22[16];
1210    uint8_t V23[16];
1211    uint8_t V24[16];
1212    uint8_t V25[16];
1213    uint8_t V26[16];
1214    uint8_t V27[16];
1215    uint8_t V28[16];
1216    uint8_t V29[16];
1217    uint8_t V30[16];
1218    uint8_t V31[16];
1219  #endif
1220  #ifdef PPC_MULTILIB_FPU
1221    double F0;
1222    double F1;
1223    double F2;
1224    double F3;
1225    double F4;
1226    double F5;
1227    double F6;
1228    double F7;
1229    double F8;
1230    double F9;
1231    double F10;
1232    double F11;
1233    double F12;
1234    double F13;
1235    double F14;
1236    double F15;
1237    double F16;
1238    double F17;
1239    double F18;
1240    double F19;
1241    double F20;
1242    double F21;
1243    double F22;
1244    double F23;
1245    double F24;
1246    double F25;
1247    double F26;
1248    double F27;
1249    double F28;
1250    double F29;
1251    double F30;
1252    double F31;
1253    uint64_t FPSCR;
1254  #endif
1255} CPU_Exception_frame;
1256
1257void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1258
1259/*
1260 * _CPU_Initialize_altivec()
1261 *
1262 * Global altivec-related initialization.
1263 */
1264void
1265_CPU_Initialize_altivec(void);
1266
1267/*
1268 * _CPU_Context_switch_altivec
1269 *
1270 * This routine switches the altivec contexts passed to it.
1271 */
1272
1273void
1274_CPU_Context_switch_altivec(
1275  ppc_context *from,
1276  ppc_context *to
1277);
1278
1279/*
1280 * _CPU_Context_restore_altivec
1281 *
1282 * This routine restores the altivec context passed to it.
1283 */
1284
1285void
1286_CPU_Context_restore_altivec(
1287  ppc_context *ctxt
1288);
1289
1290/*
1291 * _CPU_Context_initialize_altivec
1292 *
1293 * This routine initializes the altivec context passed to it.
1294 */
1295
1296void
1297_CPU_Context_initialize_altivec(
1298  ppc_context *ctxt
1299);
1300
1301void _CPU_Fatal_error(
1302  uint32_t   _error
1303);
1304
1305#endif /* ASM */
1306
1307#ifdef __cplusplus
1308}
1309#endif
1310
1311#endif /* _RTEMS_SCORE_CPU_H */
Note: See TracBrowser for help on using the repository browser.