source: rtems/cpukit/score/cpu/powerpc/include/rtems/score/cpu.h @ d978d1b

5
Last change on this file since d978d1b was d978d1b, checked in by Joel Sherrill <joel@…>, on 03/08/18 at 23:25:54

powerpc/include/rtems/score/types.h: Eliminate this file

Updates #3327.

  • Property mode set to 100644
File size: 36.5 KB
Line 
1/**
2 * @file
3 *
4 * @brief PowerPC CPU Department Source
5 */
6
7/*
8 *  COPYRIGHT (c) 1989-2012.
9 *  On-Line Applications Research Corporation (OAR).
10 *
11 *  COPYRIGHT (c) 1995 i-cubed ltd.
12 *
13 *  To anyone who acknowledges that this file is provided "AS IS"
14 *  without any express or implied warranty:
15 *      permission to use, copy, modify, and distribute this file
16 *      for any purpose is hereby granted without fee, provided that
17 *      the above copyright notice and this notice appears in all
18 *      copies, and that the name of i-cubed limited not be used in
19 *      advertising or publicity pertaining to distribution of the
20 *      software without specific, written prior permission.
21 *      i-cubed limited makes no representations about the suitability
22 *      of this software for any purpose.
23 *
24 *  Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
25 *
26 *  Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
27 *
28 *  Copyright (c) 2010, 2017 embedded brains GmbH.
29 *
30 *  The license and distribution terms for this file may be
31 *  found in the file LICENSE in this distribution or at
32 *  http://www.rtems.org/license/LICENSE.
33 */
34
35#ifndef _RTEMS_SCORE_CPU_H
36#define _RTEMS_SCORE_CPU_H
37
38#include <rtems/score/basedefs.h>
39#include <rtems/score/powerpc.h>
40#include <rtems/powerpc/registers.h>
41
42#ifndef ASM
43  #include <string.h> /* for memset() */
44#endif
45
46#ifdef __cplusplus
47extern "C" {
48#endif
49
50/* conditional compilation parameters */
51
52/*
53 *  Does this port provide a CPU dependent IDLE task implementation?
54 *
55 *  If TRUE, then the routine _CPU_Thread_Idle_body
56 *  must be provided and is the default IDLE thread body instead of
57 *  _CPU_Thread_Idle_body.
58 *
59 *  If FALSE, then use the generic IDLE thread body if the BSP does
60 *  not provide one.
61 *
62 *  This is intended to allow for supporting processors which have
63 *  a low power or idle mode.  When the IDLE thread is executed, then
64 *  the CPU can be powered down.
65 *
66 *  The order of precedence for selecting the IDLE thread body is:
67 *
68 *    1.  BSP provided
69 *    2.  CPU dependent (if provided)
70 *    3.  generic (if no BSP and no CPU dependent)
71 */
72
73#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
74
75/*
76 *  Does the stack grow up (toward higher addresses) or down
77 *  (toward lower addresses)?
78 *
79 *  If TRUE, then the grows upward.
80 *  If FALSE, then the grows toward smaller addresses.
81 */
82
83#define CPU_STACK_GROWS_UP               FALSE
84
85#define CPU_CACHE_LINE_BYTES PPC_STRUCTURE_ALIGNMENT
86
87#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
88
89/*
90 *  Does the CPU have hardware floating point?
91 *
92 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
93 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
94 *
95 *  If there is a FP coprocessor such as the i387 or mc68881, then
96 *  the answer is TRUE.
97 *
98 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
99 *  It indicates whether or not this CPU model has FP support.  For
100 *  example, it would be possible to have an i386_nofp CPU model
101 *  which set this to false to indicate that you have an i386 without
102 *  an i387 and wish to leave floating point support out of RTEMS.
103 */
104
105#if ( PPC_HAS_FPU == 1 )
106#define CPU_HARDWARE_FP     TRUE
107#define CPU_SOFTWARE_FP     FALSE
108#else
109#define CPU_HARDWARE_FP     FALSE
110#define CPU_SOFTWARE_FP     FALSE
111#endif
112
113/*
114 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
115 *
116 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
117 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
118 *
119 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
120 *
121 *  PowerPC Note: It appears the GCC can implicitly generate FPU
122 *  and Altivec instructions when you least expect them.  So make
123 *  all tasks floating point.
124 */
125
126#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
127
128/*
129 *  Should the IDLE task have a floating point context?
130 *
131 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
132 *  and it has a floating point context which is switched in and out.
133 *  If FALSE, then the IDLE task does not have a floating point context.
134 *
135 *  Setting this to TRUE negatively impacts the time required to preempt
136 *  the IDLE task from an interrupt because the floating point context
137 *  must be saved as part of the preemption.
138 */
139
140#define CPU_IDLE_TASK_IS_FP      FALSE
141
142#define CPU_MAXIMUM_PROCESSORS 32
143
144/*
145 *  Processor defined structures required for cpukit/score.
146 */
147
148/*
149 * Contexts
150 *
151 *  Generally there are 2 types of context to save.
152 *     1. Interrupt registers to save
153 *     2. Task level registers to save
154 *
155 *  This means we have the following 3 context items:
156 *     1. task level context stuff::  Context_Control
157 *     2. floating point task stuff:: Context_Control_fp
158 *     3. special interrupt level context :: Context_Control_interrupt
159 *
160 *  On some processors, it is cost-effective to save only the callee
161 *  preserved registers during a task context switch.  This means
162 *  that the ISR code needs to save those registers which do not
163 *  persist across function calls.  It is not mandatory to make this
164 *  distinctions between the caller/callee saves registers for the
165 *  purpose of minimizing context saved during task switch and on interrupts.
166 *  If the cost of saving extra registers is minimal, simplicity is the
167 *  choice.  Save the same context on interrupt entry as for tasks in
168 *  this case.
169 *
170 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
171 *  care should be used in designing the context area.
172 *
173 *  On some CPUs with hardware floating point support, the Context_Control_fp
174 *  structure will not be used or it simply consist of an array of a
175 *  fixed number of bytes.   This is done when the floating point context
176 *  is dumped by a "FP save context" type instruction and the format
177 *  is not really defined by the CPU.  In this case, there is no need
178 *  to figure out the exact format -- only the size.  Of course, although
179 *  this is enough information for RTEMS, it is probably not enough for
180 *  a debugger such as gdb.  But that is another problem.
181 */
182
183#ifndef __SPE__
184  #define PPC_GPR_TYPE uintptr_t
185  #if defined(__powerpc64__)
186    #define PPC_GPR_SIZE 8
187    #define PPC_GPR_LOAD ld
188    #define PPC_GPR_STORE std
189  #else
190    #define PPC_GPR_SIZE 4
191    #define PPC_GPR_LOAD lwz
192    #define PPC_GPR_STORE stw
193  #endif
194#else
195  #define PPC_GPR_TYPE uint64_t
196  #define PPC_GPR_SIZE 8
197  #define PPC_GPR_LOAD evldd
198  #define PPC_GPR_STORE evstdd
199#endif
200
201#if defined(__powerpc64__)
202  #define PPC_REG_SIZE 8
203  #define PPC_REG_LOAD ld
204  #define PPC_REG_STORE std
205  #define PPC_REG_STORE_UPDATE stdu
206  #define PPC_REG_CMP cmpd
207#else
208  #define PPC_REG_SIZE 4
209  #define PPC_REG_LOAD lwz
210  #define PPC_REG_STORE stw
211  #define PPC_REG_STORE_UPDATE stwu
212  #define PPC_REG_CMP cmpw
213#endif
214
215#ifndef ASM
216
217/*
218 * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
219 * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
220 * Linux and Embedded")
221 */
222typedef struct {
223  uint32_t msr;
224  uint32_t cr;
225  uintptr_t gpr1;
226  uintptr_t lr;
227  PPC_GPR_TYPE gpr14;
228  PPC_GPR_TYPE gpr15;
229  PPC_GPR_TYPE gpr16;
230  PPC_GPR_TYPE gpr17;
231  PPC_GPR_TYPE gpr18;
232  PPC_GPR_TYPE gpr19;
233  PPC_GPR_TYPE gpr20;
234  PPC_GPR_TYPE gpr21;
235  PPC_GPR_TYPE gpr22;
236  PPC_GPR_TYPE gpr23;
237  PPC_GPR_TYPE gpr24;
238  PPC_GPR_TYPE gpr25;
239  PPC_GPR_TYPE gpr26;
240  PPC_GPR_TYPE gpr27;
241  PPC_GPR_TYPE gpr28;
242  PPC_GPR_TYPE gpr29;
243  PPC_GPR_TYPE gpr30;
244  PPC_GPR_TYPE gpr31;
245  uint32_t isr_dispatch_disable;
246  uint32_t reserved_for_alignment;
247  #if defined(PPC_MULTILIB_ALTIVEC)
248    uint8_t v20[16];
249    uint8_t v21[16];
250    uint8_t v22[16];
251    uint8_t v23[16];
252    uint8_t v24[16];
253    uint8_t v25[16];
254    uint8_t v26[16];
255    uint8_t v27[16];
256    uint8_t v28[16];
257    uint8_t v29[16];
258    uint8_t v30[16];
259    uint8_t v31[16];
260    uint32_t vrsave;
261  #elif defined(__ALTIVEC__)
262    /*
263     * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
264     * and padding to ensure cache-alignment.  Unfortunately, we can't verify
265     * the cache line size here in the cpukit but altivec support code will
266     * produce an error if this is ever different from 32 bytes.
267     *
268     * Note: it is the BSP/CPU-support's responsibility to save/restore
269     *       volatile vregs across interrupts and exceptions.
270     */
271    uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
272  #endif
273  #if defined(PPC_MULTILIB_FPU)
274    double f14;
275    double f15;
276    double f16;
277    double f17;
278    double f18;
279    double f19;
280    double f20;
281    double f21;
282    double f22;
283    double f23;
284    double f24;
285    double f25;
286    double f26;
287    double f27;
288    double f28;
289    double f29;
290    double f30;
291    double f31;
292  #endif
293  /*
294   * The following items are at the structure end, so that we can use dcbz for
295   * the previous items to optimize the context switch.  We must not set the
296   * following items to zero via the dcbz.
297   */
298  uintptr_t tp;
299  #if defined(RTEMS_SMP)
300    volatile uint32_t is_executing;
301  #endif
302} ppc_context;
303
304typedef struct {
305  uint8_t context [
306    PPC_DEFAULT_CACHE_LINE_SIZE
307      + sizeof(ppc_context)
308      + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
309        ? 0
310          : PPC_DEFAULT_CACHE_LINE_SIZE
311            - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
312  ];
313} Context_Control;
314
315static inline ppc_context *ppc_get_context( const Context_Control *context )
316{
317  uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
318  uintptr_t mask = clsz - 1;
319  uintptr_t addr = (uintptr_t) context;
320
321  return (ppc_context *) ((addr & ~mask) + clsz);
322}
323
324#define _CPU_Context_Get_SP( _context ) \
325  ppc_get_context(_context)->gpr1
326
327#ifdef RTEMS_SMP
328  static inline bool _CPU_Context_Get_is_executing(
329    const Context_Control *context
330  )
331  {
332    return ppc_get_context(context)->is_executing;
333  }
334
335  static inline void _CPU_Context_Set_is_executing(
336    Context_Control *context,
337    bool is_executing
338  )
339  {
340    ppc_get_context(context)->is_executing = is_executing;
341  }
342#endif
343#endif /* ASM */
344
345#define PPC_CONTEXT_OFFSET_MSR (PPC_DEFAULT_CACHE_LINE_SIZE)
346#define PPC_CONTEXT_OFFSET_CR (PPC_DEFAULT_CACHE_LINE_SIZE + 4)
347#define PPC_CONTEXT_OFFSET_GPR1 (PPC_DEFAULT_CACHE_LINE_SIZE + 8)
348#define PPC_CONTEXT_OFFSET_LR (PPC_DEFAULT_CACHE_LINE_SIZE + PPC_REG_SIZE + 8)
349
350#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
351  (((gpr) - 14) * PPC_GPR_SIZE + \
352    PPC_DEFAULT_CACHE_LINE_SIZE + 8 + 2 * PPC_REG_SIZE)
353
354#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
355#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
356#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
357#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
358#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
359#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
360#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
361#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
362#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
363#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
364#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
365#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
366#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
367#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
368#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
369#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
370#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
371#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
372#define PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE PPC_CONTEXT_GPR_OFFSET( 32 )
373
374#ifdef PPC_MULTILIB_ALTIVEC
375  #define PPC_CONTEXT_OFFSET_V( v ) \
376    ( ( ( v ) - 20 ) * 16 + PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 8)
377  #define PPC_CONTEXT_OFFSET_V20 PPC_CONTEXT_OFFSET_V( 20 )
378  #define PPC_CONTEXT_OFFSET_V21 PPC_CONTEXT_OFFSET_V( 21 )
379  #define PPC_CONTEXT_OFFSET_V22 PPC_CONTEXT_OFFSET_V( 22 )
380  #define PPC_CONTEXT_OFFSET_V23 PPC_CONTEXT_OFFSET_V( 23 )
381  #define PPC_CONTEXT_OFFSET_V24 PPC_CONTEXT_OFFSET_V( 24 )
382  #define PPC_CONTEXT_OFFSET_V25 PPC_CONTEXT_OFFSET_V( 25 )
383  #define PPC_CONTEXT_OFFSET_V26 PPC_CONTEXT_OFFSET_V( 26 )
384  #define PPC_CONTEXT_OFFSET_V27 PPC_CONTEXT_OFFSET_V( 27 )
385  #define PPC_CONTEXT_OFFSET_V28 PPC_CONTEXT_OFFSET_V( 28 )
386  #define PPC_CONTEXT_OFFSET_V29 PPC_CONTEXT_OFFSET_V( 29 )
387  #define PPC_CONTEXT_OFFSET_V30 PPC_CONTEXT_OFFSET_V( 30 )
388  #define PPC_CONTEXT_OFFSET_V31 PPC_CONTEXT_OFFSET_V( 31 )
389  #define PPC_CONTEXT_OFFSET_VRSAVE PPC_CONTEXT_OFFSET_V( 32 )
390  #define PPC_CONTEXT_OFFSET_F( f ) \
391    ( ( ( f ) - 14 ) * 8 + PPC_CONTEXT_OFFSET_VRSAVE + 8 )
392#else
393  #define PPC_CONTEXT_OFFSET_F( f ) \
394    ( ( ( f ) - 14 ) * 8 + PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 8 )
395#endif
396
397#ifdef PPC_MULTILIB_FPU
398  #define PPC_CONTEXT_OFFSET_F14 PPC_CONTEXT_OFFSET_F( 14 )
399  #define PPC_CONTEXT_OFFSET_F15 PPC_CONTEXT_OFFSET_F( 15 )
400  #define PPC_CONTEXT_OFFSET_F16 PPC_CONTEXT_OFFSET_F( 16 )
401  #define PPC_CONTEXT_OFFSET_F17 PPC_CONTEXT_OFFSET_F( 17 )
402  #define PPC_CONTEXT_OFFSET_F18 PPC_CONTEXT_OFFSET_F( 18 )
403  #define PPC_CONTEXT_OFFSET_F19 PPC_CONTEXT_OFFSET_F( 19 )
404  #define PPC_CONTEXT_OFFSET_F20 PPC_CONTEXT_OFFSET_F( 20 )
405  #define PPC_CONTEXT_OFFSET_F21 PPC_CONTEXT_OFFSET_F( 21 )
406  #define PPC_CONTEXT_OFFSET_F22 PPC_CONTEXT_OFFSET_F( 22 )
407  #define PPC_CONTEXT_OFFSET_F23 PPC_CONTEXT_OFFSET_F( 23 )
408  #define PPC_CONTEXT_OFFSET_F24 PPC_CONTEXT_OFFSET_F( 24 )
409  #define PPC_CONTEXT_OFFSET_F25 PPC_CONTEXT_OFFSET_F( 25 )
410  #define PPC_CONTEXT_OFFSET_F26 PPC_CONTEXT_OFFSET_F( 26 )
411  #define PPC_CONTEXT_OFFSET_F27 PPC_CONTEXT_OFFSET_F( 27 )
412  #define PPC_CONTEXT_OFFSET_F28 PPC_CONTEXT_OFFSET_F( 28 )
413  #define PPC_CONTEXT_OFFSET_F29 PPC_CONTEXT_OFFSET_F( 29 )
414  #define PPC_CONTEXT_OFFSET_F30 PPC_CONTEXT_OFFSET_F( 30 )
415  #define PPC_CONTEXT_OFFSET_F31 PPC_CONTEXT_OFFSET_F( 31 )
416#endif
417
418#if defined(PPC_MULTILIB_FPU)
419  #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_F( 32 )
420#elif defined(PPC_MULTILIB_ALTIVEC)
421  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_OFFSET_VRSAVE + 4)
422#elif defined(__ALTIVEC__)
423  #define PPC_CONTEXT_VOLATILE_SIZE \
424    (PPC_CONTEXT_GPR_OFFSET( 32 ) + 8 \
425      + 16 * 12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE)
426#else
427  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_GPR_OFFSET( 32 ) + 8)
428#endif
429
430#define PPC_CONTEXT_OFFSET_TP PPC_CONTEXT_VOLATILE_SIZE
431
432#ifdef RTEMS_SMP
433  #define PPC_CONTEXT_OFFSET_IS_EXECUTING \
434    (PPC_CONTEXT_OFFSET_TP + PPC_REG_SIZE)
435#endif
436
437#ifndef ASM
438typedef struct {
439#if (PPC_HAS_FPU == 1)
440    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
441     * procedure calls.  However, this would mean that the interrupt
442     * frame had to hold f0-f13, and the fpscr.  And as the majority
443     * of tasks will not have an FP context, we will save the whole
444     * context here.
445     */
446#if (PPC_HAS_DOUBLE == 1)
447    double      f[32];
448    uint64_t    fpscr;
449#else
450    float       f[32];
451    uint32_t    fpscr;
452#endif
453#endif /* (PPC_HAS_FPU == 1) */
454} Context_Control_fp;
455
456#endif /* ASM */
457
458/*
459 *  Does the CPU follow the simple vectored interrupt model?
460 *
461 *  If TRUE, then RTEMS allocates the vector table it internally manages.
462 *  If FALSE, then the BSP is assumed to allocate and manage the vector
463 *  table
464 *
465 *  PowerPC Specific Information:
466 *
467 *  The PowerPC and x86 were the first to use the PIC interrupt model.
468 *  They do not use the simple vectored interrupt model.
469 */
470#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
471
472/*
473 *  Does RTEMS manage a dedicated interrupt stack in software?
474 *
475 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
476 *  If FALSE, nothing is done.
477 *
478 *  If the CPU supports a dedicated interrupt stack in hardware,
479 *  then it is generally the responsibility of the BSP to allocate it
480 *  and set it up.
481 *
482 *  If the CPU does not support a dedicated interrupt stack, then
483 *  the porter has two options: (1) execute interrupts on the
484 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
485 *  interrupt stack.
486 *
487 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
488 *
489 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
490 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
491 *  possible that both are FALSE for a particular CPU.  Although it
492 *  is unclear what that would imply about the interrupt processing
493 *  procedure on that CPU.
494 */
495
496#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
497
498/*
499 *  Does this CPU have hardware support for a dedicated interrupt stack?
500 *
501 *  If TRUE, then it must be installed during initialization.
502 *  If FALSE, then no installation is performed.
503 *
504 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
505 *
506 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
507 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
508 *  possible that both are FALSE for a particular CPU.  Although it
509 *  is unclear what that would imply about the interrupt processing
510 *  procedure on that CPU.
511 */
512
513#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
514
515/*
516 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
517 *
518 *  If TRUE, then the memory is allocated during initialization.
519 *  If FALSE, then the memory is allocated during initialization.
520 *
521 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
522 */
523
524#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
525
526/*
527 *  Does the RTEMS invoke the user's ISR with the vector number and
528 *  a pointer to the saved interrupt frame (1) or just the vector
529 *  number (0)?
530 */
531
532#define CPU_ISR_PASSES_FRAME_POINTER FALSE
533
534/*
535 *  Should the saving of the floating point registers be deferred
536 *  until a context switch is made to another different floating point
537 *  task?
538 *
539 *  If TRUE, then the floating point context will not be stored until
540 *  necessary.  It will remain in the floating point registers and not
541 *  disturned until another floating point task is switched to.
542 *
543 *  If FALSE, then the floating point context is saved when a floating
544 *  point task is switched out and restored when the next floating point
545 *  task is restored.  The state of the floating point registers between
546 *  those two operations is not specified.
547 *
548 *  If the floating point context does NOT have to be saved as part of
549 *  interrupt dispatching, then it should be safe to set this to TRUE.
550 *
551 *  Setting this flag to TRUE results in using a different algorithm
552 *  for deciding when to save and restore the floating point context.
553 *  The deferred FP switch algorithm minimizes the number of times
554 *  the FP context is saved and restored.  The FP context is not saved
555 *  until a context switch is made to another, different FP task.
556 *  Thus in a system with only one FP task, the FP context will never
557 *  be saved or restored.
558 *
559 *  Note, however that compilers may use floating point registers/
560 *  instructions for optimization or they may save/restore FP registers
561 *  on the stack. You must not use deferred switching in these cases
562 *  and on the PowerPC attempting to do so will raise a "FP unavailable"
563 *  exception.
564 */
565/*
566 *  ACB Note:  This could make debugging tricky..
567 */
568
569/* conservative setting (FALSE); probably doesn't affect performance too much */
570#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
571
572#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
573
574/*
575 *  Processor defined structures required for cpukit/score.
576 */
577
578#ifndef ASM
579
580/*
581 *  This variable is optional.  It is used on CPUs on which it is difficult
582 *  to generate an "uninitialized" FP context.  It is filled in by
583 *  _CPU_Initialize and copied into the task's FP context area during
584 *  _CPU_Context_Initialize.
585 */
586
587/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */
588
589#endif /* ndef ASM */
590
591/*
592 *  This defines the number of levels and the mask used to pick those
593 *  bits out of a thread mode.
594 */
595
596#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
597#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
598
599/*
600 *  The size of the floating point context area.  On some CPUs this
601 *  will not be a "sizeof" because the format of the floating point
602 *  area is not defined -- only the size is.  This is usually on
603 *  CPUs with a "floating point save context" instruction.
604 */
605
606#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
607
608/*
609 * (Optional) # of bytes for libmisc/stackchk to check
610 * If not specifed, then it defaults to something reasonable
611 * for most architectures.
612 */
613
614#define CPU_STACK_CHECK_PATTERN_INITIALIZER \
615  { 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
616    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
617    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
618    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
619    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
620    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
621    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
622    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06 }
623
624/*
625 *  Amount of extra stack (above minimum stack size) required by
626 *  MPCI receive server thread.  Remember that in a multiprocessor
627 *  system this thread must exist and be able to process all directives.
628 */
629
630#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
631
632/*
633 *  This is defined if the port has a special way to report the ISR nesting
634 *  level.  Most ports maintain the variable _ISR_Nest_level. Note that
635 *  this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
636 *  being maintained (e.g. watchdog queues).
637 */
638
639#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
640
641/*
642 *  ISR handler macros
643 */
644
645/*
646 *  Disable all interrupts for an RTEMS critical section.  The previous
647 *  level is returned in _isr_cookie.
648 */
649
650#ifndef ASM
651
652RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
653{
654  return ( level & MSR_EE ) != 0;
655}
656
657static inline uint32_t   _CPU_ISR_Get_level( void )
658{
659  register unsigned int msr;
660  _CPU_MSR_GET(msr);
661  if (msr & MSR_EE) return 0;
662  else  return 1;
663}
664
665static inline void _CPU_ISR_Set_level( uint32_t   level )
666{
667  register unsigned int msr;
668  _CPU_MSR_GET(msr);
669  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
670    msr |= ppc_interrupt_get_disable_mask();
671  }
672  else {
673    msr &= ~ppc_interrupt_get_disable_mask();
674  }
675  _CPU_MSR_SET(msr);
676}
677
678#endif /* ASM */
679
680#define _CPU_Fatal_halt( _source, _error ) \
681  do { \
682    ppc_interrupt_disable(); \
683    __asm__ volatile ( \
684      "mr 3, %0\n" \
685      "mr 4, %1\n" \
686      "1:\n" \
687      "b 1b\n" \
688      : \
689      : "r" (_source), "r" (_error) \
690      : "memory" \
691    ); \
692  } while ( 0 )
693
694/*
695 *  Should be large enough to run all RTEMS tests.  This ensures
696 *  that a "reasonable" small application should not have any problems.
697 */
698
699#define CPU_STACK_MINIMUM_SIZE          (1024*8)
700
701#if defined(__powerpc64__)
702#define CPU_SIZEOF_POINTER 8
703#else
704#define CPU_SIZEOF_POINTER 4
705#endif
706
707/*
708 *  CPU's worst alignment requirement for data types on a byte boundary.  This
709 *  alignment does not take into account the requirements for the stack.
710 */
711
712#define CPU_ALIGNMENT              (PPC_ALIGNMENT)
713
714/*
715 *  This number corresponds to the byte alignment requirement for the
716 *  heap handler.  This alignment requirement may be stricter than that
717 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
718 *  common for the heap to follow the same alignment requirement as
719 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
720 *  then this should be set to CPU_ALIGNMENT.
721 *
722 *  NOTE:  This does not have to be a power of 2.  It does have to
723 *         be greater or equal to than CPU_ALIGNMENT.
724 */
725
726#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)
727
728/*
729 *  This number corresponds to the byte alignment requirement for memory
730 *  buffers allocated by the partition manager.  This alignment requirement
731 *  may be stricter than that for the data types alignment specified by
732 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
733 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
734 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
735 *
736 *  NOTE:  This does not have to be a power of 2.  It does have to
737 *         be greater or equal to than CPU_ALIGNMENT.
738 */
739
740#define CPU_PARTITION_ALIGNMENT    (PPC_ALIGNMENT)
741
742/*
743 *  This number corresponds to the byte alignment requirement for the
744 *  stack.  This alignment requirement may be stricter than that for the
745 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
746 *  is strict enough for the stack, then this should be set to 0.
747 *
748 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
749 */
750
751#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)
752
753#ifndef ASM
754/*  The following routine swaps the endian format of an unsigned int.
755 *  It must be static because it is referenced indirectly.
756 *
757 *  This version will work on any processor, but if there is a better
758 *  way for your CPU PLEASE use it.  The most common way to do this is to:
759 *
760 *     swap least significant two bytes with 16-bit rotate
761 *     swap upper and lower 16-bits
762 *     swap most significant two bytes with 16-bit rotate
763 *
764 *  Some CPUs have special instructions which swap a 32-bit quantity in
765 *  a single instruction (e.g. i486).  It is probably best to avoid
766 *  an "endian swapping control bit" in the CPU.  One good reason is
767 *  that interrupts would probably have to be disabled to ensure that
768 *  an interrupt does not try to access the same "chunk" with the wrong
769 *  endian.  Another good reason is that on some CPUs, the endian bit
770 *  endianness for ALL fetches -- both code and data -- so the code
771 *  will be fetched incorrectly.
772 */
773
774static inline uint32_t CPU_swap_u32(
775  uint32_t value
776)
777{
778  uint32_t   swapped;
779
780  __asm__ volatile("rlwimi %0,%1,8,24,31;"
781               "rlwimi %0,%1,24,16,23;"
782               "rlwimi %0,%1,8,8,15;"
783               "rlwimi %0,%1,24,0,7;" :
784               "=&r" ((swapped)) : "r" ((value)));
785
786  return( swapped );
787}
788
789#define CPU_swap_u16( value ) \
790  (((value&0xff) << 8) | ((value >> 8)&0xff))
791
792typedef uint32_t CPU_Counter_ticks;
793
794static inline CPU_Counter_ticks _CPU_Counter_read( void )
795{
796  CPU_Counter_ticks value;
797
798#if defined(__PPC_CPU_E6500__)
799  /* Use Alternate Time Base */
800  __asm__ volatile( "mfspr %0, 526" : "=r" (value) );
801#else
802  __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
803#endif
804
805  return value;
806}
807
808static inline CPU_Counter_ticks _CPU_Counter_difference(
809  CPU_Counter_ticks second,
810  CPU_Counter_ticks first
811)
812{
813  return second - first;
814}
815
816#endif /* ASM */
817
818
819#ifndef ASM
820/* Context handler macros */
821
822/*
823 *  Initialize the context to a state suitable for starting a
824 *  task after a context restore operation.  Generally, this
825 *  involves:
826 *
827 *     - setting a starting address
828 *     - preparing the stack
829 *     - preparing the stack and frame pointers
830 *     - setting the proper interrupt level in the context
831 *     - initializing the floating point context
832 *
833 *  This routine generally does not set any unnecessary register
834 *  in the context.  The state of the "general data" registers is
835 *  undefined at task start time.
836 */
837
838void _CPU_Context_Initialize(
839  Context_Control  *the_context,
840  void             *stack_base,
841  size_t            size,
842  uint32_t          new_level,
843  void             *entry_point,
844  bool              is_fp,
845  void             *tls_area
846);
847
848/*
849 *  This routine is responsible for somehow restarting the currently
850 *  executing task.  If you are lucky, then all that is necessary
851 *  is restoring the context.  Otherwise, there will need to be
852 *  a special assembly routine which does something special in this
853 *  case.  Context_Restore should work most of the time.  It will
854 *  not work if restarting self conflicts with the stack frame
855 *  assumptions of restoring a context.
856 */
857
858#define _CPU_Context_Restart_self( _the_context ) \
859   _CPU_Context_restore( (_the_context) );
860
861/*
862 *  This routine initializes the FP context area passed to it to.
863 *  There are a few standard ways in which to initialize the
864 *  floating point context.  The code included for this macro assumes
865 *  that this is a CPU in which a "initial" FP context was saved into
866 *  _CPU_Null_fp_context and it simply copies it to the destination
867 *  context passed to it.
868 *
869 *  Other models include (1) not doing anything, and (2) putting
870 *  a "null FP status word" in the correct place in the FP context.
871 */
872
873#define _CPU_Context_Initialize_fp( _destination ) \
874  memset( *(_destination), 0, sizeof( **(_destination) ) )
875
876/* end of Context handler macros */
877#endif /* ASM */
878
879#ifndef ASM
880/* Bitfield handler macros */
881
882#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
883
884/*
885 *  This routine sets _output to the bit number of the first bit
886 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
887 *  This type may be either 16 or 32 bits wide although only the 16
888 *  least significant bits will be used.
889 *
890 *  There are a number of variables in using a "find first bit" type
891 *  instruction.
892 *
893 *    (1) What happens when run on a value of zero?
894 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
895 *    (3) The numbering may be zero or one based.
896 *    (4) The "find first bit" instruction may search from MSB or LSB.
897 *
898 *  RTEMS guarantees that (1) will never happen so it is not a concern.
899 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
900 *  _CPU_Priority_Bits_index().  These three form a set of routines
901 *  which must logically operate together.  Bits in the _value are
902 *  set and cleared based on masks built by _CPU_Priority_mask().
903 *  The basic major and minor values calculated by _Priority_Major()
904 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
905 *  to properly range between the values returned by the "find first bit"
906 *  instruction.  This makes it possible for _Priority_Get_highest() to
907 *  calculate the major and directly index into the minor table.
908 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
909 *  is the first bit found.
910 *
911 *  This entire "find first bit" and mapping process depends heavily
912 *  on the manner in which a priority is broken into a major and minor
913 *  components with the major being the 4 MSB of a priority and minor
914 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
915 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
916 *  to the lowest priority.
917 *
918 *  If your CPU does not have a "find first bit" instruction, then
919 *  there are ways to make do without it.  Here are a handful of ways
920 *  to implement this in software:
921 *
922 *    - a series of 16 bit test instructions
923 *    - a "binary search using if's"
924 *    - _number = 0
925 *      if _value > 0x00ff
926 *        _value >>=8
927 *        _number = 8;
928 *
929 *      if _value > 0x0000f
930 *        _value >=8
931 *        _number += 4
932 *
933 *      _number += bit_set_table[ _value ]
934 *
935 *    where bit_set_table[ 16 ] has values which indicate the first
936 *      bit set
937 */
938
939#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
940  { \
941    __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
942                  "1" ((_value))); \
943    (_output) = (_output) - 16; \
944  }
945
946/* end of Bitfield handler macros */
947
948/*
949 *  This routine builds the mask which corresponds to the bit fields
950 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
951 *  for that routine.
952 */
953
954#define _CPU_Priority_Mask( _bit_number ) \
955  ( 0x8000u >> (_bit_number) )
956
957/*
958 *  This routine translates the bit numbers returned by
959 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
960 *  a major or minor component of a priority.  See the discussion
961 *  for that routine.
962 */
963
964#define _CPU_Priority_bits_index( _priority ) \
965  (_priority)
966
967/* end of Priority handler macros */
968#endif /* ASM */
969
970/* functions */
971
972#ifndef ASM
973
974/*
975 *  _CPU_Initialize
976 *
977 *  This routine performs CPU dependent initialization.
978 */
979
980void _CPU_Initialize(void);
981
982/*
983 *  _CPU_ISR_install_vector
984 *
985 *  This routine installs an interrupt vector.
986 */
987
988void _CPU_ISR_install_vector(
989  uint32_t    vector,
990  proc_ptr    new_handler,
991  proc_ptr   *old_handler
992);
993
994/*
995 *  _CPU_Context_switch
996 *
997 *  This routine switches from the run context to the heir context.
998 */
999
1000void _CPU_Context_switch(
1001  Context_Control  *run,
1002  Context_Control  *heir
1003);
1004
1005/*
1006 *  _CPU_Context_restore
1007 *
1008 *  This routine is generallu used only to restart self in an
1009 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1010 *
1011 *  NOTE: May be unnecessary to reload some registers.
1012 */
1013
1014void _CPU_Context_restore(
1015  Context_Control *new_context
1016) RTEMS_NO_RETURN;
1017
1018/*
1019 *  _CPU_Context_save_fp
1020 *
1021 *  This routine saves the floating point context passed to it.
1022 */
1023
1024void _CPU_Context_save_fp(
1025  Context_Control_fp **fp_context_ptr
1026);
1027
1028/*
1029 *  _CPU_Context_restore_fp
1030 *
1031 *  This routine restores the floating point context passed to it.
1032 */
1033
1034void _CPU_Context_restore_fp(
1035  Context_Control_fp **fp_context_ptr
1036);
1037
1038void _CPU_Context_volatile_clobber( uintptr_t pattern );
1039
1040void _CPU_Context_validate( uintptr_t pattern );
1041
1042#ifdef RTEMS_SMP
1043  uint32_t _CPU_SMP_Initialize( void );
1044
1045  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1046
1047  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1048
1049  void _CPU_SMP_Prepare_start_multitasking( void );
1050
1051  static inline uint32_t _CPU_SMP_Get_current_processor( void )
1052  {
1053    uint32_t pir;
1054
1055    /* Use Book E Processor ID Register (PIR) */
1056    __asm__ volatile (
1057      "mfspr %[pir], 286"
1058      : [pir] "=&r" (pir)
1059    );
1060
1061    return pir;
1062  }
1063
1064  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1065
1066  static inline void _CPU_SMP_Processor_event_broadcast( void )
1067  {
1068    __asm__ volatile ( "" : : : "memory" );
1069  }
1070
1071  static inline void _CPU_SMP_Processor_event_receive( void )
1072  {
1073    __asm__ volatile ( "" : : : "memory" );
1074  }
1075#endif
1076
1077typedef struct {
1078  uintptr_t EXC_SRR0;
1079  uintptr_t EXC_SRR1;
1080  uint32_t _EXC_number;
1081  uint32_t RESERVED_FOR_ALIGNMENT_0;
1082  uint32_t EXC_CR;
1083  uint32_t EXC_XER;
1084  uintptr_t EXC_CTR;
1085  uintptr_t EXC_LR;
1086  uintptr_t RESERVED_FOR_ALIGNMENT_1;
1087  #ifdef __SPE__
1088    uint32_t EXC_SPEFSCR;
1089    uint64_t EXC_ACC;
1090  #endif
1091  PPC_GPR_TYPE GPR0;
1092  PPC_GPR_TYPE GPR1;
1093  PPC_GPR_TYPE GPR2;
1094  PPC_GPR_TYPE GPR3;
1095  PPC_GPR_TYPE GPR4;
1096  PPC_GPR_TYPE GPR5;
1097  PPC_GPR_TYPE GPR6;
1098  PPC_GPR_TYPE GPR7;
1099  PPC_GPR_TYPE GPR8;
1100  PPC_GPR_TYPE GPR9;
1101  PPC_GPR_TYPE GPR10;
1102  PPC_GPR_TYPE GPR11;
1103  PPC_GPR_TYPE GPR12;
1104  PPC_GPR_TYPE GPR13;
1105  PPC_GPR_TYPE GPR14;
1106  PPC_GPR_TYPE GPR15;
1107  PPC_GPR_TYPE GPR16;
1108  PPC_GPR_TYPE GPR17;
1109  PPC_GPR_TYPE GPR18;
1110  PPC_GPR_TYPE GPR19;
1111  PPC_GPR_TYPE GPR20;
1112  PPC_GPR_TYPE GPR21;
1113  PPC_GPR_TYPE GPR22;
1114  PPC_GPR_TYPE GPR23;
1115  PPC_GPR_TYPE GPR24;
1116  PPC_GPR_TYPE GPR25;
1117  PPC_GPR_TYPE GPR26;
1118  PPC_GPR_TYPE GPR27;
1119  PPC_GPR_TYPE GPR28;
1120  PPC_GPR_TYPE GPR29;
1121  PPC_GPR_TYPE GPR30;
1122  PPC_GPR_TYPE GPR31;
1123  uintptr_t RESERVED_FOR_ALIGNMENT_2;
1124  #ifdef PPC_MULTILIB_ALTIVEC
1125    uint32_t VRSAVE;
1126    uint32_t RESERVED_FOR_ALIGNMENT_3[3];
1127
1128    /* This field must take stvewx/lvewx requirements into account */
1129    uint32_t RESERVED_FOR_ALIGNMENT_4[3];
1130    uint32_t VSCR;
1131
1132    uint8_t V0[16];
1133    uint8_t V1[16];
1134    uint8_t V2[16];
1135    uint8_t V3[16];
1136    uint8_t V4[16];
1137    uint8_t V5[16];
1138    uint8_t V6[16];
1139    uint8_t V7[16];
1140    uint8_t V8[16];
1141    uint8_t V9[16];
1142    uint8_t V10[16];
1143    uint8_t V11[16];
1144    uint8_t V12[16];
1145    uint8_t V13[16];
1146    uint8_t V14[16];
1147    uint8_t V15[16];
1148    uint8_t V16[16];
1149    uint8_t V17[16];
1150    uint8_t V18[16];
1151    uint8_t V19[16];
1152    uint8_t V20[16];
1153    uint8_t V21[16];
1154    uint8_t V22[16];
1155    uint8_t V23[16];
1156    uint8_t V24[16];
1157    uint8_t V25[16];
1158    uint8_t V26[16];
1159    uint8_t V27[16];
1160    uint8_t V28[16];
1161    uint8_t V29[16];
1162    uint8_t V30[16];
1163    uint8_t V31[16];
1164  #endif
1165  #ifdef PPC_MULTILIB_FPU
1166    double F0;
1167    double F1;
1168    double F2;
1169    double F3;
1170    double F4;
1171    double F5;
1172    double F6;
1173    double F7;
1174    double F8;
1175    double F9;
1176    double F10;
1177    double F11;
1178    double F12;
1179    double F13;
1180    double F14;
1181    double F15;
1182    double F16;
1183    double F17;
1184    double F18;
1185    double F19;
1186    double F20;
1187    double F21;
1188    double F22;
1189    double F23;
1190    double F24;
1191    double F25;
1192    double F26;
1193    double F27;
1194    double F28;
1195    double F29;
1196    double F30;
1197    double F31;
1198    uint64_t FPSCR;
1199    uint64_t RESERVED_FOR_ALIGNMENT_5;
1200  #endif
1201} CPU_Exception_frame;
1202
1203void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1204
1205/*
1206 * _CPU_Initialize_altivec()
1207 *
1208 * Global altivec-related initialization.
1209 */
1210void
1211_CPU_Initialize_altivec(void);
1212
1213/*
1214 * _CPU_Context_switch_altivec
1215 *
1216 * This routine switches the altivec contexts passed to it.
1217 */
1218
1219void
1220_CPU_Context_switch_altivec(
1221  ppc_context *from,
1222  ppc_context *to
1223);
1224
1225/*
1226 * _CPU_Context_restore_altivec
1227 *
1228 * This routine restores the altivec context passed to it.
1229 */
1230
1231void
1232_CPU_Context_restore_altivec(
1233  ppc_context *ctxt
1234);
1235
1236/*
1237 * _CPU_Context_initialize_altivec
1238 *
1239 * This routine initializes the altivec context passed to it.
1240 */
1241
1242void
1243_CPU_Context_initialize_altivec(
1244  ppc_context *ctxt
1245);
1246
1247void _CPU_Fatal_error(
1248  uint32_t   _error
1249);
1250
1251/** Type that can store a 32-bit integer or a pointer. */
1252typedef uintptr_t CPU_Uint32ptr;
1253
1254#endif /* ASM */
1255
1256#ifdef __cplusplus
1257}
1258#endif
1259
1260#endif /* _RTEMS_SCORE_CPU_H */
Note: See TracBrowser for help on using the repository browser.