source: rtems/cpukit/score/cpu/powerpc/include/rtems/score/cpu.h

Last change on this file was bcef89f2, checked in by Sebastian Huber <sebastian.huber@…>, on 05/19/23 at 06:18:25

Update company name

The embedded brains GmbH & Co. KG is the legal successor of embedded
brains GmbH.

  • Property mode set to 100644
File size: 34.4 KB
Line 
1/* SPDX-License-Identifier: BSD-2-Clause */
2
3/**
4 * @file
5 *
6 * @addtogroup RTEMSScoreCPUPowerPC
7 *
8 * @brief PowerPC CPU Department Source
9 */
10
11/*
12 *  COPYRIGHT (c) 1989-2012.
13 *  On-Line Applications Research Corporation (OAR).
14 *
15 *  COPYRIGHT (c) 1995 i-cubed ltd.
16 *
17 *  To anyone who acknowledges that this file is provided "AS IS"
18 *  without any express or implied warranty:
19 *      permission to use, copy, modify, and distribute this file
20 *      for any purpose is hereby granted without fee, provided that
21 *      the above copyright notice and this notice appears in all
22 *      copies, and that the name of i-cubed limited not be used in
23 *      advertising or publicity pertaining to distribution of the
24 *      software without specific, written prior permission.
25 *      i-cubed limited makes no representations about the suitability
26 *      of this software for any purpose.
27 *
28 *  Copyright (c) 2001 Andy Dachs <a.dachs@sstl.co.uk>.
29 *
30 *  Copyright (c) 2001 Surrey Satellite Technology Limited (SSTL).
31 *
32 *  Copyright (C) 2010, 2020 embedded brains GmbH & Co. KG
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
44 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
47 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
48 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
49 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
50 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
51 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
52 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
53 * POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#ifndef _RTEMS_SCORE_CPU_H
57#define _RTEMS_SCORE_CPU_H
58
59#include <rtems/score/basedefs.h>
60#if defined(RTEMS_PARAVIRT)
61#include <rtems/score/paravirt.h>
62#endif
63#include <rtems/score/powerpc.h>
64#include <rtems/powerpc/registers.h>
65
66#ifndef ASM
67  #include <string.h> /* for memset() */
68#endif
69
70#ifdef __cplusplus
71extern "C" {
72#endif
73
74/* conditional compilation parameters */
75
76/*
77 *  Does the stack grow up (toward higher addresses) or down
78 *  (toward lower addresses)?
79 *
80 *  If TRUE, then the grows upward.
81 *  If FALSE, then the grows toward smaller addresses.
82 */
83
84#define CPU_STACK_GROWS_UP               FALSE
85
86#define CPU_CACHE_LINE_BYTES PPC_STRUCTURE_ALIGNMENT
87
88#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
89
90/*
91 *  Does the CPU have hardware floating point?
92 *
93 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
94 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
95 *
96 *  If there is a FP coprocessor such as the i387 or mc68881, then
97 *  the answer is TRUE.
98 *
99 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
100 *  It indicates whether or not this CPU model has FP support.  For
101 *  example, it would be possible to have an i386_nofp CPU model
102 *  which set this to false to indicate that you have an i386 without
103 *  an i387 and wish to leave floating point support out of RTEMS.
104 */
105
106#if ( PPC_HAS_FPU == 1 )
107#define CPU_HARDWARE_FP     TRUE
108#define CPU_SOFTWARE_FP     FALSE
109#else
110#define CPU_HARDWARE_FP     FALSE
111#define CPU_SOFTWARE_FP     FALSE
112#endif
113
114/*
115 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
116 *
117 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
118 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
119 *
120 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
121 *
122 *  PowerPC Note: It appears the GCC can implicitly generate FPU
123 *  and Altivec instructions when you least expect them.  So make
124 *  all tasks floating point.
125 */
126
127#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
128
129/*
130 *  Should the IDLE task have a floating point context?
131 *
132 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
133 *  and it has a floating point context which is switched in and out.
134 *  If FALSE, then the IDLE task does not have a floating point context.
135 *
136 *  Setting this to TRUE negatively impacts the time required to preempt
137 *  the IDLE task from an interrupt because the floating point context
138 *  must be saved as part of the preemption.
139 */
140
141#define CPU_IDLE_TASK_IS_FP      FALSE
142
143#define CPU_MAXIMUM_PROCESSORS 32
144
145/*
146 *  Processor defined structures required for cpukit/score.
147 */
148
149/*
150 * Contexts
151 *
152 *  Generally there are 2 types of context to save.
153 *     1. Interrupt registers to save
154 *     2. Task level registers to save
155 *
156 *  This means we have the following 3 context items:
157 *     1. task level context stuff::  Context_Control
158 *     2. floating point task stuff:: Context_Control_fp
159 *     3. special interrupt level context :: Context_Control_interrupt
160 *
161 *  On some processors, it is cost-effective to save only the callee
162 *  preserved registers during a task context switch.  This means
163 *  that the ISR code needs to save those registers which do not
164 *  persist across function calls.  It is not mandatory to make this
165 *  distinctions between the caller/callee saves registers for the
166 *  purpose of minimizing context saved during task switch and on interrupts.
167 *  If the cost of saving extra registers is minimal, simplicity is the
168 *  choice.  Save the same context on interrupt entry as for tasks in
169 *  this case.
170 *
171 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
172 *  care should be used in designing the context area.
173 *
174 *  On some CPUs with hardware floating point support, the Context_Control_fp
175 *  structure will not be used or it simply consist of an array of a
176 *  fixed number of bytes.   This is done when the floating point context
177 *  is dumped by a "FP save context" type instruction and the format
178 *  is not really defined by the CPU.  In this case, there is no need
179 *  to figure out the exact format -- only the size.  Of course, although
180 *  this is enough information for RTEMS, it is probably not enough for
181 *  a debugger such as gdb.  But that is another problem.
182 */
183
184#ifndef __SPE__
185  #define PPC_GPR_TYPE uintptr_t
186  #if defined(__powerpc64__)
187    #define PPC_GPR_SIZE 8
188    #define PPC_GPR_LOAD ld
189    #define PPC_GPR_STORE std
190  #else
191    #define PPC_GPR_SIZE 4
192    #define PPC_GPR_LOAD lwz
193    #define PPC_GPR_STORE stw
194  #endif
195#else
196  #define PPC_GPR_TYPE uint64_t
197  #define PPC_GPR_SIZE 8
198  #define PPC_GPR_LOAD evldd
199  #define PPC_GPR_STORE evstdd
200#endif
201
202#if defined(__powerpc64__)
203  #define PPC_REG_SIZE 8
204  #define PPC_REG_LOAD ld
205  #define PPC_REG_STORE std
206  #define PPC_REG_STORE_UPDATE stdu
207  #define PPC_REG_CMP cmpd
208#else
209  #define PPC_REG_SIZE 4
210  #define PPC_REG_LOAD lwz
211  #define PPC_REG_STORE stw
212  #define PPC_REG_STORE_UPDATE stwu
213  #define PPC_REG_CMP cmpw
214#endif
215
216#ifndef ASM
217
218/*
219 * Non-volatile context according to E500ABIUG, EABI and 32-bit TLS (according
220 * to "Power Architecture 32-bit Application Binary Interface Supplement 1.0 -
221 * Linux and Embedded")
222 */
223typedef struct {
224  uint32_t msr;
225  uint32_t cr;
226  uintptr_t gpr1;
227  uintptr_t lr;
228  PPC_GPR_TYPE gpr14;
229  PPC_GPR_TYPE gpr15;
230  PPC_GPR_TYPE gpr16;
231  PPC_GPR_TYPE gpr17;
232  PPC_GPR_TYPE gpr18;
233  PPC_GPR_TYPE gpr19;
234  PPC_GPR_TYPE gpr20;
235  PPC_GPR_TYPE gpr21;
236  PPC_GPR_TYPE gpr22;
237  PPC_GPR_TYPE gpr23;
238  PPC_GPR_TYPE gpr24;
239  PPC_GPR_TYPE gpr25;
240  PPC_GPR_TYPE gpr26;
241  PPC_GPR_TYPE gpr27;
242  PPC_GPR_TYPE gpr28;
243  PPC_GPR_TYPE gpr29;
244  PPC_GPR_TYPE gpr30;
245  PPC_GPR_TYPE gpr31;
246  uint32_t isr_dispatch_disable;
247  uint32_t reserved_for_alignment;
248  #if defined(PPC_MULTILIB_ALTIVEC)
249    #if !defined(__powerpc64__)
250      uint32_t reserved_for_alignment_2[4];
251    #endif
252    uint32_t vrsave;
253    uint32_t reserved_for_alignment_3[2];
254    /* This field must take stvewx/lvewx requirements into account */
255    uint32_t vscr;
256    uint8_t v20[16];
257    uint8_t v21[16];
258    uint8_t v22[16];
259    uint8_t v23[16];
260    uint8_t v24[16];
261    uint8_t v25[16];
262    uint8_t v26[16];
263    uint8_t v27[16];
264    uint8_t v28[16];
265    uint8_t v29[16];
266    uint8_t v30[16];
267    uint8_t v31[16];
268  #elif defined(__ALTIVEC__)
269    /*
270     * 12 non-volatile vector registers, cache-aligned area for vscr/vrsave
271     * and padding to ensure cache-alignment.  Unfortunately, we can't verify
272     * the cache line size here in the cpukit but altivec support code will
273     * produce an error if this is ever different from 32 bytes.
274     *
275     * Note: it is the BSP/CPU-support's responsibility to save/restore
276     *       volatile vregs across interrupts and exceptions.
277     */
278    uint8_t altivec[16*12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE];
279  #endif
280  #if defined(PPC_MULTILIB_FPU)
281    double f14;
282    double f15;
283    double f16;
284    double f17;
285    double f18;
286    double f19;
287    double f20;
288    double f21;
289    double f22;
290    double f23;
291    double f24;
292    double f25;
293    double f26;
294    double f27;
295    double f28;
296    double f29;
297    double f30;
298    double f31;
299  #endif
300  /*
301   * The following items are at the structure end, so that we can use dcbz for
302   * the previous items to optimize the context switch.  We must not set the
303   * following items to zero via the dcbz.
304   */
305  uintptr_t tp;
306  #if defined(RTEMS_SMP)
307    volatile uint32_t is_executing;
308  #endif
309} ppc_context;
310
311typedef struct {
312  uint8_t context [
313    PPC_DEFAULT_CACHE_LINE_SIZE
314      + sizeof(ppc_context)
315      + (sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE == 0
316        ? 0
317          : PPC_DEFAULT_CACHE_LINE_SIZE
318            - sizeof(ppc_context) % PPC_DEFAULT_CACHE_LINE_SIZE)
319  ];
320} Context_Control;
321
322static inline ppc_context *ppc_get_context( const Context_Control *context )
323{
324  uintptr_t clsz = PPC_DEFAULT_CACHE_LINE_SIZE;
325  uintptr_t mask = clsz - 1;
326  uintptr_t addr = (uintptr_t) context;
327
328  return (ppc_context *) ((addr & ~mask) + clsz);
329}
330
331#define _CPU_Context_Get_SP( _context ) \
332  ppc_get_context(_context)->gpr1
333
334#ifdef RTEMS_SMP
335  static inline bool _CPU_Context_Get_is_executing(
336    const Context_Control *context
337  )
338  {
339    return ppc_get_context(context)->is_executing;
340  }
341
342  static inline void _CPU_Context_Set_is_executing(
343    Context_Control *context,
344    bool is_executing
345  )
346  {
347    ppc_get_context(context)->is_executing = is_executing;
348  }
349#endif
350#endif /* ASM */
351
352#define PPC_CONTEXT_OFFSET_MSR (PPC_DEFAULT_CACHE_LINE_SIZE)
353#define PPC_CONTEXT_OFFSET_CR (PPC_DEFAULT_CACHE_LINE_SIZE + 4)
354#define PPC_CONTEXT_OFFSET_GPR1 (PPC_DEFAULT_CACHE_LINE_SIZE + 8)
355#define PPC_CONTEXT_OFFSET_LR (PPC_DEFAULT_CACHE_LINE_SIZE + PPC_REG_SIZE + 8)
356
357#define PPC_CONTEXT_GPR_OFFSET( gpr ) \
358  (((gpr) - 14) * PPC_GPR_SIZE + \
359    PPC_DEFAULT_CACHE_LINE_SIZE + 8 + 2 * PPC_REG_SIZE)
360
361#define PPC_CONTEXT_OFFSET_GPR14 PPC_CONTEXT_GPR_OFFSET( 14 )
362#define PPC_CONTEXT_OFFSET_GPR15 PPC_CONTEXT_GPR_OFFSET( 15 )
363#define PPC_CONTEXT_OFFSET_GPR16 PPC_CONTEXT_GPR_OFFSET( 16 )
364#define PPC_CONTEXT_OFFSET_GPR17 PPC_CONTEXT_GPR_OFFSET( 17 )
365#define PPC_CONTEXT_OFFSET_GPR18 PPC_CONTEXT_GPR_OFFSET( 18 )
366#define PPC_CONTEXT_OFFSET_GPR19 PPC_CONTEXT_GPR_OFFSET( 19 )
367#define PPC_CONTEXT_OFFSET_GPR20 PPC_CONTEXT_GPR_OFFSET( 20 )
368#define PPC_CONTEXT_OFFSET_GPR21 PPC_CONTEXT_GPR_OFFSET( 21 )
369#define PPC_CONTEXT_OFFSET_GPR22 PPC_CONTEXT_GPR_OFFSET( 22 )
370#define PPC_CONTEXT_OFFSET_GPR23 PPC_CONTEXT_GPR_OFFSET( 23 )
371#define PPC_CONTEXT_OFFSET_GPR24 PPC_CONTEXT_GPR_OFFSET( 24 )
372#define PPC_CONTEXT_OFFSET_GPR25 PPC_CONTEXT_GPR_OFFSET( 25 )
373#define PPC_CONTEXT_OFFSET_GPR26 PPC_CONTEXT_GPR_OFFSET( 26 )
374#define PPC_CONTEXT_OFFSET_GPR27 PPC_CONTEXT_GPR_OFFSET( 27 )
375#define PPC_CONTEXT_OFFSET_GPR28 PPC_CONTEXT_GPR_OFFSET( 28 )
376#define PPC_CONTEXT_OFFSET_GPR29 PPC_CONTEXT_GPR_OFFSET( 29 )
377#define PPC_CONTEXT_OFFSET_GPR30 PPC_CONTEXT_GPR_OFFSET( 30 )
378#define PPC_CONTEXT_OFFSET_GPR31 PPC_CONTEXT_GPR_OFFSET( 31 )
379#define PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE PPC_CONTEXT_GPR_OFFSET( 32 )
380
381#ifdef PPC_MULTILIB_ALTIVEC
382  #ifdef __powerpc64__
383    #define PPC_CONTEXT_OFFSET_VRSAVE \
384      ( PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 8 )
385  #else
386    #define PPC_CONTEXT_OFFSET_VRSAVE \
387      ( PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 24 )
388  #endif
389  #define PPC_CONTEXT_OFFSET_VSCR ( PPC_CONTEXT_OFFSET_VRSAVE + 12 )
390  #define PPC_CONTEXT_OFFSET_V( v ) \
391    ( ( ( v ) - 20 ) * 16 + PPC_CONTEXT_OFFSET_VRSAVE + 16)
392  #define PPC_CONTEXT_OFFSET_V20 PPC_CONTEXT_OFFSET_V( 20 )
393  #define PPC_CONTEXT_OFFSET_V21 PPC_CONTEXT_OFFSET_V( 21 )
394  #define PPC_CONTEXT_OFFSET_V22 PPC_CONTEXT_OFFSET_V( 22 )
395  #define PPC_CONTEXT_OFFSET_V23 PPC_CONTEXT_OFFSET_V( 23 )
396  #define PPC_CONTEXT_OFFSET_V24 PPC_CONTEXT_OFFSET_V( 24 )
397  #define PPC_CONTEXT_OFFSET_V25 PPC_CONTEXT_OFFSET_V( 25 )
398  #define PPC_CONTEXT_OFFSET_V26 PPC_CONTEXT_OFFSET_V( 26 )
399  #define PPC_CONTEXT_OFFSET_V27 PPC_CONTEXT_OFFSET_V( 27 )
400  #define PPC_CONTEXT_OFFSET_V28 PPC_CONTEXT_OFFSET_V( 28 )
401  #define PPC_CONTEXT_OFFSET_V29 PPC_CONTEXT_OFFSET_V( 29 )
402  #define PPC_CONTEXT_OFFSET_V30 PPC_CONTEXT_OFFSET_V( 30 )
403  #define PPC_CONTEXT_OFFSET_V31 PPC_CONTEXT_OFFSET_V( 31 )
404  #define PPC_CONTEXT_OFFSET_F( f ) \
405    ( ( ( f ) - 14 ) * 8 + PPC_CONTEXT_OFFSET_V( 32 ) )
406#else
407  #define PPC_CONTEXT_OFFSET_F( f ) \
408    ( ( ( f ) - 14 ) * 8 + PPC_CONTEXT_OFFSET_ISR_DISPATCH_DISABLE + 8 )
409#endif
410
411#ifdef PPC_MULTILIB_FPU
412  #define PPC_CONTEXT_OFFSET_F14 PPC_CONTEXT_OFFSET_F( 14 )
413  #define PPC_CONTEXT_OFFSET_F15 PPC_CONTEXT_OFFSET_F( 15 )
414  #define PPC_CONTEXT_OFFSET_F16 PPC_CONTEXT_OFFSET_F( 16 )
415  #define PPC_CONTEXT_OFFSET_F17 PPC_CONTEXT_OFFSET_F( 17 )
416  #define PPC_CONTEXT_OFFSET_F18 PPC_CONTEXT_OFFSET_F( 18 )
417  #define PPC_CONTEXT_OFFSET_F19 PPC_CONTEXT_OFFSET_F( 19 )
418  #define PPC_CONTEXT_OFFSET_F20 PPC_CONTEXT_OFFSET_F( 20 )
419  #define PPC_CONTEXT_OFFSET_F21 PPC_CONTEXT_OFFSET_F( 21 )
420  #define PPC_CONTEXT_OFFSET_F22 PPC_CONTEXT_OFFSET_F( 22 )
421  #define PPC_CONTEXT_OFFSET_F23 PPC_CONTEXT_OFFSET_F( 23 )
422  #define PPC_CONTEXT_OFFSET_F24 PPC_CONTEXT_OFFSET_F( 24 )
423  #define PPC_CONTEXT_OFFSET_F25 PPC_CONTEXT_OFFSET_F( 25 )
424  #define PPC_CONTEXT_OFFSET_F26 PPC_CONTEXT_OFFSET_F( 26 )
425  #define PPC_CONTEXT_OFFSET_F27 PPC_CONTEXT_OFFSET_F( 27 )
426  #define PPC_CONTEXT_OFFSET_F28 PPC_CONTEXT_OFFSET_F( 28 )
427  #define PPC_CONTEXT_OFFSET_F29 PPC_CONTEXT_OFFSET_F( 29 )
428  #define PPC_CONTEXT_OFFSET_F30 PPC_CONTEXT_OFFSET_F( 30 )
429  #define PPC_CONTEXT_OFFSET_F31 PPC_CONTEXT_OFFSET_F( 31 )
430#endif
431
432#if defined(PPC_MULTILIB_FPU)
433  #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_F( 32 )
434#elif defined(PPC_MULTILIB_ALTIVEC)
435  #define PPC_CONTEXT_VOLATILE_SIZE PPC_CONTEXT_OFFSET_V( 33 )
436#elif defined(__ALTIVEC__)
437  #define PPC_CONTEXT_VOLATILE_SIZE \
438    (PPC_CONTEXT_GPR_OFFSET( 32 ) + 8 \
439      + 16 * 12 + 32 + PPC_DEFAULT_CACHE_LINE_SIZE)
440#else
441  #define PPC_CONTEXT_VOLATILE_SIZE (PPC_CONTEXT_GPR_OFFSET( 32 ) + 8)
442#endif
443
444#define PPC_CONTEXT_OFFSET_TP PPC_CONTEXT_VOLATILE_SIZE
445
446#ifdef RTEMS_SMP
447  #define PPC_CONTEXT_OFFSET_IS_EXECUTING \
448    (PPC_CONTEXT_OFFSET_TP + PPC_REG_SIZE)
449#endif
450
451#ifndef ASM
452#if (PPC_HAS_FPU == 1)
453typedef struct {
454    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
455     * procedure calls.  However, this would mean that the interrupt
456     * frame had to hold f0-f13, and the fpscr.  And as the majority
457     * of tasks will not have an FP context, we will save the whole
458     * context here.
459     */
460#if (PPC_HAS_DOUBLE == 1)
461    double      f[32];
462    uint64_t    fpscr;
463#else
464    float       f[32];
465    uint32_t    fpscr;
466#endif
467} Context_Control_fp;
468#endif /* (PPC_HAS_FPU == 1) */
469#endif /* ASM */
470
471/*
472 *  Does the CPU follow the simple vectored interrupt model?
473 *
474 *  If TRUE, then RTEMS allocates the vector table it internally manages.
475 *  If FALSE, then the BSP is assumed to allocate and manage the vector
476 *  table
477 *
478 *  PowerPC Specific Information:
479 *
480 *  The PowerPC and x86 were the first to use the PIC interrupt model.
481 *  They do not use the simple vectored interrupt model.
482 */
483#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
484
485/*
486 *  Does the RTEMS invoke the user's ISR with the vector number and
487 *  a pointer to the saved interrupt frame (1) or just the vector
488 *  number (0)?
489 */
490
491#define CPU_ISR_PASSES_FRAME_POINTER FALSE
492
493/*
494 *  Should the saving of the floating point registers be deferred
495 *  until a context switch is made to another different floating point
496 *  task?
497 *
498 *  If TRUE, then the floating point context will not be stored until
499 *  necessary.  It will remain in the floating point registers and not
500 *  disturned until another floating point task is switched to.
501 *
502 *  If FALSE, then the floating point context is saved when a floating
503 *  point task is switched out and restored when the next floating point
504 *  task is restored.  The state of the floating point registers between
505 *  those two operations is not specified.
506 *
507 *  If the floating point context does NOT have to be saved as part of
508 *  interrupt dispatching, then it should be safe to set this to TRUE.
509 *
510 *  Setting this flag to TRUE results in using a different algorithm
511 *  for deciding when to save and restore the floating point context.
512 *  The deferred FP switch algorithm minimizes the number of times
513 *  the FP context is saved and restored.  The FP context is not saved
514 *  until a context switch is made to another, different FP task.
515 *  Thus in a system with only one FP task, the FP context will never
516 *  be saved or restored.
517 *
518 *  Note, however that compilers may use floating point registers/
519 *  instructions for optimization or they may save/restore FP registers
520 *  on the stack. You must not use deferred switching in these cases
521 *  and on the PowerPC attempting to do so will raise a "FP unavailable"
522 *  exception.
523 */
524/*
525 *  ACB Note:  This could make debugging tricky..
526 */
527
528/* conservative setting (FALSE); probably doesn't affect performance too much */
529#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
530
531#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
532
533/*
534 *  Processor defined structures required for cpukit/score.
535 */
536
537#ifndef ASM
538
539/*
540 *  This variable is optional.  It is used on CPUs on which it is difficult
541 *  to generate an "uninitialized" FP context.  It is filled in by
542 *  _CPU_Initialize and copied into the task's FP context area during
543 *  _CPU_Context_Initialize.
544 */
545
546/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */
547
548#endif /* ndef ASM */
549
550/*
551 *  This defines the number of levels and the mask used to pick those
552 *  bits out of a thread mode.
553 */
554
555#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
556
557/*
558 *  The size of the floating point context area.  On some CPUs this
559 *  will not be a "sizeof" because the format of the floating point
560 *  area is not defined -- only the size is.  This is usually on
561 *  CPUs with a "floating point save context" instruction.
562 */
563
564#if (PPC_HAS_FPU == 1)
565#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
566#endif
567
568/*
569 * (Optional) # of bytes for libmisc/stackchk to check
570 * If not specifed, then it defaults to something reasonable
571 * for most architectures.
572 */
573
574#define CPU_STACK_CHECK_PATTERN_INITIALIZER \
575  { 0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
576    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
577    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
578    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
579    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
580    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
581    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06, \
582    0xFEEDF00D, 0x0BAD0D06, 0xDEADF00D, 0x600D0D06 }
583
584/*
585 *  Amount of extra stack (above minimum stack size) required by
586 *  MPCI receive server thread.  Remember that in a multiprocessor
587 *  system this thread must exist and be able to process all directives.
588 */
589
590#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
591
592/*
593 *  This is defined if the port has a special way to report the ISR nesting
594 *  level.  Most ports maintain the variable _ISR_Nest_level. Note that
595 *  this is not an option - RTEMS/score _relies_ on _ISR_Nest_level
596 *  being maintained (e.g. watchdog queues).
597 */
598
599#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
600
601/*
602 *  ISR handler macros
603 */
604
605/*
606 *  Disable all interrupts for an RTEMS critical section.  The previous
607 *  level is returned in _isr_cookie.
608 */
609
610#ifndef ASM
611
612static inline bool _CPU_ISR_Is_enabled( uint32_t level )
613{
614  return ( level & MSR_EE ) != 0;
615}
616
617#if !defined(PPC_DISABLE_INLINE_ISR_DISABLE_ENABLE)
618
619static inline uint32_t   _CPU_ISR_Get_level( void )
620{
621  uint32_t msr;
622  _CPU_MSR_GET(msr);
623  if (msr & MSR_EE) return 0;
624  else  return 1;
625}
626
627static inline void _CPU_ISR_Set_level( uint32_t   level )
628{
629  uint32_t msr;
630  _CPU_MSR_GET(msr);
631  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
632    msr |= ppc_interrupt_get_disable_mask();
633  }
634  else {
635    msr &= ~ppc_interrupt_get_disable_mask();
636  }
637  _CPU_MSR_SET(msr);
638}
639#else
640/* disable, enable, etc. are in registers.h */
641uint32_t ppc_get_interrupt_level( void );
642void ppc_set_interrupt_level( uint32_t level );
643#define _CPU_ISR_Get_level( _new_level ) ppc_get_interrupt_level()
644#define _CPU_ISR_Set_level( _new_level ) ppc_set_interrupt_level(_new_level)
645#endif
646
647#endif /* ASM */
648
649/*
650 *  Should be large enough to run all RTEMS tests.  This ensures
651 *  that a "reasonable" small application should not have any problems.
652 */
653
654#define CPU_STACK_MINIMUM_SIZE          (1024*8)
655
656#if defined(__powerpc64__)
657#define CPU_SIZEOF_POINTER 8
658#else
659#define CPU_SIZEOF_POINTER 4
660#endif
661
662/*
663 *  CPU's worst alignment requirement for data types on a byte boundary.  This
664 *  alignment does not take into account the requirements for the stack.
665 */
666
667#define CPU_ALIGNMENT              (PPC_ALIGNMENT)
668
669/*
670 *  This number corresponds to the byte alignment requirement for the
671 *  heap handler.  This alignment requirement may be stricter than that
672 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
673 *  common for the heap to follow the same alignment requirement as
674 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
675 *  then this should be set to CPU_ALIGNMENT.
676 *
677 *  NOTE:  This does not have to be a power of 2.  It does have to
678 *         be greater or equal to than CPU_ALIGNMENT.
679 */
680
681#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)
682
683#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)
684
685#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
686
687#ifndef ASM
688/*  The following routine swaps the endian format of an unsigned int.
689 *  It must be static because it is referenced indirectly.
690 *
691 *  This version will work on any processor, but if there is a better
692 *  way for your CPU PLEASE use it.  The most common way to do this is to:
693 *
694 *     swap least significant two bytes with 16-bit rotate
695 *     swap upper and lower 16-bits
696 *     swap most significant two bytes with 16-bit rotate
697 *
698 *  Some CPUs have special instructions which swap a 32-bit quantity in
699 *  a single instruction (e.g. i486).  It is probably best to avoid
700 *  an "endian swapping control bit" in the CPU.  One good reason is
701 *  that interrupts would probably have to be disabled to ensure that
702 *  an interrupt does not try to access the same "chunk" with the wrong
703 *  endian.  Another good reason is that on some CPUs, the endian bit
704 *  endianness for ALL fetches -- both code and data -- so the code
705 *  will be fetched incorrectly.
706 */
707
708static inline uint32_t CPU_swap_u32(
709  uint32_t value
710)
711{
712  uint32_t   swapped;
713
714  __asm__ volatile("rlwimi %0,%1,8,24,31;"
715               "rlwimi %0,%1,24,16,23;"
716               "rlwimi %0,%1,8,8,15;"
717               "rlwimi %0,%1,24,0,7;" :
718               "=&r" ((swapped)) : "r" ((value)));
719
720  return( swapped );
721}
722
723#define CPU_swap_u16( value ) \
724  (((value&0xff) << 8) | ((value >> 8)&0xff))
725
726typedef uint32_t CPU_Counter_ticks;
727
728uint32_t _CPU_Counter_frequency( void );
729
730static inline CPU_Counter_ticks _CPU_Counter_read( void )
731{
732  CPU_Counter_ticks value;
733
734#if defined(__PPC_CPU_E6500__)
735  /* Use Alternate Time Base */
736  __asm__ volatile( "mfspr %0, 526" : "=r" (value) );
737#elif defined(mpc860)
738  __asm__ volatile( "mftb %0" : "=r" (value) );
739#else
740  __asm__ volatile( "mfspr %0, 268" : "=r" (value) );
741#endif
742
743  return value;
744}
745
746#endif /* ASM */
747
748
749#ifndef ASM
750/* Context handler macros */
751
752/*
753 *  Initialize the context to a state suitable for starting a
754 *  task after a context restore operation.  Generally, this
755 *  involves:
756 *
757 *     - setting a starting address
758 *     - preparing the stack
759 *     - preparing the stack and frame pointers
760 *     - setting the proper interrupt level in the context
761 *     - initializing the floating point context
762 *
763 *  This routine generally does not set any unnecessary register
764 *  in the context.  The state of the "general data" registers is
765 *  undefined at task start time.
766 */
767
768void _CPU_Context_Initialize(
769  Context_Control  *the_context,
770  void             *stack_base,
771  size_t            size,
772  uint32_t          new_level,
773  void             *entry_point,
774  bool              is_fp,
775  void             *tls_area
776);
777
778/*
779 *  This routine is responsible for somehow restarting the currently
780 *  executing task.  If you are lucky, then all that is necessary
781 *  is restoring the context.  Otherwise, there will need to be
782 *  a special assembly routine which does something special in this
783 *  case.  Context_Restore should work most of the time.  It will
784 *  not work if restarting self conflicts with the stack frame
785 *  assumptions of restoring a context.
786 */
787
788#define _CPU_Context_Restart_self( _the_context ) \
789   _CPU_Context_restore( (_the_context) );
790
791/*
792 *  This routine initializes the FP context area passed to it to.
793 *  There are a few standard ways in which to initialize the
794 *  floating point context.  The code included for this macro assumes
795 *  that this is a CPU in which a "initial" FP context was saved into
796 *  _CPU_Null_fp_context and it simply copies it to the destination
797 *  context passed to it.
798 *
799 *  Other models include (1) not doing anything, and (2) putting
800 *  a "null FP status word" in the correct place in the FP context.
801 */
802
803#define _CPU_Context_Initialize_fp( _destination ) \
804  memset( *(_destination), 0, sizeof( **(_destination) ) )
805
806/* end of Context handler macros */
807#endif /* ASM */
808
809#ifndef ASM
810
811#define CPU_USE_LIBC_INIT_FINI_ARRAY FALSE
812
813/* Bitfield handler macros */
814
815#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
816
817/*
818 *  This routine sets _output to the bit number of the first bit
819 *  set in _value.  _value is of CPU dependent type Priority_bit_map_Word.
820 *  This type may be either 16 or 32 bits wide although only the 16
821 *  least significant bits will be used.
822 *
823 *  There are a number of variables in using a "find first bit" type
824 *  instruction.
825 *
826 *    (1) What happens when run on a value of zero?
827 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
828 *    (3) The numbering may be zero or one based.
829 *    (4) The "find first bit" instruction may search from MSB or LSB.
830 *
831 *  RTEMS guarantees that (1) will never happen so it is not a concern.
832 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
833 *  _CPU_Priority_Bits_index().  These three form a set of routines
834 *  which must logically operate together.  Bits in the _value are
835 *  set and cleared based on masks built by _CPU_Priority_mask().
836 *  The basic major and minor values calculated by _Priority_Major()
837 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
838 *  to properly range between the values returned by the "find first bit"
839 *  instruction.  This makes it possible for _Priority_Get_highest() to
840 *  calculate the major and directly index into the minor table.
841 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
842 *  is the first bit found.
843 *
844 *  This entire "find first bit" and mapping process depends heavily
845 *  on the manner in which a priority is broken into a major and minor
846 *  components with the major being the 4 MSB of a priority and minor
847 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
848 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
849 *  to the lowest priority.
850 *
851 *  If your CPU does not have a "find first bit" instruction, then
852 *  there are ways to make do without it.  Here are a handful of ways
853 *  to implement this in software:
854 *
855 *    - a series of 16 bit test instructions
856 *    - a "binary search using if's"
857 *    - _number = 0
858 *      if _value > 0x00ff
859 *        _value >>=8
860 *        _number = 8;
861 *
862 *      if _value > 0x0000f
863 *        _value >=8
864 *        _number += 4
865 *
866 *      _number += bit_set_table[ _value ]
867 *
868 *    where bit_set_table[ 16 ] has values which indicate the first
869 *      bit set
870 */
871
872#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
873  { \
874    __asm__ volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
875                  "1" ((_value))); \
876    (_output) = (_output) - 16; \
877  }
878
879/* end of Bitfield handler macros */
880
881/*
882 *  This routine builds the mask which corresponds to the bit fields
883 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
884 *  for that routine.
885 */
886
887#define _CPU_Priority_Mask( _bit_number ) \
888  ( 0x8000u >> (_bit_number) )
889
890/*
891 *  This routine translates the bit numbers returned by
892 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
893 *  a major or minor component of a priority.  See the discussion
894 *  for that routine.
895 */
896
897#define _CPU_Priority_bits_index( _priority ) \
898  (_priority)
899
900/* end of Priority handler macros */
901#endif /* ASM */
902
903/* functions */
904
905#ifndef ASM
906
907/*
908 *  _CPU_Initialize
909 *
910 *  This routine performs CPU dependent initialization.
911 */
912
913void _CPU_Initialize(void);
914
915void *_CPU_Thread_Idle_body( uintptr_t ignored );
916
917/*
918 *  _CPU_Context_switch
919 *
920 *  This routine switches from the run context to the heir context.
921 */
922
923void _CPU_Context_switch(
924  Context_Control  *run,
925  Context_Control  *heir
926);
927
928RTEMS_NO_RETURN void _CPU_Context_switch_no_return(
929  Context_Control *executing,
930  Context_Control *heir
931);
932
933/*
934 *  _CPU_Context_restore
935 *
936 *  This routine is generallu used only to restart self in an
937 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
938 *
939 *  NOTE: May be unnecessary to reload some registers.
940 */
941
942RTEMS_NO_RETURN void _CPU_Context_restore( Context_Control *new_context );
943
944#if (PPC_HAS_FPU == 1)
945/*
946 *  _CPU_Context_save_fp
947 *
948 *  This routine saves the floating point context passed to it.
949 */
950
951void _CPU_Context_save_fp(
952  Context_Control_fp **fp_context_ptr
953);
954
955/*
956 *  _CPU_Context_restore_fp
957 *
958 *  This routine restores the floating point context passed to it.
959 */
960
961void _CPU_Context_restore_fp(
962  Context_Control_fp **fp_context_ptr
963);
964#endif
965
966#ifdef RTEMS_SMP
967  uint32_t _CPU_SMP_Initialize( void );
968
969  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
970
971  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
972
973  void _CPU_SMP_Prepare_start_multitasking( void );
974
975  static inline uint32_t _CPU_SMP_Get_current_processor( void )
976  {
977    uint32_t pir;
978
979    /* Use Book E Processor ID Register (PIR) */
980    __asm__ volatile (
981      "mfspr %[pir], 286"
982      : [pir] "=&r" (pir)
983    );
984
985    return pir;
986  }
987
988  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
989#endif
990
991typedef struct {
992  uintptr_t EXC_SRR0;
993  uintptr_t EXC_SRR1;
994  uint32_t _EXC_number;
995  uint32_t RESERVED_FOR_ALIGNMENT_0;
996  uint32_t EXC_CR;
997  uint32_t EXC_XER;
998  uintptr_t EXC_CTR;
999  uintptr_t EXC_LR;
1000  uintptr_t RESERVED_FOR_ALIGNMENT_1;
1001  #ifdef __SPE__
1002    uint32_t EXC_SPEFSCR;
1003    uint64_t EXC_ACC;
1004  #endif
1005  PPC_GPR_TYPE GPR0;
1006  PPC_GPR_TYPE GPR1;
1007  PPC_GPR_TYPE GPR2;
1008  PPC_GPR_TYPE GPR3;
1009  PPC_GPR_TYPE GPR4;
1010  PPC_GPR_TYPE GPR5;
1011  PPC_GPR_TYPE GPR6;
1012  PPC_GPR_TYPE GPR7;
1013  PPC_GPR_TYPE GPR8;
1014  PPC_GPR_TYPE GPR9;
1015  PPC_GPR_TYPE GPR10;
1016  PPC_GPR_TYPE GPR11;
1017  PPC_GPR_TYPE GPR12;
1018  PPC_GPR_TYPE GPR13;
1019  PPC_GPR_TYPE GPR14;
1020  PPC_GPR_TYPE GPR15;
1021  PPC_GPR_TYPE GPR16;
1022  PPC_GPR_TYPE GPR17;
1023  PPC_GPR_TYPE GPR18;
1024  PPC_GPR_TYPE GPR19;
1025  PPC_GPR_TYPE GPR20;
1026  PPC_GPR_TYPE GPR21;
1027  PPC_GPR_TYPE GPR22;
1028  PPC_GPR_TYPE GPR23;
1029  PPC_GPR_TYPE GPR24;
1030  PPC_GPR_TYPE GPR25;
1031  PPC_GPR_TYPE GPR26;
1032  PPC_GPR_TYPE GPR27;
1033  PPC_GPR_TYPE GPR28;
1034  PPC_GPR_TYPE GPR29;
1035  PPC_GPR_TYPE GPR30;
1036  PPC_GPR_TYPE GPR31;
1037  uintptr_t RESERVED_FOR_ALIGNMENT_2;
1038  #ifdef PPC_MULTILIB_ALTIVEC
1039    uint32_t VRSAVE;
1040    uint32_t RESERVED_FOR_ALIGNMENT_3[3];
1041
1042    /* This field must take stvewx/lvewx requirements into account */
1043    uint32_t RESERVED_FOR_ALIGNMENT_4[3];
1044    uint32_t VSCR;
1045
1046    uint8_t V0[16];
1047    uint8_t V1[16];
1048    uint8_t V2[16];
1049    uint8_t V3[16];
1050    uint8_t V4[16];
1051    uint8_t V5[16];
1052    uint8_t V6[16];
1053    uint8_t V7[16];
1054    uint8_t V8[16];
1055    uint8_t V9[16];
1056    uint8_t V10[16];
1057    uint8_t V11[16];
1058    uint8_t V12[16];
1059    uint8_t V13[16];
1060    uint8_t V14[16];
1061    uint8_t V15[16];
1062    uint8_t V16[16];
1063    uint8_t V17[16];
1064    uint8_t V18[16];
1065    uint8_t V19[16];
1066    uint8_t V20[16];
1067    uint8_t V21[16];
1068    uint8_t V22[16];
1069    uint8_t V23[16];
1070    uint8_t V24[16];
1071    uint8_t V25[16];
1072    uint8_t V26[16];
1073    uint8_t V27[16];
1074    uint8_t V28[16];
1075    uint8_t V29[16];
1076    uint8_t V30[16];
1077    uint8_t V31[16];
1078  #endif
1079  #ifdef PPC_MULTILIB_FPU
1080    double F0;
1081    double F1;
1082    double F2;
1083    double F3;
1084    double F4;
1085    double F5;
1086    double F6;
1087    double F7;
1088    double F8;
1089    double F9;
1090    double F10;
1091    double F11;
1092    double F12;
1093    double F13;
1094    double F14;
1095    double F15;
1096    double F16;
1097    double F17;
1098    double F18;
1099    double F19;
1100    double F20;
1101    double F21;
1102    double F22;
1103    double F23;
1104    double F24;
1105    double F25;
1106    double F26;
1107    double F27;
1108    double F28;
1109    double F29;
1110    double F30;
1111    double F31;
1112    uint64_t FPSCR;
1113    uint64_t RESERVED_FOR_ALIGNMENT_5;
1114  #endif
1115} CPU_Exception_frame;
1116
1117void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1118
1119/*
1120 * _CPU_Initialize_altivec()
1121 *
1122 * Global altivec-related initialization.
1123 */
1124void
1125_CPU_Initialize_altivec(void);
1126
1127/*
1128 * _CPU_Context_switch_altivec
1129 *
1130 * This routine switches the altivec contexts passed to it.
1131 */
1132
1133void
1134_CPU_Context_switch_altivec(
1135  ppc_context *from,
1136  ppc_context *to
1137);
1138
1139/*
1140 * _CPU_Context_restore_altivec
1141 *
1142 * This routine restores the altivec context passed to it.
1143 */
1144
1145void
1146_CPU_Context_restore_altivec(
1147  ppc_context *ctxt
1148);
1149
1150/*
1151 * _CPU_Context_initialize_altivec
1152 *
1153 * This routine initializes the altivec context passed to it.
1154 */
1155
1156void
1157_CPU_Context_initialize_altivec(
1158  ppc_context *ctxt
1159);
1160
1161void _CPU_Fatal_error(
1162  uint32_t   _error
1163);
1164
1165/** Type that can store a 32-bit integer or a pointer. */
1166typedef uintptr_t CPU_Uint32ptr;
1167
1168#endif /* ASM */
1169
1170#ifdef __cplusplus
1171}
1172#endif
1173
1174#endif /* _RTEMS_SCORE_CPU_H */
Note: See TracBrowser for help on using the repository browser.