source: rtems/cpukit/score/cpu/or1k/include/rtems/score/cpu.h @ 2afb22b

5
Last change on this file since 2afb22b was 2afb22b, checked in by Chris Johns <chrisj@…>, on 12/23/17 at 07:18:56

Remove make preinstall

A speciality of the RTEMS build system was the make preinstall step. It
copied header files from arbitrary locations into the build tree. The
header files were included via the -Bsome/build/tree/path GCC command
line option.

This has at least seven problems:

  • The make preinstall step itself needs time and disk space.
  • Errors in header files show up in the build tree copy. This makes it hard for editors to open the right file to fix the error.
  • There is no clear relationship between source and build tree header files. This makes an audit of the build process difficult.
  • The visibility of all header files in the build tree makes it difficult to enforce API barriers. For example it is discouraged to use BSP-specifics in the cpukit.
  • An introduction of a new build system is difficult.
  • Include paths specified by the -B option are system headers. This may suppress warnings.
  • The parallel build had sporadic failures on some hosts.

This patch removes the make preinstall step. All installed header
files are moved to dedicated include directories in the source tree.
Let @RTEMS_CPU@ be the target architecture, e.g. arm, powerpc, sparc,
etc. Let @RTEMS_BSP_FAMILIY@ be a BSP family base directory, e.g.
erc32, imx, qoriq, etc.

The new cpukit include directories are:

  • cpukit/include
  • cpukit/score/cpu/@RTEMS_CPU@/include
  • cpukit/libnetworking

The new BSP include directories are:

  • bsps/include
  • bsps/@RTEMS_CPU@/include
  • bsps/@RTEMS_CPU@/@RTEMS_BSP_FAMILIY@/include

There are build tree include directories for generated files.

The include directory order favours the most general header file, e.g.
it is not possible to override general header files via the include path
order.

The "bootstrap -p" option was removed. The new "bootstrap -H" option
should be used to regenerate the "headers.am" files.

Update #3254.

  • Property mode set to 100644
File size: 24.9 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains macros pertaining to the Opencores
7 *  or1k processor family.
8 *
9 *  COPYRIGHT (c) 2014 Hesham ALMatary <heshamelmatary@gmail.com>
10 *  COPYRIGHT (c) 1989-1999.
11 *  On-Line Applications Research Corporation (OAR).
12 *
13 *  The license and distribution terms for this file may be
14 *  found in the file LICENSE in this distribution or at
15 *  http://www.rtems.org/license/LICENSE.
16 *
17 *  This file adapted from no_cpu example of the RTEMS distribution.
18 *  The body has been modified for the Opencores OR1k implementation by
19 *  Chris Ziomkowski. <chris@asics.ws>
20 *
21 */
22
23#ifndef _OR1K_CPU_H
24#define _OR1K_CPU_H
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30
31#include <rtems/score/or1k.h>            /* pick up machine definitions */
32#include <rtems/score/or1k-utility.h>
33#include <rtems/score/types.h>
34#ifndef ASM
35#include <rtems/bspIo.h>
36#include <stdint.h>
37#include <stdio.h> /* for printk */
38#endif
39
40/* conditional compilation parameters */
41
42/*
43 *  Does RTEMS manage a dedicated interrupt stack in software?
44 *
45 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
46 *  If FALSE, nothing is done.
47 *
48 *  If the CPU supports a dedicated interrupt stack in hardware,
49 *  then it is generally the responsibility of the BSP to allocate it
50 *  and set it up.
51 *
52 *  If the CPU does not support a dedicated interrupt stack, then
53 *  the porter has two options: (1) execute interrupts on the
54 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
55 *  interrupt stack.
56 *
57 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
58 *
59 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
60 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
61 *  possible that both are FALSE for a particular CPU.  Although it
62 *  is unclear what that would imply about the interrupt processing
63 *  procedure on that CPU.
64 *
65 *  Currently, for or1k port, _ISR_Handler is responsible for switching to
66 *  RTEMS dedicated interrupt task.
67 *
68 */
69
70#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
71
72/*
73 *  Does this CPU have hardware support for a dedicated interrupt stack?
74 *
75 *  If TRUE, then it must be installed during initialization.
76 *  If FALSE, then no installation is performed.
77 *
78 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
79 *
80 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
81 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
82 *  possible that both are FALSE for a particular CPU.  Although it
83 *  is unclear what that would imply about the interrupt processing
84 *  procedure on that CPU.
85 *
86 */
87
88#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
89
90/*
91 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
92 *
93 *  If TRUE, then the memory is allocated during initialization.
94 *  If FALSE, then the memory is allocated during initialization.
95 *
96 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
97 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
98 *
99 */
100
101#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
102
103/*
104 *  Does the RTEMS invoke the user's ISR with the vector number and
105 *  a pointer to the saved interrupt frame (1) or just the vector
106 *  number (0)?
107 *
108 */
109
110#define CPU_ISR_PASSES_FRAME_POINTER TRUE
111
112/*
113 *  Does the CPU have hardware floating point?
114 *
115 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
116 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
117 *
118 *  If there is a FP coprocessor such as the i387 or mc68881, then
119 *  the answer is TRUE.
120 *
121 *  The macro name "OR1K_HAS_FPU" should be made CPU specific.
122 *  It indicates whether or not this CPU model has FP support.  For
123 *  example, it would be possible to have an i386_nofp CPU model
124 *  which set this to false to indicate that you have an i386 without
125 *  an i387 and wish to leave floating point support out of RTEMS.
126 *
127 *  The CPU_SOFTWARE_FP is used to indicate whether or not there
128 *  is software implemented floating point that must be context
129 *  switched.  The determination of whether or not this applies
130 *  is very tool specific and the state saved/restored is also
131 *  compiler specific.
132 *
133 *  Or1k Specific Information:
134 *
135 *  At this time there are no implementations of Or1k that are
136 *  expected to implement floating point. More importantly, the
137 *  floating point architecture is expected to change significantly
138 *  before such chips are fabricated.
139 */
140
141#define CPU_HARDWARE_FP     FALSE
142#define CPU_SOFTWARE_FP     FALSE
143
144/*
145 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
146 *
147 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
148 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
149 *
150 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
151 *
152 */
153
154#define CPU_ALL_TASKS_ARE_FP     FALSE
155
156/*
157 *  Should the IDLE task have a floating point context?
158 *
159 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
160 *  and it has a floating point context which is switched in and out.
161 *  If FALSE, then the IDLE task does not have a floating point context.
162 *
163 *  Setting this to TRUE negatively impacts the time required to preempt
164 *  the IDLE task from an interrupt because the floating point context
165 *  must be saved as part of the preemption.
166 *
167 */
168
169#define CPU_IDLE_TASK_IS_FP      FALSE
170
171/*
172 *  Should the saving of the floating point registers be deferred
173 *  until a context switch is made to another different floating point
174 *  task?
175 *
176 *  If TRUE, then the floating point context will not be stored until
177 *  necessary.  It will remain in the floating point registers and not
178 *  disturned until another floating point task is switched to.
179 *
180 *  If FALSE, then the floating point context is saved when a floating
181 *  point task is switched out and restored when the next floating point
182 *  task is restored.  The state of the floating point registers between
183 *  those two operations is not specified.
184 *
185 *  If the floating point context does NOT have to be saved as part of
186 *  interrupt dispatching, then it should be safe to set this to TRUE.
187 *
188 *  Setting this flag to TRUE results in using a different algorithm
189 *  for deciding when to save and restore the floating point context.
190 *  The deferred FP switch algorithm minimizes the number of times
191 *  the FP context is saved and restored.  The FP context is not saved
192 *  until a context switch is made to another, different FP task.
193 *  Thus in a system with only one FP task, the FP context will never
194 *  be saved or restored.
195 *
196 */
197
198#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
199
200#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
201
202/*
203 *  Does this port provide a CPU dependent IDLE task implementation?
204 *
205 *  If TRUE, then the routine _CPU_Thread_Idle_body
206 *  must be provided and is the default IDLE thread body instead of
207 *  _CPU_Thread_Idle_body.
208 *
209 *  If FALSE, then use the generic IDLE thread body if the BSP does
210 *  not provide one.
211 *
212 *  This is intended to allow for supporting processors which have
213 *  a low power or idle mode.  When the IDLE thread is executed, then
214 *  the CPU can be powered down.
215 *
216 *  The order of precedence for selecting the IDLE thread body is:
217 *
218 *    1.  BSP provided
219 *    2.  CPU dependent (if provided)
220 *    3.  generic (if no BSP and no CPU dependent)
221 *
222 */
223
224#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
225
226/*
227 *  Does the stack grow up (toward higher addresses) or down
228 *  (toward lower addresses)?
229 *
230 *  If TRUE, then the grows upward.
231 *  If FALSE, then the grows toward smaller addresses.
232 *
233 */
234
235#define CPU_STACK_GROWS_UP               FALSE
236
237/* FIXME: Is this the right value? */
238#define CPU_CACHE_LINE_BYTES 32
239
240#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
241
242/*
243 *  Define what is required to specify how the network to host conversion
244 *  routines are handled.
245 *
246 *  Or1k Specific Information:
247 *
248 *  This version of RTEMS is designed specifically to run with
249 *  big endian architectures. If you want little endian, you'll
250 *  have to make the appropriate adjustments here and write
251 *  efficient routines for byte swapping. The Or1k architecture
252 *  doesn't do this very well.
253 */
254
255#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
256
257/*
258 *  The following defines the number of bits actually used in the
259 *  interrupt field of the task mode.  How those bits map to the
260 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
261 *
262 */
263
264#define CPU_MODES_INTERRUPT_MASK   0x00000001
265
266/*
267 *  Processor defined structures required for cpukit/score.
268 */
269
270
271/*
272 * Contexts
273 *
274 *  Generally there are 2 types of context to save.
275 *     1. Interrupt registers to save
276 *     2. Task level registers to save
277 *
278 *  This means we have the following 3 context items:
279 *     1. task level context stuff::  Context_Control
280 *     2. floating point task stuff:: Context_Control_fp
281 *     3. special interrupt level context :: Context_Control_interrupt
282 *
283 *  On some processors, it is cost-effective to save only the callee
284 *  preserved registers during a task context switch.  This means
285 *  that the ISR code needs to save those registers which do not
286 *  persist across function calls.  It is not mandatory to make this
287 *  distinctions between the caller/callee saves registers for the
288 *  purpose of minimizing context saved during task switch and on interrupts.
289 *  If the cost of saving extra registers is minimal, simplicity is the
290 *  choice.  Save the same context on interrupt entry as for tasks in
291 *  this case.
292 *
293 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
294 *  care should be used in designing the context area.
295 *
296 *  On some CPUs with hardware floating point support, the Context_Control_fp
297 *  structure will not be used or it simply consist of an array of a
298 *  fixed number of bytes.   This is done when the floating point context
299 *  is dumped by a "FP save context" type instruction and the format
300 *  is not really defined by the CPU.  In this case, there is no need
301 *  to figure out the exact format -- only the size.  Of course, although
302 *  this is enough information for RTEMS, it is probably not enough for
303 *  a debugger such as gdb.  But that is another problem.
304 *
305 *
306 */
307#ifndef ASM
308#ifdef OR1K_64BIT_ARCH
309#define or1kreg uint64_t
310#else
311#define or1kreg uint32_t
312#endif
313
314typedef struct {
315  uint32_t  r1;     /* Stack pointer */
316  uint32_t  r2;     /* Frame pointer */
317  uint32_t  r3;
318  uint32_t  r4;
319  uint32_t  r5;
320  uint32_t  r6;
321  uint32_t  r7;
322  uint32_t  r8;
323  uint32_t  r9;
324  uint32_t  r10;
325  uint32_t  r11;
326  uint32_t  r12;
327  uint32_t  r13;
328  uint32_t  r14;
329  uint32_t  r15;
330  uint32_t  r16;
331  uint32_t  r17;
332  uint32_t  r18;
333  uint32_t  r19;
334  uint32_t  r20;
335  uint32_t  r21;
336  uint32_t  r22;
337  uint32_t  r23;
338  uint32_t  r24;
339  uint32_t  r25;
340  uint32_t  r26;
341  uint32_t  r27;
342  uint32_t  r28;
343  uint32_t  r29;
344  uint32_t  r30;
345  uint32_t  r31;
346
347  uint32_t  sr;  /* Current supervision register non persistent values */
348  uint32_t  epcr;
349  uint32_t  eear;
350  uint32_t  esr;
351} Context_Control;
352
353#define _CPU_Context_Get_SP( _context ) \
354  (_context)->r1
355
356typedef struct {
357  /** FPU registers are listed here */
358  double      some_float_register;
359} Context_Control_fp;
360
361typedef Context_Control CPU_Interrupt_frame;
362
363/*
364 *  The size of the floating point context area.  On some CPUs this
365 *  will not be a "sizeof" because the format of the floating point
366 *  area is not defined -- only the size is.  This is usually on
367 *  CPUs with a "floating point save context" instruction.
368 *
369 *  Or1k Specific Information:
370 *
371 */
372
373#define CPU_CONTEXT_FP_SIZE  0
374
375/*
376 *  Amount of extra stack (above minimum stack size) required by
377 *  MPCI receive server thread.  Remember that in a multiprocessor
378 *  system this thread must exist and be able to process all directives.
379 *
380 */
381
382#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
383
384/*
385 *  Should be large enough to run all RTEMS tests.  This insures
386 *  that a "reasonable" small application should not have any problems.
387 *
388 */
389
390#define CPU_STACK_MINIMUM_SIZE  4096
391
392/*
393 *  CPU's worst alignment requirement for data types on a byte boundary.  This
394 *  alignment does not take into account the requirements for the stack.
395 *
396 */
397
398#define CPU_ALIGNMENT  8
399
400/*
401 *  This is defined if the port has a special way to report the ISR nesting
402 *  level.  Most ports maintain the variable _ISR_Nest_level.
403 */
404#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
405
406/**
407 * Size of a pointer.
408 *
409 * This must be an integer literal that can be used by the assembler.  This
410 * value will be used to calculate offsets of structure members.  These
411 * offsets will be used in assembler code.
412 */
413#define CPU_SIZEOF_POINTER         4
414
415/*
416 *  This number corresponds to the byte alignment requirement for the
417 *  heap handler.  This alignment requirement may be stricter than that
418 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
419 *  common for the heap to follow the same alignment requirement as
420 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
421 *  then this should be set to CPU_ALIGNMENT.
422 *
423 *  NOTE:  This does not have to be a power of 2 although it should be
424 *         a multiple of 2 greater than or equal to 2.  The requirement
425 *         to be a multiple of 2 is because the heap uses the least
426 *         significant field of the front and back flags to indicate
427 *         that a block is in use or free.  So you do not want any odd
428 *         length blocks really putting length data in that bit.
429 *
430 *         On byte oriented architectures, CPU_HEAP_ALIGNMENT normally will
431 *         have to be greater or equal to than CPU_ALIGNMENT to ensure that
432 *         elements allocated from the heap meet all restrictions.
433 *
434 */
435
436#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
437
438/*
439 *  This number corresponds to the byte alignment requirement for memory
440 *  buffers allocated by the partition manager.  This alignment requirement
441 *  may be stricter than that for the data types alignment specified by
442 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
443 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
444 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
445 *
446 *  NOTE:  This does not have to be a power of 2.  It does have to
447 *         be greater or equal to than CPU_ALIGNMENT.
448 *
449 */
450
451#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
452
453/*
454 *  This number corresponds to the byte alignment requirement for the
455 *  stack.  This alignment requirement may be stricter than that for the
456 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
457 *  is strict enough for the stack, then this should be set to 0.
458 *
459 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
460 *
461 */
462
463#define CPU_STACK_ALIGNMENT        0
464
465/* ISR handler macros */
466
467/*
468 *  Support routine to initialize the RTEMS vector table after it is allocated.
469 *
470 *  NO_CPU Specific Information:
471 *
472 *  XXX document implementation including references if appropriate
473 */
474
475#define _CPU_Initialize_vectors()
476
477/*
478 *  Disable all interrupts for an RTEMS critical section.  The previous
479 *  level is returned in _level.
480 *
481 */
482
483static inline uint32_t or1k_interrupt_disable( void )
484{
485  uint32_t sr;
486  sr = _OR1K_mfspr(CPU_OR1K_SPR_SR);
487
488  _OR1K_mtspr(CPU_OR1K_SPR_SR, (sr & ~CPU_OR1K_SPR_SR_IEE));
489
490  return sr;
491}
492
493static inline void or1k_interrupt_enable(uint32_t level)
494{
495  uint32_t sr;
496
497  /* Enable interrupts and restore rs */
498  sr = level | CPU_OR1K_SPR_SR_IEE | CPU_OR1K_SPR_SR_TEE;
499  _OR1K_mtspr(CPU_OR1K_SPR_SR, sr);
500
501}
502
503#define _CPU_ISR_Disable( _level ) \
504    _level = or1k_interrupt_disable()
505
506
507/*
508 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
509 *  This indicates the end of an RTEMS critical section.  The parameter
510 *  _level is not modified.
511 *
512 */
513
514#define _CPU_ISR_Enable( _level )  \
515  or1k_interrupt_enable( _level )
516
517/*
518 *  This temporarily restores the interrupt to _level before immediately
519 *  disabling them again.  This is used to divide long RTEMS critical
520 *  sections into two or more parts.  The parameter _level is not
521 *  modified.
522 *
523 */
524
525#define _CPU_ISR_Flash( _level ) \
526  do{ \
527      _CPU_ISR_Enable( _level ); \
528      _OR1K_mtspr(CPU_OR1K_SPR_SR, (_level & ~CPU_OR1K_SPR_SR_IEE)); \
529    } while(0)
530
531RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
532{
533  return ( level & CPU_OR1K_SPR_SR ) != 0;
534}
535
536/*
537 *  Map interrupt level in task mode onto the hardware that the CPU
538 *  actually provides.  Currently, interrupt levels which do not
539 *  map onto the CPU in a generic fashion are undefined.  Someday,
540 *  it would be nice if these were "mapped" by the application
541 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
542 *  8 - 255 would be available for bsp/application specific meaning.
543 *  This could be used to manage a programmable interrupt controller
544 *  via the rtems_task_mode directive.
545 *
546 *  The get routine usually must be implemented as a subroutine.
547 *
548 */
549
550void _CPU_ISR_Set_level( uint32_t level );
551
552uint32_t _CPU_ISR_Get_level( void );
553
554/* end of ISR handler macros */
555
556/* Context handler macros */
557
558#define OR1K_FAST_CONTEXT_SWITCH_ENABLED FALSE
559/*
560 *  Initialize the context to a state suitable for starting a
561 *  task after a context restore operation.  Generally, this
562 *  involves:
563 *
564 *     - setting a starting address
565 *     - preparing the stack
566 *     - preparing the stack and frame pointers
567 *     - setting the proper interrupt level in the context
568 *     - initializing the floating point context
569 *
570 *  This routine generally does not set any unnecessary register
571 *  in the context.  The state of the "general data" registers is
572 *  undefined at task start time.
573 *
574 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
575 *        point thread.  This is typically only used on CPUs where the
576 *        FPU may be easily disabled by software such as on the SPARC
577 *        where the PSR contains an enable FPU bit.
578 *
579 */
580
581/**
582 * @brief Initializes the CPU context.
583 *
584 * The following steps are performed:
585 *  - setting a starting address
586 *  - preparing the stack
587 *  - preparing the stack and frame pointers
588 *  - setting the proper interrupt level in the context
589 *
590 * @param[in] context points to the context area
591 * @param[in] stack_area_begin is the low address of the allocated stack area
592 * @param[in] stack_area_size is the size of the stack area in bytes
593 * @param[in] new_level is the interrupt level for the task
594 * @param[in] entry_point is the task's entry point
595 * @param[in] is_fp is set to @c true if the task is a floating point task
596 * @param[in] tls_area is the thread-local storage (TLS) area
597 */
598void _CPU_Context_Initialize(
599  Context_Control *context,
600  void *stack_area_begin,
601  size_t stack_area_size,
602  uint32_t new_level,
603  void (*entry_point)( void ),
604  bool is_fp,
605  void *tls_area
606);
607
608/*
609 *  This routine is responsible for somehow restarting the currently
610 *  executing task.  If you are lucky, then all that is necessary
611 *  is restoring the context.  Otherwise, there will need to be
612 *  a special assembly routine which does something special in this
613 *  case.  Context_Restore should work most of the time.  It will
614 *  not work if restarting self conflicts with the stack frame
615 *  assumptions of restoring a context.
616 *
617 */
618
619#define _CPU_Context_Restart_self( _the_context ) \
620   _CPU_Context_restore( (_the_context) );
621
622/*
623 *  This routine is responsible to initialize the FP context.
624 *
625 *  The FP area pointer is passed by reference to allow the initial pointer
626 *  into a floating point context area (used to save the floating point
627 *  context) to be at an arbitrary place in the floating point context area.
628 *
629 *  This is necessary because some FP units are designed to have
630 *  their context saved as a stack which grows into lower addresses.
631 *  Other FP units can be saved by simply moving registers into offsets
632 *  from the base of the context area.  Finally some FP units provide
633 *  a "dump context" instruction which could fill in from high to low
634 *  or low to high based on the whim of the CPU designers.
635 */
636#define _CPU_Context_Initialize_fp( _fp_area_p ) \
637  memset( *( _fp_area_p ), 0, CPU_CONTEXT_FP_SIZE )
638
639/* end of Context handler macros */
640
641/* Fatal Error manager macros */
642
643/*
644 *  This routine copies _error into a known place -- typically a stack
645 *  location or a register, optionally disables interrupts, and
646 *  halts/stops the CPU.
647 *
648 */
649
650#include <inttypes.h>
651
652#define _CPU_Fatal_halt(_source, _error ) \
653        printk("Fatal Error %d.%" PRId32 " Halted\n",_source, _error); \
654        _OR1KSIM_CPU_Halt(); \
655        for(;;)
656
657/* end of Fatal Error manager macros */
658
659#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
660
661#endif /* ASM */
662
663#define CPU_SIZEOF_POINTER 4
664
665#define CPU_MAXIMUM_PROCESSORS 32
666
667#ifndef ASM
668typedef uint32_t CPU_Counter_ticks;
669
670typedef struct {
671  uint32_t r[32];
672
673  /* The following registers must be saved if we have
674  fast context switch disabled and nested interrupt
675  levels are enabled.
676  */
677#if !OR1K_FAST_CONTEXT_SWITCH_ENABLED
678  uint32_t epcr; /* exception PC register */
679  uint32_t eear; /* exception effective address register */
680  uint32_t esr; /* exception supervision register */
681#endif
682
683} CPU_Exception_frame;
684
685/**
686 * @brief Prints the exception frame via printk().
687 *
688 * @see rtems_fatal() and RTEMS_FATAL_SOURCE_EXCEPTION.
689 */
690void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
691
692
693/* end of Priority handler macros */
694
695/* functions */
696
697/*
698 *  _CPU_Initialize
699 *
700 *  This routine performs CPU dependent initialization.
701 *
702 */
703
704void _CPU_Initialize(
705  void
706);
707
708/*
709 *  _CPU_ISR_install_raw_handler
710 *
711 *  This routine installs a "raw" interrupt handler directly into the
712 *  processor's vector table.
713 *
714 */
715
716void _CPU_ISR_install_raw_handler(
717  uint32_t    vector,
718  proc_ptr    new_handler,
719  proc_ptr   *old_handler
720);
721
722/*
723 *  _CPU_ISR_install_vector
724 *
725 *  This routine installs an interrupt vector.
726 *
727 *  NO_CPU Specific Information:
728 *
729 *  XXX document implementation including references if appropriate
730 */
731
732void _CPU_ISR_install_vector(
733  uint32_t    vector,
734  proc_ptr   new_handler,
735  proc_ptr   *old_handler
736);
737
738/*
739 *  _CPU_Install_interrupt_stack
740 *
741 *  This routine installs the hardware interrupt stack pointer.
742 *
743 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
744 *         is TRUE.
745 *
746 */
747
748void _CPU_Install_interrupt_stack( void );
749
750/*
751 *  _CPU_Thread_Idle_body
752 *
753 *  This routine is the CPU dependent IDLE thread body.
754 *
755 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
756 *         is TRUE.
757 *
758 */
759
760void *_CPU_Thread_Idle_body( uintptr_t ignored );
761
762/*
763 *  _CPU_Context_switch
764 *
765 *  This routine switches from the run context to the heir context.
766 *
767 *  Or1k Specific Information:
768 *
769 *  Please see the comments in the .c file for a description of how
770 *  this function works. There are several things to be aware of.
771 */
772
773void _CPU_Context_switch(
774  Context_Control  *run,
775  Context_Control  *heir
776);
777
778/*
779 *  _CPU_Context_restore
780 *
781 *  This routine is generally used only to restart self in an
782 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
783 *
784 *  NOTE: May be unnecessary to reload some registers.
785 *
786 */
787
788void _CPU_Context_restore(
789  Context_Control *new_context
790) RTEMS_NO_RETURN;
791
792/*
793 *  _CPU_Context_save_fp
794 *
795 *  This routine saves the floating point context passed to it.
796 *
797 */
798
799void _CPU_Context_save_fp(
800  void **fp_context_ptr
801);
802
803/*
804 *  _CPU_Context_restore_fp
805 *
806 *  This routine restores the floating point context passed to it.
807 *
808 */
809
810void _CPU_Context_restore_fp(
811  void **fp_context_ptr
812);
813
814/*  The following routine swaps the endian format of an unsigned int.
815 *  It must be static because it is referenced indirectly.
816 *
817 *  This version will work on any processor, but if there is a better
818 *  way for your CPU PLEASE use it.  The most common way to do this is to:
819 *
820 *     swap least significant two bytes with 16-bit rotate
821 *     swap upper and lower 16-bits
822 *     swap most significant two bytes with 16-bit rotate
823 *
824 *  Some CPUs have special instructions which swap a 32-bit quantity in
825 *  a single instruction (e.g. i486).  It is probably best to avoid
826 *  an "endian swapping control bit" in the CPU.  One good reason is
827 *  that interrupts would probably have to be disabled to insure that
828 *  an interrupt does not try to access the same "chunk" with the wrong
829 *  endian.  Another good reason is that on some CPUs, the endian bit
830 *  endianness for ALL fetches -- both code and data -- so the code
831 *  will be fetched incorrectly.
832 *
833 */
834
835void _CPU_Context_volatile_clobber( uintptr_t pattern );
836
837void _CPU_Context_validate( uintptr_t pattern );
838
839static inline unsigned int CPU_swap_u32(
840  unsigned int value
841)
842{
843  uint32_t   byte1, byte2, byte3, byte4, swapped;
844
845  byte4 = (value >> 24) & 0xff;
846  byte3 = (value >> 16) & 0xff;
847  byte2 = (value >> 8)  & 0xff;
848  byte1 =  value        & 0xff;
849
850  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
851  return( swapped );
852}
853
854#define CPU_swap_u16( value ) \
855  (((value&0xff) << 8) | ((value >> 8)&0xff))
856
857typedef uint32_t CPU_Counter_ticks;
858
859CPU_Counter_ticks _CPU_Counter_read( void );
860
861CPU_Counter_ticks _CPU_Counter_difference(
862  CPU_Counter_ticks second,
863  CPU_Counter_ticks first
864);
865
866#endif /* ASM */
867
868#ifdef __cplusplus
869}
870#endif
871
872#endif
Note: See TracBrowser for help on using the repository browser.