source: rtems/cpukit/score/cpu/no_cpu/rtems/score/cpu.h @ 80f7732

4.104.115
Last change on this file since 80f7732 was 80f7732, checked in by Ralf Corsepius <ralf.corsepius@…>, on 12/02/09 at 09:48:25

Whitespace removal.

  • Property mode set to 100644
File size: 41.2 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the XXX
7 *  processor.
8 *
9 *  @note This file is part of a porting template that is intended
10 *  to be used as the starting point when porting RTEMS to a new
11 *  CPU family.  The following needs to be done when using this as
12 *  the starting point for a new port:
13 *
14 *  + Anywhere there is an XXX, it should be replaced
15 *    with information about the CPU family being ported to.
16 *
17 *  + At the end of each comment section, there is a heading which
18 *    says "Port Specific Information:".  When porting to RTEMS,
19 *    add CPU family specific information in this section
20 */
21
22/*
23 *  COPYRIGHT (c) 1989-2008.
24 *  On-Line Applications Research Corporation (OAR).
25 *
26 *  The license and distribution terms for this file may be
27 *  found in the file LICENSE in this distribution or at
28 *  http://www.rtems.com/license/LICENSE.
29 *
30 *  $Id$
31 */
32
33#ifndef _RTEMS_SCORE_CPU_H
34#define _RTEMS_SCORE_CPU_H
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#include <rtems/score/no_cpu.h>            /* pick up machine definitions */
41#ifndef ASM
42#include <rtems/score/types.h>
43#endif
44
45/* conditional compilation parameters */
46
47/**
48 *  Should the calls to @ref _Thread_Enable_dispatch be inlined?
49 *
50 *  If TRUE, then they are inlined.
51 *  If FALSE, then a subroutine call is made.
52 *
53 *  This conditional is an example of the classic trade-off of size
54 *  versus speed.  Inlining the call (TRUE) typically increases the
55 *  size of RTEMS while speeding up the enabling of dispatching.
56 *
57 *  @note In general, the @ref _Thread_Dispatch_disable_level will
58 *  only be 0 or 1 unless you are in an interrupt handler and that
59 *  interrupt handler invokes the executive.]  When not inlined
60 *  something calls @ref _Thread_Enable_dispatch which in turns calls
61 *  @ref _Thread_Dispatch.  If the enable dispatch is inlined, then
62 *  one subroutine call is avoided entirely.
63 *
64 *  Port Specific Information:
65 *
66 *  XXX document implementation including references if appropriate
67 */
68#define CPU_INLINE_ENABLE_DISPATCH       FALSE
69
70/**
71 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
72 *  be unrolled one time?  In unrolled each iteration of the loop examines
73 *  two "nodes" on the chain being searched.  Otherwise, only one node
74 *  is examined per iteration.
75 *
76 *  If TRUE, then the loops are unrolled.
77 *  If FALSE, then the loops are not unrolled.
78 *
79 *  The primary factor in making this decision is the cost of disabling
80 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
81 *  body of the loop.  On some CPUs, the flash is more expensive than
82 *  one iteration of the loop body.  In this case, it might be desirable
83 *  to unroll the loop.  It is important to note that on some CPUs, this
84 *  code is the longest interrupt disable period in RTEMS.  So it is
85 *  necessary to strike a balance when setting this parameter.
86 *
87 *  Port Specific Information:
88 *
89 *  XXX document implementation including references if appropriate
90 */
91#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
92
93/**
94 *  Does RTEMS manage a dedicated interrupt stack in software?
95 *
96 *  If TRUE, then a stack is allocated in @ref _ISR_Handler_initialization.
97 *  If FALSE, nothing is done.
98 *
99 *  If the CPU supports a dedicated interrupt stack in hardware,
100 *  then it is generally the responsibility of the BSP to allocate it
101 *  and set it up.
102 *
103 *  If the CPU does not support a dedicated interrupt stack, then
104 *  the porter has two options: (1) execute interrupts on the
105 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
106 *  interrupt stack.
107 *
108 *  If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
109 *
110 *  Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
111 *  @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
112 *  possible that both are FALSE for a particular CPU.  Although it
113 *  is unclear what that would imply about the interrupt processing
114 *  procedure on that CPU.
115 *
116 *  Port Specific Information:
117 *
118 *  XXX document implementation including references if appropriate
119 */
120#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
121
122/**
123 *  Does the CPU follow the simple vectored interrupt model?
124 *
125 *  If TRUE, then RTEMS allocates the vector table it internally manages.
126 *  If FALSE, then the BSP is assumed to allocate and manage the vector
127 *  table
128 *
129 *  Port Specific Information:
130 *
131 *  XXX document implementation including references if appropriate
132 */
133#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
134
135/**
136 *  Does this CPU have hardware support for a dedicated interrupt stack?
137 *
138 *  If TRUE, then it must be installed during initialization.
139 *  If FALSE, then no installation is performed.
140 *
141 *  If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
142 *
143 *  Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
144 *  @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
145 *  possible that both are FALSE for a particular CPU.  Although it
146 *  is unclear what that would imply about the interrupt processing
147 *  procedure on that CPU.
148 *
149 *  Port Specific Information:
150 *
151 *  XXX document implementation including references if appropriate
152 */
153#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
154
155/**
156 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
157 *
158 *  If TRUE, then the memory is allocated during initialization.
159 *  If FALSE, then the memory is allocated during initialization.
160 *
161 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
162 *
163 *  Port Specific Information:
164 *
165 *  XXX document implementation including references if appropriate
166 */
167#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
168
169/**
170 *  Does the RTEMS invoke the user's ISR with the vector number and
171 *  a pointer to the saved interrupt frame (1) or just the vector
172 *  number (0)?
173 *
174 *  Port Specific Information:
175 *
176 *  XXX document implementation including references if appropriate
177 */
178#define CPU_ISR_PASSES_FRAME_POINTER 0
179
180/**
181 *  @def CPU_HARDWARE_FP
182 *
183 *  Does the CPU have hardware floating point?
184 *
185 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
186 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
187 *
188 *  If there is a FP coprocessor such as the i387 or mc68881, then
189 *  the answer is TRUE.
190 *
191 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
192 *  It indicates whether or not this CPU model has FP support.  For
193 *  example, it would be possible to have an i386_nofp CPU model
194 *  which set this to false to indicate that you have an i386 without
195 *  an i387 and wish to leave floating point support out of RTEMS.
196 */
197
198/**
199 *  @def CPU_SOFTWARE_FP
200 *
201 *  Does the CPU have no hardware floating point and GCC provides a
202 *  software floating point implementation which must be context
203 *  switched?
204 *
205 *  This feature conditional is used to indicate whether or not there
206 *  is software implemented floating point that must be context
207 *  switched.  The determination of whether or not this applies
208 *  is very tool specific and the state saved/restored is also
209 *  compiler specific.
210 *
211 *  Port Specific Information:
212 *
213 *  XXX document implementation including references if appropriate
214 */
215#if ( NO_CPU_HAS_FPU == 1 )
216#define CPU_HARDWARE_FP     TRUE
217#else
218#define CPU_HARDWARE_FP     FALSE
219#endif
220#define CPU_SOFTWARE_FP     FALSE
221
222/**
223 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
224 *
225 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
226 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
227 *
228 *  So far, the only CPUs in which this option has been used are the
229 *  HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
230 *  gcc both implicitly used the floating point registers to perform
231 *  integer multiplies.  Similarly, the PowerPC port of gcc has been
232 *  seen to allocate floating point local variables and touch the FPU
233 *  even when the flow through a subroutine (like vfprintf()) might
234 *  not use floating point formats.
235 *
236 *  If a function which you would not think utilize the FP unit DOES,
237 *  then one can not easily predict which tasks will use the FP hardware.
238 *  In this case, this option should be TRUE.
239 *
240 *  If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
241 *
242 *  Port Specific Information:
243 *
244 *  XXX document implementation including references if appropriate
245 */
246#define CPU_ALL_TASKS_ARE_FP     TRUE
247
248/**
249 *  Should the IDLE task have a floating point context?
250 *
251 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
252 *  and it has a floating point context which is switched in and out.
253 *  If FALSE, then the IDLE task does not have a floating point context.
254 *
255 *  Setting this to TRUE negatively impacts the time required to preempt
256 *  the IDLE task from an interrupt because the floating point context
257 *  must be saved as part of the preemption.
258 *
259 *  Port Specific Information:
260 *
261 *  XXX document implementation including references if appropriate
262 */
263#define CPU_IDLE_TASK_IS_FP      FALSE
264
265/**
266 *  Should the saving of the floating point registers be deferred
267 *  until a context switch is made to another different floating point
268 *  task?
269 *
270 *  If TRUE, then the floating point context will not be stored until
271 *  necessary.  It will remain in the floating point registers and not
272 *  disturned until another floating point task is switched to.
273 *
274 *  If FALSE, then the floating point context is saved when a floating
275 *  point task is switched out and restored when the next floating point
276 *  task is restored.  The state of the floating point registers between
277 *  those two operations is not specified.
278 *
279 *  If the floating point context does NOT have to be saved as part of
280 *  interrupt dispatching, then it should be safe to set this to TRUE.
281 *
282 *  Setting this flag to TRUE results in using a different algorithm
283 *  for deciding when to save and restore the floating point context.
284 *  The deferred FP switch algorithm minimizes the number of times
285 *  the FP context is saved and restored.  The FP context is not saved
286 *  until a context switch is made to another, different FP task.
287 *  Thus in a system with only one FP task, the FP context will never
288 *  be saved or restored.
289 *
290 *  Port Specific Information:
291 *
292 *  XXX document implementation including references if appropriate
293 */
294#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
295
296/**
297 *  Does this port provide a CPU dependent IDLE task implementation?
298 *
299 *  If TRUE, then the routine @ref _CPU_Thread_Idle_body
300 *  must be provided and is the default IDLE thread body instead of
301 *  @ref _CPU_Thread_Idle_body.
302 *
303 *  If FALSE, then use the generic IDLE thread body if the BSP does
304 *  not provide one.
305 *
306 *  This is intended to allow for supporting processors which have
307 *  a low power or idle mode.  When the IDLE thread is executed, then
308 *  the CPU can be powered down.
309 *
310 *  The order of precedence for selecting the IDLE thread body is:
311 *
312 *    -#  BSP provided
313 *    -#  CPU dependent (if provided)
314 *    -#  generic (if no BSP and no CPU dependent)
315 *
316 *  Port Specific Information:
317 *
318 *  XXX document implementation including references if appropriate
319 */
320#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
321
322/**
323 *  Does the stack grow up (toward higher addresses) or down
324 *  (toward lower addresses)?
325 *
326 *  If TRUE, then the grows upward.
327 *  If FALSE, then the grows toward smaller addresses.
328 *
329 *  Port Specific Information:
330 *
331 *  XXX document implementation including references if appropriate
332 */
333#define CPU_STACK_GROWS_UP               TRUE
334
335/**
336 *  The following is the variable attribute used to force alignment
337 *  of critical RTEMS structures.  On some processors it may make
338 *  sense to have these aligned on tighter boundaries than
339 *  the minimum requirements of the compiler in order to have as
340 *  much of the critical data area as possible in a cache line.
341 *
342 *  The placement of this macro in the declaration of the variables
343 *  is based on the syntactically requirements of the GNU C
344 *  "__attribute__" extension.  For example with GNU C, use
345 *  the following to force a structures to a 32 byte boundary.
346 *
347 *      __attribute__ ((aligned (32)))
348 *
349 *  @note Currently only the Priority Bit Map table uses this feature.
350 *        To benefit from using this, the data must be heavily
351 *        used so it will stay in the cache and used frequently enough
352 *        in the executive to justify turning this on.
353 *
354 *  Port Specific Information:
355 *
356 *  XXX document implementation including references if appropriate
357 */
358#define CPU_STRUCTURE_ALIGNMENT
359
360/**
361 *  @defgroup CPUEndian Processor Dependent Endianness Support
362 *
363 *  This group assists in issues related to processor endianness.
364 */
365
366/**
367 *  @ingroup CPUEndian
368 *  Define what is required to specify how the network to host conversion
369 *  routines are handled.
370 *
371 *  @note @a CPU_BIG_ENDIAN and @a CPU_LITTLE_ENDIAN should NOT have the
372 *  same values.
373 *
374 *  @see CPU_LITTLE_ENDIAN
375 *
376 *  Port Specific Information:
377 *
378 *  XXX document implementation including references if appropriate
379 */
380#define CPU_BIG_ENDIAN                           TRUE
381
382/**
383 *  @ingroup CPUEndian
384 *  Define what is required to specify how the network to host conversion
385 *  routines are handled.
386 *
387 *  @note @ref CPU_BIG_ENDIAN and @ref CPU_LITTLE_ENDIAN should NOT have the
388 *  same values.
389 *
390 *  @see CPU_BIG_ENDIAN
391 *
392 *  Port Specific Information:
393 *
394 *  XXX document implementation including references if appropriate
395 */
396#define CPU_LITTLE_ENDIAN                        FALSE
397
398/**
399 *  @ingroup CPUInterrupt
400 *  The following defines the number of bits actually used in the
401 *  interrupt field of the task mode.  How those bits map to the
402 *  CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
403 *
404 *  Port Specific Information:
405 *
406 *  XXX document implementation including references if appropriate
407 */
408#define CPU_MODES_INTERRUPT_MASK   0x00000001
409
410/*
411 *  Processor defined structures required for cpukit/score.
412 *
413 *  Port Specific Information:
414 *
415 *  XXX document implementation including references if appropriate
416 */
417
418/* may need to put some structures here.  */
419
420/**
421 * @defgroup CPUContext Processor Dependent Context Management
422 *
423 *  From the highest level viewpoint, there are 2 types of context to save.
424 *
425 *     -# Interrupt registers to save
426 *     -# Task level registers to save
427 *
428 *  Since RTEMS handles integer and floating point contexts separately, this
429 *  means we have the following 3 context items:
430 *
431 *     -# task level context stuff::  Context_Control
432 *     -# floating point task stuff:: Context_Control_fp
433 *     -# special interrupt level context :: CPU_Interrupt_frame
434 *
435 *  On some processors, it is cost-effective to save only the callee
436 *  preserved registers during a task context switch.  This means
437 *  that the ISR code needs to save those registers which do not
438 *  persist across function calls.  It is not mandatory to make this
439 *  distinctions between the caller/callee saves registers for the
440 *  purpose of minimizing context saved during task switch and on interrupts.
441 *  If the cost of saving extra registers is minimal, simplicity is the
442 *  choice.  Save the same context on interrupt entry as for tasks in
443 *  this case.
444 *
445 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
446 *  care should be used in designing the context area.
447 *
448 *  On some CPUs with hardware floating point support, the Context_Control_fp
449 *  structure will not be used or it simply consist of an array of a
450 *  fixed number of bytes.   This is done when the floating point context
451 *  is dumped by a "FP save context" type instruction and the format
452 *  is not really defined by the CPU.  In this case, there is no need
453 *  to figure out the exact format -- only the size.  Of course, although
454 *  this is enough information for RTEMS, it is probably not enough for
455 *  a debugger such as gdb.  But that is another problem.
456 *
457 *  Port Specific Information:
458 *
459 *  XXX document implementation including references if appropriate
460 */
461
462/**
463 *  @ingroup CPUContext Management
464 *  This defines the minimal set of integer and processor state registers
465 *  that must be saved during a voluntary context switch from one thread
466 *  to another.
467 */
468typedef struct {
469    /** This field is a hint that a port will have a number of integer
470     *  registers that need to be saved at a context switch.
471     */
472    uint32_t   some_integer_register;
473    /** This field is a hint that a port will have a number of system
474     *  registers that need to be saved at a context switch.
475     */
476    uint32_t   some_system_register;
477
478    /** This field is a hint that a port will have a register that
479     *  is the stack pointer.
480     */
481    uint32_t   stack_pointer;
482} Context_Control;
483
484/**
485 *  @ingroup CPUContext Management
486 *
487 *  This macro returns the stack pointer associated with @a _context.
488 *
489 *  @param[in] _context is the thread context area to access
490 *
491 *  @return This method returns the stack pointer.
492 */
493#define _CPU_Context_Get_SP( _context ) \
494  (_context)->stack_pointer
495
496/**
497 *  @ingroup CPUContext Management
498 *  This defines the complete set of floating point registers that must
499 *  be saved during any context switch from one thread to another.
500 */
501typedef struct {
502    /** FPU registers are listed here */
503    double      some_float_register;
504} Context_Control_fp;
505
506/**
507 *  @ingroup CPUContext Management
508 *  This defines the set of integer and processor state registers that must
509 *  be saved during an interrupt.  This set does not include any which are
510 *  in @ref Context_Control.
511 */
512typedef struct {
513    /** This field is a hint that a port will have a number of integer
514     *  registers that need to be saved when an interrupt occurs or
515     *  when a context switch occurs at the end of an ISR.
516     */
517    uint32_t   special_interrupt_register;
518} CPU_Interrupt_frame;
519
520/**
521 *  This variable is optional.  It is used on CPUs on which it is difficult
522 *  to generate an "uninitialized" FP context.  It is filled in by
523 *  @ref _CPU_Initialize and copied into the task's FP context area during
524 *  @ref _CPU_Context_Initialize.
525 *
526 *  Port Specific Information:
527 *
528 *  XXX document implementation including references if appropriate
529 */
530SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
531
532/**
533 *  @defgroup CPUInterrupt Processor Dependent Interrupt Management
534 *
535 *  On some CPUs, RTEMS supports a software managed interrupt stack.
536 *  This stack is allocated by the Interrupt Manager and the switch
537 *  is performed in @ref _ISR_Handler.  These variables contain pointers
538 *  to the lowest and highest addresses in the chunk of memory allocated
539 *  for the interrupt stack.  Since it is unknown whether the stack
540 *  grows up or down (in general), this give the CPU dependent
541 *  code the option of picking the version it wants to use.
542 *
543 *  @note These two variables are required if the macro
544 *        @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
545 *
546 *  Port Specific Information:
547 *
548 *  XXX document implementation including references if appropriate
549 */
550
551/**
552 *  @ingroup CPUInterrupt
553 *  This variable points to the lowest physical address of the interrupt
554 *  stack.
555 */
556SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
557
558/**
559 *  @ingroup CPUInterrupt
560 *  This variable points to the lowest physical address of the interrupt
561 *  stack.
562 */
563SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
564
565/*
566 *  Nothing prevents the porter from declaring more CPU specific variables.
567 *
568 *  Port Specific Information:
569 *
570 *  XXX document implementation including references if appropriate
571 */
572
573/* XXX: if needed, put more variables here */
574
575/**
576 *  @ingroup CPUContext
577 *  The size of the floating point context area.  On some CPUs this
578 *  will not be a "sizeof" because the format of the floating point
579 *  area is not defined -- only the size is.  This is usually on
580 *  CPUs with a "floating point save context" instruction.
581 *
582 *  Port Specific Information:
583 *
584 *  XXX document implementation including references if appropriate
585 */
586#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
587
588/**
589 *  Amount of extra stack (above minimum stack size) required by
590 *  MPCI receive server thread.  Remember that in a multiprocessor
591 *  system this thread must exist and be able to process all directives.
592 *
593 *  Port Specific Information:
594 *
595 *  XXX document implementation including references if appropriate
596 */
597#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
598
599/**
600 *  @ingroup CPUInterrupt
601 *  This defines the number of entries in the @ref _ISR_Vector_table managed
602 *  by RTEMS.
603 *
604 *  Port Specific Information:
605 *
606 *  XXX document implementation including references if appropriate
607 */
608#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
609
610/**
611 *  @ingroup CPUInterrupt
612 *  This defines the highest interrupt vector number for this port.
613 */
614#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
615
616/**
617 *  @ingroup CPUInterrupt
618 *  This is defined if the port has a special way to report the ISR nesting
619 *  level.  Most ports maintain the variable @a _ISR_Nest_level.
620 */
621#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
622
623/**
624 *  @ingroup CPUContext
625 *  Should be large enough to run all RTEMS tests.  This ensures
626 *  that a "reasonable" small application should not have any problems.
627 *
628 *  Port Specific Information:
629 *
630 *  XXX document implementation including references if appropriate
631 */
632#define CPU_STACK_MINIMUM_SIZE          (1024*4)
633
634/**
635 *  CPU's worst alignment requirement for data types on a byte boundary.  This
636 *  alignment does not take into account the requirements for the stack.
637 *
638 *  Port Specific Information:
639 *
640 *  XXX document implementation including references if appropriate
641 */
642#define CPU_ALIGNMENT              8
643
644/**
645 *  This number corresponds to the byte alignment requirement for the
646 *  heap handler.  This alignment requirement may be stricter than that
647 *  for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
648 *  common for the heap to follow the same alignment requirement as
649 *  @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
650 *  the heap, then this should be set to @ref CPU_ALIGNMENT.
651 *
652 *  @note  This does not have to be a power of 2 although it should be
653 *         a multiple of 2 greater than or equal to 2.  The requirement
654 *         to be a multiple of 2 is because the heap uses the least
655 *         significant field of the front and back flags to indicate
656 *         that a block is in use or free.  So you do not want any odd
657 *         length blocks really putting length data in that bit.
658 *
659 *         On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
660 *         have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
661 *         elements allocated from the heap meet all restrictions.
662 *
663 *  Port Specific Information:
664 *
665 *  XXX document implementation including references if appropriate
666 */
667#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
668
669/**
670 *  This number corresponds to the byte alignment requirement for memory
671 *  buffers allocated by the partition manager.  This alignment requirement
672 *  may be stricter than that for the data types alignment specified by
673 *  @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
674 *  alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
675 *  strict enough for the partition, then this should be set to
676 *  @ref CPU_ALIGNMENT.
677 *
678 *  @note  This does not have to be a power of 2.  It does have to
679 *         be greater or equal to than @ref CPU_ALIGNMENT.
680 *
681 *  Port Specific Information:
682 *
683 *  XXX document implementation including references if appropriate
684 */
685#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
686
687/**
688 *  This number corresponds to the byte alignment requirement for the
689 *  stack.  This alignment requirement may be stricter than that for the
690 *  data types alignment specified by @ref CPU_ALIGNMENT.  If the
691 *  @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
692 *  set to 0.
693 *
694 *  @note This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
695 *
696 *  Port Specific Information:
697 *
698 *  XXX document implementation including references if appropriate
699 */
700#define CPU_STACK_ALIGNMENT        0
701
702/*
703 *  ISR handler macros
704 */
705
706/**
707 *  @ingroup CPUInterrupt
708 *  Support routine to initialize the RTEMS vector table after it is allocated.
709 *
710 *  Port Specific Information:
711 *
712 *  XXX document implementation including references if appropriate
713 */
714#define _CPU_Initialize_vectors()
715
716/**
717 *  @ingroup CPUInterrupt
718 *  Disable all interrupts for an RTEMS critical section.  The previous
719 *  level is returned in @a _isr_cookie.
720 *
721 *  @param[out] _isr_cookie will contain the previous level cookie
722 *
723 *  Port Specific Information:
724 *
725 *  XXX document implementation including references if appropriate
726 */
727#define _CPU_ISR_Disable( _isr_cookie ) \
728  { \
729    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
730  }
731
732/**
733 *  @ingroup CPUInterrupt
734 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
735 *  This indicates the end of an RTEMS critical section.  The parameter
736 *  @a _isr_cookie is not modified.
737 *
738 *  @param[in] _isr_cookie contain the previous level cookie
739 *
740 *  Port Specific Information:
741 *
742 *  XXX document implementation including references if appropriate
743 */
744#define _CPU_ISR_Enable( _isr_cookie )  \
745  { \
746  }
747
748/**
749 *  @ingroup CPUInterrupt
750 *  This temporarily restores the interrupt to @a _isr_cookie before immediately
751 *  disabling them again.  This is used to divide long RTEMS critical
752 *  sections into two or more parts.  The parameter @a _isr_cookie is not
753 *  modified.
754 *
755 *  @param[in] _isr_cookie contain the previous level cookie
756 *
757 *  Port Specific Information:
758 *
759 *  XXX document implementation including references if appropriate
760 */
761#define _CPU_ISR_Flash( _isr_cookie ) \
762  { \
763  }
764
765/**
766 *  @ingroup CPUInterrupt
767 *
768 *  This routine and @ref _CPU_ISR_Get_level
769 *  Map the interrupt level in task mode onto the hardware that the CPU
770 *  actually provides.  Currently, interrupt levels which do not
771 *  map onto the CPU in a generic fashion are undefined.  Someday,
772 *  it would be nice if these were "mapped" by the application
773 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
774 *  8 - 255 would be available for bsp/application specific meaning.
775 *  This could be used to manage a programmable interrupt controller
776 *  via the rtems_task_mode directive.
777 *
778 *  Port Specific Information:
779 *
780 *  XXX document implementation including references if appropriate
781 */
782#define _CPU_ISR_Set_level( new_level ) \
783  { \
784  }
785
786/**
787 *  @ingroup CPUInterrupt
788 *  Return the current interrupt disable level for this task in
789 *  the format used by the interrupt level portion of the task mode.
790 *
791 *  @note This routine usually must be implemented as a subroutine.
792 *
793 *  Port Specific Information:
794 *
795 *  XXX document implementation including references if appropriate
796 */
797uint32_t   _CPU_ISR_Get_level( void );
798
799/* end of ISR handler macros */
800
801/* Context handler macros */
802
803/**
804 *  @ingroup CPUContext
805 *  Initialize the context to a state suitable for starting a
806 *  task after a context restore operation.  Generally, this
807 *  involves:
808 *
809 *     - setting a starting address
810 *     - preparing the stack
811 *     - preparing the stack and frame pointers
812 *     - setting the proper interrupt level in the context
813 *     - initializing the floating point context
814 *
815 *  This routine generally does not set any unnecessary register
816 *  in the context.  The state of the "general data" registers is
817 *  undefined at task start time.
818 *
819 *  @param[in] _the_context is the context structure to be initialized
820 *  @param[in] _stack_base is the lowest physical address of this task's stack
821 *  @param[in] _size is the size of this task's stack
822 *  @param[in] _isr is the interrupt disable level
823 *  @param[in] _entry_point is the thread's entry point.  This is
824 *         always @a _Thread_Handler
825 *  @param[in] _is_fp is TRUE if the thread is to be a floating
826 *        point thread.  This is typically only used on CPUs where the
827 *        FPU may be easily disabled by software such as on the SPARC
828 *        where the PSR contains an enable FPU bit.
829 *
830 *  Port Specific Information:
831 *
832 *  XXX document implementation including references if appropriate
833 */
834#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
835                                 _isr, _entry_point, _is_fp ) \
836  { \
837  }
838
839/**
840 *  This routine is responsible for somehow restarting the currently
841 *  executing task.  If you are lucky, then all that is necessary
842 *  is restoring the context.  Otherwise, there will need to be
843 *  a special assembly routine which does something special in this
844 *  case.  For many ports, simply adding a label to the restore path
845 *  of @ref _CPU_Context_switch will work.  On other ports, it may be
846 *  possibly to load a few arguments and jump to the restore path. It will
847 *  not work if restarting self conflicts with the stack frame
848 *  assumptions of restoring a context.
849 *
850 *  Port Specific Information:
851 *
852 *  XXX document implementation including references if appropriate
853 */
854#define _CPU_Context_Restart_self( _the_context ) \
855   _CPU_Context_restore( (_the_context) );
856
857/**
858 *  @ingroup CPUContext
859 *  The purpose of this macro is to allow the initial pointer into
860 *  a floating point context area (used to save the floating point
861 *  context) to be at an arbitrary place in the floating point
862 *  context area.
863 *
864 *  This is necessary because some FP units are designed to have
865 *  their context saved as a stack which grows into lower addresses.
866 *  Other FP units can be saved by simply moving registers into offsets
867 *  from the base of the context area.  Finally some FP units provide
868 *  a "dump context" instruction which could fill in from high to low
869 *  or low to high based on the whim of the CPU designers.
870 *
871 *  @param[in] _base is the lowest physical address of the floating point
872 *         context area
873 *  @param[in] _offset is the offset into the floating point area
874 *
875 *  Port Specific Information:
876 *
877 *  XXX document implementation including references if appropriate
878 */
879#define _CPU_Context_Fp_start( _base, _offset ) \
880   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
881
882/**
883 *  This routine initializes the FP context area passed to it to.
884 *  There are a few standard ways in which to initialize the
885 *  floating point context.  The code included for this macro assumes
886 *  that this is a CPU in which a "initial" FP context was saved into
887 *  @a _CPU_Null_fp_context and it simply copies it to the destination
888 *  context passed to it.
889 *
890 *  Other floating point context save/restore models include:
891 *    -# not doing anything, and
892 *    -# putting a "null FP status word" in the correct place in the FP context.
893 *
894 *  @param[in] _destination is the floating point context area
895 *
896 *  Port Specific Information:
897 *
898 *  XXX document implementation including references if appropriate
899 */
900#define _CPU_Context_Initialize_fp( _destination ) \
901  { \
902   *(*(_destination)) = _CPU_Null_fp_context; \
903  }
904
905/* end of Context handler macros */
906
907/* Fatal Error manager macros */
908
909/**
910 *  This routine copies _error into a known place -- typically a stack
911 *  location or a register, optionally disables interrupts, and
912 *  halts/stops the CPU.
913 *
914 *  Port Specific Information:
915 *
916 *  XXX document implementation including references if appropriate
917 */
918#define _CPU_Fatal_halt( _error ) \
919  { \
920  }
921
922/* end of Fatal Error manager macros */
923
924/* Bitfield handler macros */
925
926/**
927 *  @defgroup CPUBitfield Processor Dependent Bitfield Manipulation
928 *
929 *  This set of routines are used to implement fast searches for
930 *  the most important ready task.
931 */
932
933/**
934 *  @ingroup CPUBitfield
935 *  This definition is set to TRUE if the port uses the generic bitfield
936 *  manipulation implementation.
937 */
938#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
939
940/**
941 *  @ingroup CPUBitfield
942 *  This definition is set to TRUE if the port uses the data tables provided
943 *  by the generic bitfield manipulation implementation.
944 *  This can occur when actually using the generic bitfield manipulation
945 *  implementation or when implementing the same algorithm in assembly
946 *  language for improved performance.  It is unlikely that a port will use
947 *  the data if it has a bitfield scan instruction.
948 */
949#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
950
951/**
952 *  @ingroup CPUBitfield
953 *  This routine sets @a _output to the bit number of the first bit
954 *  set in @a _value.  @a _value is of CPU dependent type
955 *  @a Priority_Bit_map_control.  This type may be either 16 or 32 bits
956 *  wide although only the 16 least significant bits will be used.
957 *
958 *  There are a number of variables in using a "find first bit" type
959 *  instruction.
960 *
961 *    -# What happens when run on a value of zero?
962 *    -# Bits may be numbered from MSB to LSB or vice-versa.
963 *    -# The numbering may be zero or one based.
964 *    -# The "find first bit" instruction may search from MSB or LSB.
965 *
966 *  RTEMS guarantees that (1) will never happen so it is not a concern.
967 *  (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and
968 *  @ref _CPU_Priority_bits_index.  These three form a set of routines
969 *  which must logically operate together.  Bits in the _value are
970 *  set and cleared based on masks built by @ref _CPU_Priority_Mask.
971 *  The basic major and minor values calculated by @ref _Priority_Major
972 *  and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index
973 *  to properly range between the values returned by the "find first bit"
974 *  instruction.  This makes it possible for @ref _Priority_Get_highest to
975 *  calculate the major and directly index into the minor table.
976 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
977 *  is the first bit found.
978 *
979 *  This entire "find first bit" and mapping process depends heavily
980 *  on the manner in which a priority is broken into a major and minor
981 *  components with the major being the 4 MSB of a priority and minor
982 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
983 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
984 *  to the lowest priority.
985 *
986 *  If your CPU does not have a "find first bit" instruction, then
987 *  there are ways to make do without it.  Here are a handful of ways
988 *  to implement this in software:
989 *
990@verbatim
991      - a series of 16 bit test instructions
992      - a "binary search using if's"
993      - _number = 0
994        if _value > 0x00ff
995          _value >>=8
996          _number = 8;
997
998        if _value > 0x0000f
999          _value >=8
1000          _number += 4
1001
1002        _number += bit_set_table[ _value ]
1003@endverbatim
1004
1005 *    where bit_set_table[ 16 ] has values which indicate the first
1006 *      bit set
1007 *
1008 *  @param[in] _value is the value to be scanned
1009 *  @param[in] _output is the first bit set
1010 *
1011 *  Port Specific Information:
1012 *
1013 *  XXX document implementation including references if appropriate
1014 */
1015
1016#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1017#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1018  { \
1019    (_output) = 0;   /* do something to prevent warnings */ \
1020  }
1021#endif
1022
1023/* end of Bitfield handler macros */
1024
1025/**
1026 *  This routine builds the mask which corresponds to the bit fields
1027 *  as searched by @ref _CPU_Bitfield_Find_first_bit.  See the discussion
1028 *  for that routine.
1029 *
1030 *  Port Specific Information:
1031 *
1032 *  XXX document implementation including references if appropriate
1033 */
1034#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1035
1036#define _CPU_Priority_Mask( _bit_number ) \
1037  ( 1 << (_bit_number) )
1038
1039#endif
1040
1041/**
1042 *  @ingroup CPUBitfield
1043 *  This routine translates the bit numbers returned by
1044 *  @ref _CPU_Bitfield_Find_first_bit into something suitable for use as
1045 *  a major or minor component of a priority.  See the discussion
1046 *  for that routine.
1047 *
1048 *  @param[in] _priority is the major or minor number to translate
1049 *
1050 *  Port Specific Information:
1051 *
1052 *  XXX document implementation including references if appropriate
1053 */
1054#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1055
1056#define _CPU_Priority_bits_index( _priority ) \
1057  (_priority)
1058
1059#endif
1060
1061/* end of Priority handler macros */
1062
1063/* functions */
1064
1065/**
1066 *  This routine performs CPU dependent initialization.
1067 *
1068 *  Port Specific Information:
1069 *
1070 *  XXX document implementation including references if appropriate
1071 */
1072void _CPU_Initialize(void);
1073
1074/**
1075 *  @ingroup CPUInterrupt
1076 *  This routine installs a "raw" interrupt handler directly into the
1077 *  processor's vector table.
1078 *
1079 *  @param[in] vector is the vector number
1080 *  @param[in] new_handler is the raw ISR handler to install
1081 *  @param[in] old_handler is the previously installed ISR Handler
1082 *
1083 *  Port Specific Information:
1084 *
1085 *  XXX document implementation including references if appropriate
1086 */
1087void _CPU_ISR_install_raw_handler(
1088  uint32_t    vector,
1089  proc_ptr    new_handler,
1090  proc_ptr   *old_handler
1091);
1092
1093/**
1094 *  @ingroup CPUInterrupt
1095 *  This routine installs an interrupt vector.
1096 *
1097 *  @param[in] vector is the vector number
1098 *  @param[in] new_handler is the RTEMS ISR handler to install
1099 *  @param[in] old_handler is the previously installed ISR Handler
1100 *
1101 *  Port Specific Information:
1102 *
1103 *  XXX document implementation including references if appropriate
1104 */
1105void _CPU_ISR_install_vector(
1106  uint32_t    vector,
1107  proc_ptr    new_handler,
1108  proc_ptr   *old_handler
1109);
1110
1111/**
1112 *  @ingroup CPUInterrupt
1113 *  This routine installs the hardware interrupt stack pointer.
1114 *
1115 *  @note  It need only be provided if @ref CPU_HAS_HARDWARE_INTERRUPT_STACK
1116 *         is TRUE.
1117 *
1118 *  Port Specific Information:
1119 *
1120 *  XXX document implementation including references if appropriate
1121 */
1122void _CPU_Install_interrupt_stack( void );
1123
1124/**
1125 *  This routine is the CPU dependent IDLE thread body.
1126 *
1127 *  @note  It need only be provided if @ref CPU_PROVIDES_IDLE_THREAD_BODY
1128 *         is TRUE.
1129 *
1130 *  Port Specific Information:
1131 *
1132 *  XXX document implementation including references if appropriate
1133 */
1134void *_CPU_Thread_Idle_body( uintptr_t ignored );
1135
1136/**
1137 *  @ingroup CPUContext
1138 *  This routine switches from the run context to the heir context.
1139 *
1140 *  @param[in] run points to the context of the currently executing task
1141 *  @param[in] heir points to the context of the heir task
1142 *
1143 *  Port Specific Information:
1144 *
1145 *  XXX document implementation including references if appropriate
1146 */
1147void _CPU_Context_switch(
1148  Context_Control  *run,
1149  Context_Control  *heir
1150);
1151
1152/**
1153 *  @ingroup CPUContext
1154 *  This routine is generally used only to restart self in an
1155 *  efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
1156 *
1157 *  @param[in] new_context points to the context to be restored.
1158 *
1159 *  @note May be unnecessary to reload some registers.
1160 *
1161 *  Port Specific Information:
1162 *
1163 *  XXX document implementation including references if appropriate
1164 */
1165void _CPU_Context_restore(
1166  Context_Control *new_context
1167);
1168
1169/**
1170 *  @ingroup CPUContext
1171 *  This routine saves the floating point context passed to it.
1172 *
1173 *  @param[in] fp_context_ptr is a pointer to a pointer to a floating
1174 *  point context area
1175 *
1176 *  @return on output @a *fp_context_ptr will contain the address that
1177 *  should be used with @ref _CPU_Context_restore_fp to restore this context.
1178 *
1179 *  Port Specific Information:
1180 *
1181 *  XXX document implementation including references if appropriate
1182 */
1183void _CPU_Context_save_fp(
1184  Context_Control_fp **fp_context_ptr
1185);
1186
1187/**
1188 *  @ingroup CPUContext
1189 *  This routine restores the floating point context passed to it.
1190 *
1191 *  @param[in] fp_context_ptr is a pointer to a pointer to a floating
1192 *  point context area to restore
1193 *
1194 *  @return on output @a *fp_context_ptr will contain the address that
1195 *  should be used with @ref _CPU_Context_save_fp to save this context.
1196 *
1197 *  Port Specific Information:
1198 *
1199 *  XXX document implementation including references if appropriate
1200 */
1201void _CPU_Context_restore_fp(
1202  Context_Control_fp **fp_context_ptr
1203);
1204
1205/**
1206 *  @ingroup CPUEndian
1207 *  The following routine swaps the endian format of an unsigned int.
1208 *  It must be static because it is referenced indirectly.
1209 *
1210 *  This version will work on any processor, but if there is a better
1211 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1212 *
1213 *     swap least significant two bytes with 16-bit rotate
1214 *     swap upper and lower 16-bits
1215 *     swap most significant two bytes with 16-bit rotate
1216 *
1217 *  Some CPUs have special instructions which swap a 32-bit quantity in
1218 *  a single instruction (e.g. i486).  It is probably best to avoid
1219 *  an "endian swapping control bit" in the CPU.  One good reason is
1220 *  that interrupts would probably have to be disabled to ensure that
1221 *  an interrupt does not try to access the same "chunk" with the wrong
1222 *  endian.  Another good reason is that on some CPUs, the endian bit
1223 *  endianness for ALL fetches -- both code and data -- so the code
1224 *  will be fetched incorrectly.
1225 *
1226 *  @param[in] value is the value to be swapped
1227 *  @return the value after being endian swapped
1228 *
1229 *  Port Specific Information:
1230 *
1231 *  XXX document implementation including references if appropriate
1232 */
1233static inline uint32_t CPU_swap_u32(
1234  uint32_t value
1235)
1236{
1237  uint32_t byte1, byte2, byte3, byte4, swapped;
1238
1239  byte4 = (value >> 24) & 0xff;
1240  byte3 = (value >> 16) & 0xff;
1241  byte2 = (value >> 8)  & 0xff;
1242  byte1 =  value        & 0xff;
1243
1244  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1245  return swapped;
1246}
1247
1248/**
1249 *  @ingroup CPUEndian
1250 *  This routine swaps a 16 bir quantity.
1251 *
1252 *  @param[in] value is the value to be swapped
1253 *  @return the value after being endian swapped
1254 */
1255#define CPU_swap_u16( value ) \
1256  (((value&0xff) << 8) | ((value >> 8)&0xff))
1257
1258#ifdef __cplusplus
1259}
1260#endif
1261
1262#endif
Note: See TracBrowser for help on using the repository browser.