source: rtems/cpukit/score/cpu/no_cpu/rtems/score/cpu.h @ 6805640e

4.104.114.84.95
Last change on this file since 6805640e was 6805640e, checked in by Joel Sherrill <joel.sherrill@…>, on 07/29/99 at 23:01:15

Patch from Charles-Antoine Gauthier <charles.gauthier@…>
to correct a typo CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES was actually
typed in as CPU_CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES.

  • Property mode set to 100644
File size: 28.2 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the XXX
4 *  processor.
5 *
6 *  COPYRIGHT (c) 1989-1998.
7 *  On-Line Applications Research Corporation (OAR).
8 *  Copyright assigned to U.S. Government, 1994.
9 *
10 *  The license and distribution terms for this file may be
11 *  found in the file LICENSE in this distribution or at
12 *  http://www.OARcorp.com/rtems/license.html.
13 *
14 *  $Id$
15 */
16
17#ifndef __CPU_h
18#define __CPU_h
19
20#ifdef __cplusplus
21extern "C" {
22#endif
23
24#include <rtems/score/no_cpu.h>            /* pick up machine definitions */
25#ifndef ASM
26#include <rtems/score/no_cputypes.h>
27#endif
28
29/* conditional compilation parameters */
30
31/*
32 *  Should the calls to _Thread_Enable_dispatch be inlined?
33 *
34 *  If TRUE, then they are inlined.
35 *  If FALSE, then a subroutine call is made.
36 *
37 *  Basically this is an example of the classic trade-off of size
38 *  versus speed.  Inlining the call (TRUE) typically increases the
39 *  size of RTEMS while speeding up the enabling of dispatching.
40 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
41 *  only be 0 or 1 unless you are in an interrupt handler and that
42 *  interrupt handler invokes the executive.]  When not inlined
43 *  something calls _Thread_Enable_dispatch which in turns calls
44 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
45 *  one subroutine call is avoided entirely.]
46 */
47
48#define CPU_INLINE_ENABLE_DISPATCH       FALSE
49
50/*
51 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
52 *  be unrolled one time?  In unrolled each iteration of the loop examines
53 *  two "nodes" on the chain being searched.  Otherwise, only one node
54 *  is examined per iteration.
55 *
56 *  If TRUE, then the loops are unrolled.
57 *  If FALSE, then the loops are not unrolled.
58 *
59 *  The primary factor in making this decision is the cost of disabling
60 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
61 *  body of the loop.  On some CPUs, the flash is more expensive than
62 *  one iteration of the loop body.  In this case, it might be desirable
63 *  to unroll the loop.  It is important to note that on some CPUs, this
64 *  code is the longest interrupt disable period in RTEMS.  So it is
65 *  necessary to strike a balance when setting this parameter.
66 */
67
68#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
69
70/*
71 *  Does RTEMS manage a dedicated interrupt stack in software?
72 *
73 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
74 *  If FALSE, nothing is done.
75 *
76 *  If the CPU supports a dedicated interrupt stack in hardware,
77 *  then it is generally the responsibility of the BSP to allocate it
78 *  and set it up.
79 *
80 *  If the CPU does not support a dedicated interrupt stack, then
81 *  the porter has two options: (1) execute interrupts on the
82 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
83 *  interrupt stack.
84 *
85 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
86 *
87 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
88 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
89 *  possible that both are FALSE for a particular CPU.  Although it
90 *  is unclear what that would imply about the interrupt processing
91 *  procedure on that CPU.
92 */
93
94#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
95
96/*
97 *  Does this CPU have hardware support for a dedicated interrupt stack?
98 *
99 *  If TRUE, then it must be installed during initialization.
100 *  If FALSE, then no installation is performed.
101 *
102 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
103 *
104 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
105 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
106 *  possible that both are FALSE for a particular CPU.  Although it
107 *  is unclear what that would imply about the interrupt processing
108 *  procedure on that CPU.
109 */
110
111#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
112
113/*
114 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
115 *
116 *  If TRUE, then the memory is allocated during initialization.
117 *  If FALSE, then the memory is allocated during initialization.
118 *
119 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
120 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
121 */
122
123#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
124
125/*
126 *  Does the RTEMS invoke the user's ISR with the vector number and
127 *  a pointer to the saved interrupt frame (1) or just the vector
128 *  number (0)?
129 */
130
131#define CPU_ISR_PASSES_FRAME_POINTER 0
132
133/*
134 *  Does the CPU have hardware floating point?
135 *
136 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
137 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
138 *
139 *  If there is a FP coprocessor such as the i387 or mc68881, then
140 *  the answer is TRUE.
141 *
142 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
143 *  It indicates whether or not this CPU model has FP support.  For
144 *  example, it would be possible to have an i386_nofp CPU model
145 *  which set this to false to indicate that you have an i386 without
146 *  an i387 and wish to leave floating point support out of RTEMS.
147 */
148
149#if ( NO_CPU_HAS_FPU == 1 )
150#define CPU_HARDWARE_FP     TRUE
151#else
152#define CPU_HARDWARE_FP     FALSE
153#endif
154
155/*
156 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
157 *
158 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
159 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
160 *
161 *  So far, the only CPU in which this option has been used is the
162 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
163 *  floating point registers to perform integer multiplies.  If
164 *  a function which you would not think utilize the FP unit DOES,
165 *  then one can not easily predict which tasks will use the FP hardware.
166 *  In this case, this option should be TRUE.
167 *
168 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
169 */
170
171#define CPU_ALL_TASKS_ARE_FP     TRUE
172
173/*
174 *  Should the IDLE task have a floating point context?
175 *
176 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
177 *  and it has a floating point context which is switched in and out.
178 *  If FALSE, then the IDLE task does not have a floating point context.
179 *
180 *  Setting this to TRUE negatively impacts the time required to preempt
181 *  the IDLE task from an interrupt because the floating point context
182 *  must be saved as part of the preemption.
183 */
184
185#define CPU_IDLE_TASK_IS_FP      FALSE
186
187/*
188 *  Should the saving of the floating point registers be deferred
189 *  until a context switch is made to another different floating point
190 *  task?
191 *
192 *  If TRUE, then the floating point context will not be stored until
193 *  necessary.  It will remain in the floating point registers and not
194 *  disturned until another floating point task is switched to.
195 *
196 *  If FALSE, then the floating point context is saved when a floating
197 *  point task is switched out and restored when the next floating point
198 *  task is restored.  The state of the floating point registers between
199 *  those two operations is not specified.
200 *
201 *  If the floating point context does NOT have to be saved as part of
202 *  interrupt dispatching, then it should be safe to set this to TRUE.
203 *
204 *  Setting this flag to TRUE results in using a different algorithm
205 *  for deciding when to save and restore the floating point context.
206 *  The deferred FP switch algorithm minimizes the number of times
207 *  the FP context is saved and restored.  The FP context is not saved
208 *  until a context switch is made to another, different FP task.
209 *  Thus in a system with only one FP task, the FP context will never
210 *  be saved or restored.
211 */
212
213#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
214
215/*
216 *  Does this port provide a CPU dependent IDLE task implementation?
217 *
218 *  If TRUE, then the routine _CPU_Thread_Idle_body
219 *  must be provided and is the default IDLE thread body instead of
220 *  _CPU_Thread_Idle_body.
221 *
222 *  If FALSE, then use the generic IDLE thread body if the BSP does
223 *  not provide one.
224 *
225 *  This is intended to allow for supporting processors which have
226 *  a low power or idle mode.  When the IDLE thread is executed, then
227 *  the CPU can be powered down.
228 *
229 *  The order of precedence for selecting the IDLE thread body is:
230 *
231 *    1.  BSP provided
232 *    2.  CPU dependent (if provided)
233 *    3.  generic (if no BSP and no CPU dependent)
234 */
235
236#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
237
238/*
239 *  Does the stack grow up (toward higher addresses) or down
240 *  (toward lower addresses)?
241 *
242 *  If TRUE, then the grows upward.
243 *  If FALSE, then the grows toward smaller addresses.
244 */
245
246#define CPU_STACK_GROWS_UP               TRUE
247
248/*
249 *  The following is the variable attribute used to force alignment
250 *  of critical RTEMS structures.  On some processors it may make
251 *  sense to have these aligned on tighter boundaries than
252 *  the minimum requirements of the compiler in order to have as
253 *  much of the critical data area as possible in a cache line.
254 *
255 *  The placement of this macro in the declaration of the variables
256 *  is based on the syntactically requirements of the GNU C
257 *  "__attribute__" extension.  For example with GNU C, use
258 *  the following to force a structures to a 32 byte boundary.
259 *
260 *      __attribute__ ((aligned (32)))
261 *
262 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
263 *         To benefit from using this, the data must be heavily
264 *         used so it will stay in the cache and used frequently enough
265 *         in the executive to justify turning this on.
266 */
267
268#define CPU_STRUCTURE_ALIGNMENT
269
270/*
271 *  Define what is required to specify how the network to host conversion
272 *  routines are handled.
273 */
274
275#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
276#define CPU_BIG_ENDIAN                           TRUE
277#define CPU_LITTLE_ENDIAN                        FALSE
278
279/*
280 *  The following defines the number of bits actually used in the
281 *  interrupt field of the task mode.  How those bits map to the
282 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
283 */
284
285#define CPU_MODES_INTERRUPT_MASK   0x00000001
286
287/*
288 *  Processor defined structures
289 *
290 *  Examples structures include the descriptor tables from the i386
291 *  and the processor control structure on the i960ca.
292 */
293
294/* may need to put some structures here.  */
295
296/*
297 * Contexts
298 *
299 *  Generally there are 2 types of context to save.
300 *     1. Interrupt registers to save
301 *     2. Task level registers to save
302 *
303 *  This means we have the following 3 context items:
304 *     1. task level context stuff::  Context_Control
305 *     2. floating point task stuff:: Context_Control_fp
306 *     3. special interrupt level context :: Context_Control_interrupt
307 *
308 *  On some processors, it is cost-effective to save only the callee
309 *  preserved registers during a task context switch.  This means
310 *  that the ISR code needs to save those registers which do not
311 *  persist across function calls.  It is not mandatory to make this
312 *  distinctions between the caller/callee saves registers for the
313 *  purpose of minimizing context saved during task switch and on interrupts.
314 *  If the cost of saving extra registers is minimal, simplicity is the
315 *  choice.  Save the same context on interrupt entry as for tasks in
316 *  this case.
317 *
318 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
319 *  care should be used in designing the context area.
320 *
321 *  On some CPUs with hardware floating point support, the Context_Control_fp
322 *  structure will not be used or it simply consist of an array of a
323 *  fixed number of bytes.   This is done when the floating point context
324 *  is dumped by a "FP save context" type instruction and the format
325 *  is not really defined by the CPU.  In this case, there is no need
326 *  to figure out the exact format -- only the size.  Of course, although
327 *  this is enough information for RTEMS, it is probably not enough for
328 *  a debugger such as gdb.  But that is another problem.
329 */
330
331typedef struct {
332    unsigned32 some_integer_register;
333    unsigned32 some_system_register;
334} Context_Control;
335
336typedef struct {
337    double      some_float_register;
338} Context_Control_fp;
339
340typedef struct {
341    unsigned32 special_interrupt_register;
342} CPU_Interrupt_frame;
343
344
345/*
346 *  The following table contains the information required to configure
347 *  the XXX processor specific parameters.
348 */
349
350typedef struct {
351  void       (*pretasking_hook)( void );
352  void       (*predriver_hook)( void );
353  void       (*postdriver_hook)( void );
354  void       (*idle_task)( void );
355  boolean      do_zero_of_workspace;
356  unsigned32   idle_task_stack_size;
357  unsigned32   interrupt_stack_size;
358  unsigned32   extra_mpci_receive_server_stack;
359  void *     (*stack_allocate_hook)( unsigned32 );
360  void       (*stack_free_hook)( void* );
361  /* end of fields required on all CPUs */
362
363  unsigned32   some_other_cpu_dependent_info;
364}   rtems_cpu_table;
365
366/*
367 *  This variable is optional.  It is used on CPUs on which it is difficult
368 *  to generate an "uninitialized" FP context.  It is filled in by
369 *  _CPU_Initialize and copied into the task's FP context area during
370 *  _CPU_Context_Initialize.
371 */
372
373SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
374
375/*
376 *  On some CPUs, RTEMS supports a software managed interrupt stack.
377 *  This stack is allocated by the Interrupt Manager and the switch
378 *  is performed in _ISR_Handler.  These variables contain pointers
379 *  to the lowest and highest addresses in the chunk of memory allocated
380 *  for the interrupt stack.  Since it is unknown whether the stack
381 *  grows up or down (in general), this give the CPU dependent
382 *  code the option of picking the version it wants to use.
383 *
384 *  NOTE: These two variables are required if the macro
385 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
386 */
387
388SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
389SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
390
391/*
392 *  With some compilation systems, it is difficult if not impossible to
393 *  call a high-level language routine from assembly language.  This
394 *  is especially true of commercial Ada compilers and name mangling
395 *  C++ ones.  This variable can be optionally defined by the CPU porter
396 *  and contains the address of the routine _Thread_Dispatch.  This
397 *  can make it easier to invoke that routine at the end of the interrupt
398 *  sequence (if a dispatch is necessary).
399 */
400
401SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
402
403/*
404 *  Nothing prevents the porter from declaring more CPU specific variables.
405 */
406
407/* XXX: if needed, put more variables here */
408
409/*
410 *  The size of the floating point context area.  On some CPUs this
411 *  will not be a "sizeof" because the format of the floating point
412 *  area is not defined -- only the size is.  This is usually on
413 *  CPUs with a "floating point save context" instruction.
414 */
415
416#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
417
418/*
419 *  Amount of extra stack (above minimum stack size) required by
420 *  MPCI receive server thread.  Remember that in a multiprocessor
421 *  system this thread must exist and be able to process all directives.
422 */
423
424#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
425
426/*
427 *  This defines the number of entries in the ISR_Vector_table managed
428 *  by RTEMS.
429 */
430
431#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
432#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
433
434/*
435 *  Should be large enough to run all RTEMS tests.  This insures
436 *  that a "reasonable" small application should not have any problems.
437 */
438
439#define CPU_STACK_MINIMUM_SIZE          (1024*4)
440
441/*
442 *  CPU's worst alignment requirement for data types on a byte boundary.  This
443 *  alignment does not take into account the requirements for the stack.
444 */
445
446#define CPU_ALIGNMENT              8
447
448/*
449 *  This number corresponds to the byte alignment requirement for the
450 *  heap handler.  This alignment requirement may be stricter than that
451 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
452 *  common for the heap to follow the same alignment requirement as
453 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
454 *  then this should be set to CPU_ALIGNMENT.
455 *
456 *  NOTE:  This does not have to be a power of 2.  It does have to
457 *         be greater or equal to than CPU_ALIGNMENT.
458 */
459
460#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
461
462/*
463 *  This number corresponds to the byte alignment requirement for memory
464 *  buffers allocated by the partition manager.  This alignment requirement
465 *  may be stricter than that for the data types alignment specified by
466 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
467 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
468 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
469 *
470 *  NOTE:  This does not have to be a power of 2.  It does have to
471 *         be greater or equal to than CPU_ALIGNMENT.
472 */
473
474#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
475
476/*
477 *  This number corresponds to the byte alignment requirement for the
478 *  stack.  This alignment requirement may be stricter than that for the
479 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
480 *  is strict enough for the stack, then this should be set to 0.
481 *
482 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
483 */
484
485#define CPU_STACK_ALIGNMENT        0
486
487/* ISR handler macros */
488
489/*
490 *  Disable all interrupts for an RTEMS critical section.  The previous
491 *  level is returned in _level.
492 */
493
494#define _CPU_ISR_Disable( _isr_cookie ) \
495  { \
496    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
497  }
498
499/*
500 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
501 *  This indicates the end of an RTEMS critical section.  The parameter
502 *  _level is not modified.
503 */
504
505#define _CPU_ISR_Enable( _isr_cookie )  \
506  { \
507  }
508
509/*
510 *  This temporarily restores the interrupt to _level before immediately
511 *  disabling them again.  This is used to divide long RTEMS critical
512 *  sections into two or more parts.  The parameter _level is not
513 * modified.
514 */
515
516#define _CPU_ISR_Flash( _isr_cookie ) \
517  { \
518  }
519
520/*
521 *  Map interrupt level in task mode onto the hardware that the CPU
522 *  actually provides.  Currently, interrupt levels which do not
523 *  map onto the CPU in a generic fashion are undefined.  Someday,
524 *  it would be nice if these were "mapped" by the application
525 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
526 *  8 - 255 would be available for bsp/application specific meaning.
527 *  This could be used to manage a programmable interrupt controller
528 *  via the rtems_task_mode directive.
529 *
530 *  The get routine usually must be implemented as a subroutine.
531 */
532
533#define _CPU_ISR_Set_level( new_level ) \
534  { \
535  }
536
537unsigned32 _CPU_ISR_Get_level( void );
538
539/* end of ISR handler macros */
540
541/* Context handler macros */
542
543/*
544 *  Initialize the context to a state suitable for starting a
545 *  task after a context restore operation.  Generally, this
546 *  involves:
547 *
548 *     - setting a starting address
549 *     - preparing the stack
550 *     - preparing the stack and frame pointers
551 *     - setting the proper interrupt level in the context
552 *     - initializing the floating point context
553 *
554 *  This routine generally does not set any unnecessary register
555 *  in the context.  The state of the "general data" registers is
556 *  undefined at task start time.
557 *
558 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
559 *        point thread.  This is typically only used on CPUs where the
560 *        FPU may be easily disabled by software such as on the SPARC
561 *        where the PSR contains an enable FPU bit.
562 */
563
564#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
565                                 _isr, _entry_point, _is_fp ) \
566  { \
567  }
568
569/*
570 *  This routine is responsible for somehow restarting the currently
571 *  executing task.  If you are lucky, then all that is necessary
572 *  is restoring the context.  Otherwise, there will need to be
573 *  a special assembly routine which does something special in this
574 *  case.  Context_Restore should work most of the time.  It will
575 *  not work if restarting self conflicts with the stack frame
576 *  assumptions of restoring a context.
577 */
578
579#define _CPU_Context_Restart_self( _the_context ) \
580   _CPU_Context_restore( (_the_context) );
581
582/*
583 *  The purpose of this macro is to allow the initial pointer into
584 *  a floating point context area (used to save the floating point
585 *  context) to be at an arbitrary place in the floating point
586 *  context area.
587 *
588 *  This is necessary because some FP units are designed to have
589 *  their context saved as a stack which grows into lower addresses.
590 *  Other FP units can be saved by simply moving registers into offsets
591 *  from the base of the context area.  Finally some FP units provide
592 *  a "dump context" instruction which could fill in from high to low
593 *  or low to high based on the whim of the CPU designers.
594 */
595
596#define _CPU_Context_Fp_start( _base, _offset ) \
597   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
598
599/*
600 *  This routine initializes the FP context area passed to it to.
601 *  There are a few standard ways in which to initialize the
602 *  floating point context.  The code included for this macro assumes
603 *  that this is a CPU in which a "initial" FP context was saved into
604 *  _CPU_Null_fp_context and it simply copies it to the destination
605 *  context passed to it.
606 *
607 *  Other models include (1) not doing anything, and (2) putting
608 *  a "null FP status word" in the correct place in the FP context.
609 */
610
611#define _CPU_Context_Initialize_fp( _destination ) \
612  { \
613   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
614  }
615
616/* end of Context handler macros */
617
618/* Fatal Error manager macros */
619
620/*
621 *  This routine copies _error into a known place -- typically a stack
622 *  location or a register, optionally disables interrupts, and
623 *  halts/stops the CPU.
624 */
625
626#define _CPU_Fatal_halt( _error ) \
627  { \
628  }
629
630/* end of Fatal Error manager macros */
631
632/* Bitfield handler macros */
633
634/*
635 *  This routine sets _output to the bit number of the first bit
636 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
637 *  This type may be either 16 or 32 bits wide although only the 16
638 *  least significant bits will be used.
639 *
640 *  There are a number of variables in using a "find first bit" type
641 *  instruction.
642 *
643 *    (1) What happens when run on a value of zero?
644 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
645 *    (3) The numbering may be zero or one based.
646 *    (4) The "find first bit" instruction may search from MSB or LSB.
647 *
648 *  RTEMS guarantees that (1) will never happen so it is not a concern.
649 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
650 *  _CPU_Priority_bits_index().  These three form a set of routines
651 *  which must logically operate together.  Bits in the _value are
652 *  set and cleared based on masks built by _CPU_Priority_mask().
653 *  The basic major and minor values calculated by _Priority_Major()
654 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
655 *  to properly range between the values returned by the "find first bit"
656 *  instruction.  This makes it possible for _Priority_Get_highest() to
657 *  calculate the major and directly index into the minor table.
658 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
659 *  is the first bit found.
660 *
661 *  This entire "find first bit" and mapping process depends heavily
662 *  on the manner in which a priority is broken into a major and minor
663 *  components with the major being the 4 MSB of a priority and minor
664 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
665 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
666 *  to the lowest priority.
667 *
668 *  If your CPU does not have a "find first bit" instruction, then
669 *  there are ways to make do without it.  Here are a handful of ways
670 *  to implement this in software:
671 *
672 *    - a series of 16 bit test instructions
673 *    - a "binary search using if's"
674 *    - _number = 0
675 *      if _value > 0x00ff
676 *        _value >>=8
677 *        _number = 8;
678 *
679 *      if _value > 0x0000f
680 *        _value >=8
681 *        _number += 4
682 *
683 *      _number += bit_set_table[ _value ]
684 *
685 *    where bit_set_table[ 16 ] has values which indicate the first
686 *      bit set
687 */
688
689#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
690#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
691
692#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
693
694#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
695  { \
696    (_output) = 0;   /* do something to prevent warnings */ \
697  }
698
699#endif
700
701/* end of Bitfield handler macros */
702
703/*
704 *  This routine builds the mask which corresponds to the bit fields
705 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
706 *  for that routine.
707 */
708
709#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
710
711#define _CPU_Priority_Mask( _bit_number ) \
712  ( 1 << (_bit_number) )
713
714#endif
715
716/*
717 *  This routine translates the bit numbers returned by
718 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
719 *  a major or minor component of a priority.  See the discussion
720 *  for that routine.
721 */
722
723#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
724
725#define _CPU_Priority_bits_index( _priority ) \
726  (_priority)
727
728#endif
729
730/* end of Priority handler macros */
731
732/* functions */
733
734/*
735 *  _CPU_Initialize
736 *
737 *  This routine performs CPU dependent initialization.
738 */
739
740void _CPU_Initialize(
741  rtems_cpu_table  *cpu_table,
742  void      (*thread_dispatch)
743);
744
745/*
746 *  _CPU_ISR_install_raw_handler
747 *
748 *  This routine installs a "raw" interrupt handler directly into the
749 *  processor's vector table.
750 */
751 
752void _CPU_ISR_install_raw_handler(
753  unsigned32  vector,
754  proc_ptr    new_handler,
755  proc_ptr   *old_handler
756);
757
758/*
759 *  _CPU_ISR_install_vector
760 *
761 *  This routine installs an interrupt vector.
762 */
763
764void _CPU_ISR_install_vector(
765  unsigned32  vector,
766  proc_ptr    new_handler,
767  proc_ptr   *old_handler
768);
769
770/*
771 *  _CPU_Install_interrupt_stack
772 *
773 *  This routine installs the hardware interrupt stack pointer.
774 *
775 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
776 *         is TRUE.
777 */
778
779void _CPU_Install_interrupt_stack( void );
780
781/*
782 *  _CPU_Thread_Idle_body
783 *
784 *  This routine is the CPU dependent IDLE thread body.
785 *
786 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
787 *         is TRUE.
788 */
789
790void _CPU_Thread_Idle_body( void );
791
792/*
793 *  _CPU_Context_switch
794 *
795 *  This routine switches from the run context to the heir context.
796 */
797
798void _CPU_Context_switch(
799  Context_Control  *run,
800  Context_Control  *heir
801);
802
803/*
804 *  _CPU_Context_restore
805 *
806 *  This routine is generally used only to restart self in an
807 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
808 *
809 *  NOTE: May be unnecessary to reload some registers.
810 */
811
812void _CPU_Context_restore(
813  Context_Control *new_context
814);
815
816/*
817 *  _CPU_Context_save_fp
818 *
819 *  This routine saves the floating point context passed to it.
820 */
821
822void _CPU_Context_save_fp(
823  void **fp_context_ptr
824);
825
826/*
827 *  _CPU_Context_restore_fp
828 *
829 *  This routine restores the floating point context passed to it.
830 */
831
832void _CPU_Context_restore_fp(
833  void **fp_context_ptr
834);
835
836/*  The following routine swaps the endian format of an unsigned int.
837 *  It must be static because it is referenced indirectly.
838 *
839 *  This version will work on any processor, but if there is a better
840 *  way for your CPU PLEASE use it.  The most common way to do this is to:
841 *
842 *     swap least significant two bytes with 16-bit rotate
843 *     swap upper and lower 16-bits
844 *     swap most significant two bytes with 16-bit rotate
845 *
846 *  Some CPUs have special instructions which swap a 32-bit quantity in
847 *  a single instruction (e.g. i486).  It is probably best to avoid
848 *  an "endian swapping control bit" in the CPU.  One good reason is
849 *  that interrupts would probably have to be disabled to insure that
850 *  an interrupt does not try to access the same "chunk" with the wrong
851 *  endian.  Another good reason is that on some CPUs, the endian bit
852 *  endianness for ALL fetches -- both code and data -- so the code
853 *  will be fetched incorrectly.
854 */
855 
856static inline unsigned int CPU_swap_u32(
857  unsigned int value
858)
859{
860  unsigned32 byte1, byte2, byte3, byte4, swapped;
861 
862  byte4 = (value >> 24) & 0xff;
863  byte3 = (value >> 16) & 0xff;
864  byte2 = (value >> 8)  & 0xff;
865  byte1 =  value        & 0xff;
866 
867  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
868  return( swapped );
869}
870
871#define CPU_swap_u16( value ) \
872  (((value&0xff) << 8) | ((value >> 8)&0xff))
873
874#ifdef __cplusplus
875}
876#endif
877
878#endif
Note: See TracBrowser for help on using the repository browser.