source: rtems/cpukit/score/cpu/no_cpu/rtems/score/cpu.h @ 57740ce8

4.115
Last change on this file since 57740ce8 was 57740ce8, checked in by Sebastian Huber <sebastian.huber@…>, on 04/07/14 at 12:50:24

score: Clarify CPU port alignment requirements

  • Property mode set to 100644
File size: 48.2 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 *
4 * @brief NO_CPU Department Source
5 *
6 * This include file contains information pertaining to the NO_CPU
7 * processor.
8 */
9
10/*
11 *  This include file contains information pertaining to the XXX
12 *  processor.
13 *
14 *  @note This file is part of a porting template that is intended
15 *  to be used as the starting point when porting RTEMS to a new
16 *  CPU family.  The following needs to be done when using this as
17 *  the starting point for a new port:
18 *
19 *  + Anywhere there is an XXX, it should be replaced
20 *    with information about the CPU family being ported to.
21 *
22 *  + At the end of each comment section, there is a heading which
23 *    says "Port Specific Information:".  When porting to RTEMS,
24 *    add CPU family specific information in this section
25 */
26
27/*
28 *  COPYRIGHT (c) 1989-2008.
29 *  On-Line Applications Research Corporation (OAR).
30 *
31 *  The license and distribution terms for this file may be
32 *  found in the file LICENSE in this distribution or at
33 *  http://www.rtems.org/license/LICENSE.
34 */
35
36#ifndef _RTEMS_SCORE_CPU_H
37#define _RTEMS_SCORE_CPU_H
38
39#ifdef __cplusplus
40extern "C" {
41#endif
42
43#include <rtems/score/types.h>
44#include <rtems/score/no_cpu.h>
45
46/* conditional compilation parameters */
47
48/**
49 * Should the calls to @ref _Thread_Enable_dispatch be inlined?
50 *
51 * If TRUE, then they are inlined.
52 * If FALSE, then a subroutine call is made.
53 *
54 * This conditional is an example of the classic trade-off of size
55 * versus speed.  Inlining the call (TRUE) typically increases the
56 * size of RTEMS while speeding up the enabling of dispatching.
57 *
58 * NOTE: In general, the @ref _Thread_Dispatch_disable_level will
59 * only be 0 or 1 unless you are in an interrupt handler and that
60 * interrupt handler invokes the executive.]  When not inlined
61 * something calls @ref _Thread_Enable_dispatch which in turns calls
62 * @ref _Thread_Dispatch.  If the enable dispatch is inlined, then
63 * one subroutine call is avoided entirely.
64 *
65 * Port Specific Information:
66 *
67 * XXX document implementation including references if appropriate
68 */
69#define CPU_INLINE_ENABLE_DISPATCH       FALSE
70
71/**
72 * Should the body of the search loops in _Thread_queue_Enqueue_priority
73 * be unrolled one time?  In unrolled each iteration of the loop examines
74 * two "nodes" on the chain being searched.  Otherwise, only one node
75 * is examined per iteration.
76 *
77 * If TRUE, then the loops are unrolled.
78 * If FALSE, then the loops are not unrolled.
79 *
80 * The primary factor in making this decision is the cost of disabling
81 * and enabling interrupts (_ISR_Flash) versus the cost of rest of the
82 * body of the loop.  On some CPUs, the flash is more expensive than
83 * one iteration of the loop body.  In this case, it might be desirable
84 * to unroll the loop.  It is important to note that on some CPUs, this
85 * code is the longest interrupt disable period in RTEMS.  So it is
86 * necessary to strike a balance when setting this parameter.
87 *
88 * Port Specific Information:
89 *
90 * XXX document implementation including references if appropriate
91 */
92#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
93
94/**
95 * Does RTEMS manage a dedicated interrupt stack in software?
96 *
97 * If TRUE, then a stack is allocated in @ref _ISR_Handler_initialization.
98 * If FALSE, nothing is done.
99 *
100 * If the CPU supports a dedicated interrupt stack in hardware,
101 * then it is generally the responsibility of the BSP to allocate it
102 * and set it up.
103 *
104 * If the CPU does not support a dedicated interrupt stack, then
105 * the porter has two options: (1) execute interrupts on the
106 * stack of the interrupted task, and (2) have RTEMS manage a dedicated
107 * interrupt stack.
108 *
109 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
110 *
111 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
112 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
113 * possible that both are FALSE for a particular CPU.  Although it
114 * is unclear what that would imply about the interrupt processing
115 * procedure on that CPU.
116 *
117 * Port Specific Information:
118 *
119 * XXX document implementation including references if appropriate
120 */
121#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
122
123/**
124 * Does the CPU follow the simple vectored interrupt model?
125 *
126 * If TRUE, then RTEMS allocates the vector table it internally manages.
127 * If FALSE, then the BSP is assumed to allocate and manage the vector
128 * table
129 *
130 * Port Specific Information:
131 *
132 * XXX document implementation including references if appropriate
133 */
134#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
135
136/**
137 * Does this CPU have hardware support for a dedicated interrupt stack?
138 *
139 * If TRUE, then it must be installed during initialization.
140 * If FALSE, then no installation is performed.
141 *
142 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
143 *
144 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
145 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
146 * possible that both are FALSE for a particular CPU.  Although it
147 * is unclear what that would imply about the interrupt processing
148 * procedure on that CPU.
149 *
150 * Port Specific Information:
151 *
152 * XXX document implementation including references if appropriate
153 */
154#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
155
156/**
157 * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
158 *
159 * If TRUE, then the memory is allocated during initialization.
160 * If FALSE, then the memory is allocated during initialization.
161 *
162 * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
163 *
164 * Port Specific Information:
165 *
166 * XXX document implementation including references if appropriate
167 */
168#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
169
170/**
171 * Does the RTEMS invoke the user's ISR with the vector number and
172 * a pointer to the saved interrupt frame (1) or just the vector
173 * number (0)?
174 *
175 * Port Specific Information:
176 *
177 * XXX document implementation including references if appropriate
178 */
179#define CPU_ISR_PASSES_FRAME_POINTER 0
180
181/**
182 * @def CPU_HARDWARE_FP
183 *
184 * Does the CPU have hardware floating point?
185 *
186 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
187 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
188 *
189 * If there is a FP coprocessor such as the i387 or mc68881, then
190 * the answer is TRUE.
191 *
192 * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
193 * It indicates whether or not this CPU model has FP support.  For
194 * example, it would be possible to have an i386_nofp CPU model
195 * which set this to false to indicate that you have an i386 without
196 * an i387 and wish to leave floating point support out of RTEMS.
197 */
198
199/**
200 * @def CPU_SOFTWARE_FP
201 *
202 * Does the CPU have no hardware floating point and GCC provides a
203 * software floating point implementation which must be context
204 * switched?
205 *
206 * This feature conditional is used to indicate whether or not there
207 * is software implemented floating point that must be context
208 * switched.  The determination of whether or not this applies
209 * is very tool specific and the state saved/restored is also
210 * compiler specific.
211 *
212 * Port Specific Information:
213 *
214 * XXX document implementation including references if appropriate
215 */
216#if ( NO_CPU_HAS_FPU == 1 )
217#define CPU_HARDWARE_FP     TRUE
218#else
219#define CPU_HARDWARE_FP     FALSE
220#endif
221#define CPU_SOFTWARE_FP     FALSE
222
223/**
224 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
225 *
226 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
227 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
228 *
229 * So far, the only CPUs in which this option has been used are the
230 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
231 * gcc both implicitly used the floating point registers to perform
232 * integer multiplies.  Similarly, the PowerPC port of gcc has been
233 * seen to allocate floating point local variables and touch the FPU
234 * even when the flow through a subroutine (like vfprintf()) might
235 * not use floating point formats.
236 *
237 * If a function which you would not think utilize the FP unit DOES,
238 * then one can not easily predict which tasks will use the FP hardware.
239 * In this case, this option should be TRUE.
240 *
241 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
242 *
243 * Port Specific Information:
244 *
245 * XXX document implementation including references if appropriate
246 */
247#define CPU_ALL_TASKS_ARE_FP     TRUE
248
249/**
250 * Should the IDLE task have a floating point context?
251 *
252 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
253 * and it has a floating point context which is switched in and out.
254 * If FALSE, then the IDLE task does not have a floating point context.
255 *
256 * Setting this to TRUE negatively impacts the time required to preempt
257 * the IDLE task from an interrupt because the floating point context
258 * must be saved as part of the preemption.
259 *
260 * Port Specific Information:
261 *
262 * XXX document implementation including references if appropriate
263 */
264#define CPU_IDLE_TASK_IS_FP      FALSE
265
266/**
267 * Should the saving of the floating point registers be deferred
268 * until a context switch is made to another different floating point
269 * task?
270 *
271 * If TRUE, then the floating point context will not be stored until
272 * necessary.  It will remain in the floating point registers and not
273 * disturned until another floating point task is switched to.
274 *
275 * If FALSE, then the floating point context is saved when a floating
276 * point task is switched out and restored when the next floating point
277 * task is restored.  The state of the floating point registers between
278 * those two operations is not specified.
279 *
280 * If the floating point context does NOT have to be saved as part of
281 * interrupt dispatching, then it should be safe to set this to TRUE.
282 *
283 * Setting this flag to TRUE results in using a different algorithm
284 * for deciding when to save and restore the floating point context.
285 * The deferred FP switch algorithm minimizes the number of times
286 * the FP context is saved and restored.  The FP context is not saved
287 * until a context switch is made to another, different FP task.
288 * Thus in a system with only one FP task, the FP context will never
289 * be saved or restored.
290 *
291 * Port Specific Information:
292 *
293 * XXX document implementation including references if appropriate
294 */
295#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
296
297/**
298 * Does this port provide a CPU dependent IDLE task implementation?
299 *
300 * If TRUE, then the routine @ref _CPU_Thread_Idle_body
301 * must be provided and is the default IDLE thread body instead of
302 * @ref _CPU_Thread_Idle_body.
303 *
304 * If FALSE, then use the generic IDLE thread body if the BSP does
305 * not provide one.
306 *
307 * This is intended to allow for supporting processors which have
308 * a low power or idle mode.  When the IDLE thread is executed, then
309 * the CPU can be powered down.
310 *
311 * The order of precedence for selecting the IDLE thread body is:
312 *
313 *   -#  BSP provided
314 *   -#  CPU dependent (if provided)
315 *   -#  generic (if no BSP and no CPU dependent)
316 *
317 * Port Specific Information:
318 *
319 * XXX document implementation including references if appropriate
320 */
321#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
322
323/**
324 * Does the stack grow up (toward higher addresses) or down
325 * (toward lower addresses)?
326 *
327 * If TRUE, then the grows upward.
328 * If FALSE, then the grows toward smaller addresses.
329 *
330 * Port Specific Information:
331 *
332 * XXX document implementation including references if appropriate
333 */
334#define CPU_STACK_GROWS_UP               TRUE
335
336/**
337 * The following is the variable attribute used to force alignment
338 * of critical RTEMS structures.  On some processors it may make
339 * sense to have these aligned on tighter boundaries than
340 * the minimum requirements of the compiler in order to have as
341 * much of the critical data area as possible in a cache line.
342 *
343 * The placement of this macro in the declaration of the variables
344 * is based on the syntactically requirements of the GNU C
345 * "__attribute__" extension.  For example with GNU C, use
346 * the following to force a structures to a 32 byte boundary.
347 *
348 *     __attribute__ ((aligned (32)))
349 *
350 * NOTE: Currently only the Priority Bit Map table uses this feature.
351 *       To benefit from using this, the data must be heavily
352 *       used so it will stay in the cache and used frequently enough
353 *       in the executive to justify turning this on.
354 *
355 * Port Specific Information:
356 *
357 * XXX document implementation including references if appropriate
358 */
359#define CPU_STRUCTURE_ALIGNMENT
360
361/**
362 * @defgroup CPUTimestamp Processor Dependent Timestamp Support
363 *
364 * This group assists in issues related to timestamp implementation.
365 *
366 * The port must choose exactly one of the following defines:
367 * - #define CPU_TIMESTAMP_USE_STRUCT_TIMESPEC TRUE
368 * - #define CPU_TIMESTAMP_USE_INT64 TRUE
369 * - #define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
370 *
371 * Performance of int64_t versus struct timespec
372 * =============================================
373 *
374 * On PowerPC/psim, inlined int64_t saves ~50 instructions on each
375 *   _Thread_Dispatch operation which results in a context switch.
376 *   This works out to be about 10% faster dispatches and 7.5% faster
377 *   blocking semaphore obtains.  The following numbers are in instructions
378 *   and from tm02 and tm26.
379 *
380 *                        timespec  int64  inlined int64
381 *   dispatch:              446      446      400
382 *   blocking sem obtain:   627      626      581
383 *
384 * On SPARC/sis, inlined int64_t shows the same percentage gains.
385 *   The following numbers are in microseconds and from tm02 and tm26.
386 *
387 *                        timespec  int64  inlined int64
388 *   dispatch:               59       61       53
389 *   blocking sem obtain:    98      100       92
390 *
391 * Inlining appears to have a tendency to increase the size of
392 *   some executables.
393 * Not inlining reduces the execution improvement but does not seem to
394 *   be an improvement on the PowerPC and SPARC. The struct timespec
395 *   and the executables with int64 not inlined are about the same size.
396 *
397 */
398/**@{**/
399
400/**
401 * Selects the timestamp implementation using struct timespec.
402 *
403 * Port Specific Information:
404 *
405 * XXX document implementation including references if appropriate
406 */
407#define CPU_TIMESTAMP_USE_STRUCT_TIMESPEC TRUE
408
409/**
410 * Selects the timestamp implementation using int64_t and no inlined methods.
411 *
412 * Port Specific Information:
413 *
414 * XXX document implementation including references if appropriate
415 */
416#define CPU_TIMESTAMP_USE_INT64 TRUE
417
418/**
419 * Selects the timestamp implementation using int64_t and inlined methods.
420 *
421 * Port Specific Information:
422 *
423 * XXX document implementation including references if appropriate
424 */
425#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
426
427/** @} */
428
429/**
430 * @defgroup CPUEndian Processor Dependent Endianness Support
431 *
432 * This group assists in issues related to processor endianness.
433 *
434 */
435/**@{**/
436
437/**
438 * Define what is required to specify how the network to host conversion
439 * routines are handled.
440 *
441 * NOTE: @a CPU_BIG_ENDIAN and @a CPU_LITTLE_ENDIAN should NOT have the
442 * same values.
443 *
444 * @see CPU_LITTLE_ENDIAN
445 *
446 * Port Specific Information:
447 *
448 * XXX document implementation including references if appropriate
449 */
450#define CPU_BIG_ENDIAN                           TRUE
451
452/**
453 * Define what is required to specify how the network to host conversion
454 * routines are handled.
455 *
456 * NOTE: @ref CPU_BIG_ENDIAN and @ref CPU_LITTLE_ENDIAN should NOT have the
457 * same values.
458 *
459 * @see CPU_BIG_ENDIAN
460 *
461 * Port Specific Information:
462 *
463 * XXX document implementation including references if appropriate
464 */
465#define CPU_LITTLE_ENDIAN                        FALSE
466
467/** @} */
468
469/**
470 * @ingroup CPUInterrupt
471 *
472 * The following defines the number of bits actually used in the
473 * interrupt field of the task mode.  How those bits map to the
474 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
475 *
476 * Port Specific Information:
477 *
478 * XXX document implementation including references if appropriate
479 */
480#define CPU_MODES_INTERRUPT_MASK   0x00000001
481
482/**
483 * @brief The size of the CPU specific per-CPU control.
484 *
485 * This define must be visible to assember files since it is used to derive
486 * structure offsets.
487 */
488#define CPU_PER_CPU_CONTROL_SIZE 0
489
490/*
491 *  Processor defined structures required for cpukit/score.
492 *
493 *  Port Specific Information:
494 *
495 *  XXX document implementation including references if appropriate
496 */
497
498/* may need to put some structures here.  */
499
500/**
501 * @brief The CPU specific per-CPU control.
502 *
503 * The CPU port can place here all state information that must be available and
504 * maintained for each CPU in the system.
505 */
506typedef struct {
507  /* CPU specific per-CPU state */
508} CPU_Per_CPU_control;
509
510/**
511 * @defgroup CPUContext Processor Dependent Context Management
512 *
513 * From the highest level viewpoint, there are 2 types of context to save.
514 *
515 *    -# Interrupt registers to save
516 *    -# Task level registers to save
517 *
518 * Since RTEMS handles integer and floating point contexts separately, this
519 * means we have the following 3 context items:
520 *
521 *    -# task level context stuff::  Context_Control
522 *    -# floating point task stuff:: Context_Control_fp
523 *    -# special interrupt level context :: CPU_Interrupt_frame
524 *
525 * On some processors, it is cost-effective to save only the callee
526 * preserved registers during a task context switch.  This means
527 * that the ISR code needs to save those registers which do not
528 * persist across function calls.  It is not mandatory to make this
529 * distinctions between the caller/callee saves registers for the
530 * purpose of minimizing context saved during task switch and on interrupts.
531 * If the cost of saving extra registers is minimal, simplicity is the
532 * choice.  Save the same context on interrupt entry as for tasks in
533 * this case.
534 *
535 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
536 * care should be used in designing the context area.
537 *
538 * On some CPUs with hardware floating point support, the Context_Control_fp
539 * structure will not be used or it simply consist of an array of a
540 * fixed number of bytes.   This is done when the floating point context
541 * is dumped by a "FP save context" type instruction and the format
542 * is not really defined by the CPU.  In this case, there is no need
543 * to figure out the exact format -- only the size.  Of course, although
544 * this is enough information for RTEMS, it is probably not enough for
545 * a debugger such as gdb.  But that is another problem.
546 *
547 * Port Specific Information:
548 *
549 * XXX document implementation including references if appropriate
550 *
551 */
552/**@{**/
553
554/**
555 * @ingroup Management
556 * This defines the minimal set of integer and processor state registers
557 * that must be saved during a voluntary context switch from one thread
558 * to another.
559 */
560typedef struct {
561    /**
562     * This field is a hint that a port will have a number of integer
563     * registers that need to be saved at a context switch.
564     */
565    uint32_t   some_integer_register;
566    /**
567     * This field is a hint that a port will have a number of system
568     * registers that need to be saved at a context switch.
569     */
570    uint32_t   some_system_register;
571
572    /**
573     * This field is a hint that a port will have a register that
574     * is the stack pointer.
575     */
576    uint32_t   stack_pointer;
577} Context_Control;
578
579/**
580 * @ingroup Management
581 *
582 * This macro returns the stack pointer associated with @a _context.
583 *
584 * @param[in] _context is the thread context area to access
585 *
586 * @return This method returns the stack pointer.
587 */
588#define _CPU_Context_Get_SP( _context ) \
589  (_context)->stack_pointer
590
591/**
592 * @ingroup Management
593 *
594 * This defines the complete set of floating point registers that must
595 * be saved during any context switch from one thread to another.
596 */
597typedef struct {
598    /** FPU registers are listed here */
599    double      some_float_register;
600} Context_Control_fp;
601
602/**
603 * @ingroup Management
604 *
605 * This defines the set of integer and processor state registers that must
606 * be saved during an interrupt.  This set does not include any which are
607 * in @ref Context_Control.
608 */
609typedef struct {
610    /**
611     * This field is a hint that a port will have a number of integer
612     * registers that need to be saved when an interrupt occurs or
613     * when a context switch occurs at the end of an ISR.
614     */
615    uint32_t   special_interrupt_register;
616} CPU_Interrupt_frame;
617
618/**
619 * This variable is optional.  It is used on CPUs on which it is difficult
620 * to generate an "uninitialized" FP context.  It is filled in by
621 * @ref _CPU_Initialize and copied into the task's FP context area during
622 * @ref _CPU_Context_Initialize.
623 *
624 * Port Specific Information:
625 *
626 * XXX document implementation including references if appropriate
627 */
628SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
629
630/** @} */
631
632/**
633 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
634 *
635 * On some CPUs, RTEMS supports a software managed interrupt stack.
636 * This stack is allocated by the Interrupt Manager and the switch
637 * is performed in @ref _ISR_Handler.  These variables contain pointers
638 * to the lowest and highest addresses in the chunk of memory allocated
639 * for the interrupt stack.  Since it is unknown whether the stack
640 * grows up or down (in general), this give the CPU dependent
641 * code the option of picking the version it wants to use.
642 *
643 * NOTE: These two variables are required if the macro
644 *       @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
645 *
646 * Port Specific Information:
647 *
648 * XXX document implementation including references if appropriate
649 */
650
651/*
652 *  Nothing prevents the porter from declaring more CPU specific variables.
653 *
654 *  Port Specific Information:
655 *
656 *  XXX document implementation including references if appropriate
657 */
658
659/* XXX: if needed, put more variables here */
660
661/**
662 * @ingroup CPUContext
663 *
664 * The size of the floating point context area.  On some CPUs this
665 * will not be a "sizeof" because the format of the floating point
666 * area is not defined -- only the size is.  This is usually on
667 * CPUs with a "floating point save context" instruction.
668 *
669 * Port Specific Information:
670 *
671 * XXX document implementation including references if appropriate
672 */
673#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
674
675/**
676 * Amount of extra stack (above minimum stack size) required by
677 * MPCI receive server thread.  Remember that in a multiprocessor
678 * system this thread must exist and be able to process all directives.
679 *
680 * Port Specific Information:
681 *
682 * XXX document implementation including references if appropriate
683 */
684#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
685
686/**
687 * @ingroup CPUInterrupt
688 *
689 * This defines the number of entries in the @ref _ISR_Vector_table managed
690 * by RTEMS.
691 *
692 * Port Specific Information:
693 *
694 * XXX document implementation including references if appropriate
695 */
696#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
697
698/**
699 * @ingroup CPUInterrupt
700 *
701 * This defines the highest interrupt vector number for this port.
702 */
703#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
704
705/**
706 * @ingroup CPUInterrupt
707 *
708 * This is defined if the port has a special way to report the ISR nesting
709 * level.  Most ports maintain the variable @a _ISR_Nest_level.
710 */
711#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
712
713/**
714 * @ingroup CPUContext
715 *
716 * Should be large enough to run all RTEMS tests.  This ensures
717 * that a "reasonable" small application should not have any problems.
718 *
719 * Port Specific Information:
720 *
721 * XXX document implementation including references if appropriate
722 */
723#define CPU_STACK_MINIMUM_SIZE          (1024*4)
724
725/**
726 * Size of a pointer.
727 *
728 * This must be an integer literal that can be used by the assembler.  This
729 * value will be used to calculate offsets of structure members.  These
730 * offsets will be used in assembler code.
731 */
732#define CPU_SIZEOF_POINTER         4
733
734/**
735 * CPU's worst alignment requirement for data types on a byte boundary.  This
736 * alignment does not take into account the requirements for the stack.  It
737 * must be a power of two greater than or equal to two.  The power of two
738 * requirement makes it possible to align values easily using simple bit
739 * operations.
740 *
741 * Port Specific Information:
742 *
743 * XXX document implementation including references if appropriate
744 */
745#define CPU_ALIGNMENT              8
746
747/**
748 * This number corresponds to the byte alignment requirement for the
749 * heap handler.  This alignment requirement may be stricter than that
750 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
751 * common for the heap to follow the same alignment requirement as
752 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
753 * the heap, then this should be set to @ref CPU_ALIGNMENT.
754 *
755 * NOTE:  It must be a power of two greater than or equal to two.  The
756 *        requirement to be a multiple of two is because the heap uses the
757 *        least significant field of the front and back flags to indicate that
758 *        a block is in use or free.  So you do not want any odd length blocks
759 *        really putting length data in that bit.
760 *
761 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
762 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
763 *        elements allocated from the heap meet all restrictions.
764 *
765 * Port Specific Information:
766 *
767 * XXX document implementation including references if appropriate
768 */
769#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
770
771/**
772 * This number corresponds to the byte alignment requirement for memory
773 * buffers allocated by the partition manager.  This alignment requirement
774 * may be stricter than that for the data types alignment specified by
775 * @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
776 * alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
777 * strict enough for the partition, then this should be set to
778 * @ref CPU_ALIGNMENT.
779 *
780 * NOTE:  This does not have to be a power of 2.  It does have to
781 *        be greater or equal to than @ref CPU_ALIGNMENT.
782 *
783 * Port Specific Information:
784 *
785 * XXX document implementation including references if appropriate
786 */
787#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
788
789/**
790 * This number corresponds to the byte alignment requirement for the
791 * stack.  This alignment requirement may be stricter than that for the
792 * data types alignment specified by @ref CPU_ALIGNMENT.  If the
793 * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
794 * set to 0.
795 *
796 * NOTE: This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
797 *
798 * Port Specific Information:
799 *
800 * XXX document implementation including references if appropriate
801 */
802#define CPU_STACK_ALIGNMENT        0
803
804/*
805 *  ISR handler macros
806 */
807
808/**
809 * @ingroup CPUInterrupt
810 *
811 * Support routine to initialize the RTEMS vector table after it is allocated.
812 *
813 * Port Specific Information:
814 *
815 * XXX document implementation including references if appropriate
816 */
817#define _CPU_Initialize_vectors()
818
819/**
820 * @ingroup CPUInterrupt
821 *
822 * Disable all interrupts for an RTEMS critical section.  The previous
823 * level is returned in @a _isr_cookie.
824 *
825 * @param[out] _isr_cookie will contain the previous level cookie
826 *
827 * Port Specific Information:
828 *
829 * XXX document implementation including references if appropriate
830 */
831#define _CPU_ISR_Disable( _isr_cookie ) \
832  { \
833    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
834  }
835
836/**
837 * @ingroup CPUInterrupt
838 *
839 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
840 * This indicates the end of an RTEMS critical section.  The parameter
841 * @a _isr_cookie is not modified.
842 *
843 * @param[in] _isr_cookie contain the previous level cookie
844 *
845 * Port Specific Information:
846 *
847 * XXX document implementation including references if appropriate
848 */
849#define _CPU_ISR_Enable( _isr_cookie )  \
850  { \
851  }
852
853/**
854 * @ingroup CPUInterrupt
855 *
856 * This temporarily restores the interrupt to @a _isr_cookie before immediately
857 * disabling them again.  This is used to divide long RTEMS critical
858 * sections into two or more parts.  The parameter @a _isr_cookie is not
859 * modified.
860 *
861 * @param[in] _isr_cookie contain the previous level cookie
862 *
863 * Port Specific Information:
864 *
865 * XXX document implementation including references if appropriate
866 */
867#define _CPU_ISR_Flash( _isr_cookie ) \
868  { \
869  }
870
871/**
872 * @ingroup CPUInterrupt
873 *
874 * This routine and @ref _CPU_ISR_Get_level
875 * Map the interrupt level in task mode onto the hardware that the CPU
876 * actually provides.  Currently, interrupt levels which do not
877 * map onto the CPU in a generic fashion are undefined.  Someday,
878 * it would be nice if these were "mapped" by the application
879 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
880 * 8 - 255 would be available for bsp/application specific meaning.
881 * This could be used to manage a programmable interrupt controller
882 * via the rtems_task_mode directive.
883 *
884 * Port Specific Information:
885 *
886 * XXX document implementation including references if appropriate
887 */
888#define _CPU_ISR_Set_level( new_level ) \
889  { \
890  }
891
892/**
893 * @ingroup CPUInterrupt
894 *
895 * Return the current interrupt disable level for this task in
896 * the format used by the interrupt level portion of the task mode.
897 *
898 * NOTE: This routine usually must be implemented as a subroutine.
899 *
900 * Port Specific Information:
901 *
902 * XXX document implementation including references if appropriate
903 */
904uint32_t   _CPU_ISR_Get_level( void );
905
906/* end of ISR handler macros */
907
908/* Context handler macros */
909
910/**
911 *  @ingroup CPUContext
912 *
913 * Initialize the context to a state suitable for starting a
914 * task after a context restore operation.  Generally, this
915 * involves:
916 *
917 *    - setting a starting address
918 *    - preparing the stack
919 *    - preparing the stack and frame pointers
920 *    - setting the proper interrupt level in the context
921 *    - initializing the floating point context
922 *
923 * This routine generally does not set any unnecessary register
924 * in the context.  The state of the "general data" registers is
925 * undefined at task start time.
926 *
927 * @param[in] _the_context is the context structure to be initialized
928 * @param[in] _stack_base is the lowest physical address of this task's stack
929 * @param[in] _size is the size of this task's stack
930 * @param[in] _isr is the interrupt disable level
931 * @param[in] _entry_point is the thread's entry point.  This is
932 *        always @a _Thread_Handler
933 * @param[in] _is_fp is TRUE if the thread is to be a floating
934 *       point thread.  This is typically only used on CPUs where the
935 *       FPU may be easily disabled by software such as on the SPARC
936 *       where the PSR contains an enable FPU bit.
937 * @param[in] _tls_area The thread-local storage (TLS) area.
938 *
939 * Port Specific Information:
940 *
941 * XXX document implementation including references if appropriate
942 */
943#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
944                                 _isr, _entry_point, _is_fp, _tls_area ) \
945  { \
946  }
947
948/**
949 * This routine is responsible for somehow restarting the currently
950 * executing task.  If you are lucky, then all that is necessary
951 * is restoring the context.  Otherwise, there will need to be
952 * a special assembly routine which does something special in this
953 * case.  For many ports, simply adding a label to the restore path
954 * of @ref _CPU_Context_switch will work.  On other ports, it may be
955 * possibly to load a few arguments and jump to the restore path. It will
956 * not work if restarting self conflicts with the stack frame
957 * assumptions of restoring a context.
958 *
959 * Port Specific Information:
960 *
961 * XXX document implementation including references if appropriate
962 */
963#define _CPU_Context_Restart_self( _the_context ) \
964   _CPU_Context_restore( (_the_context) );
965
966/**
967 * @ingroup CPUContext
968 *
969 * The purpose of this macro is to allow the initial pointer into
970 * a floating point context area (used to save the floating point
971 * context) to be at an arbitrary place in the floating point
972 *context area.
973 *
974 * This is necessary because some FP units are designed to have
975 * their context saved as a stack which grows into lower addresses.
976 * Other FP units can be saved by simply moving registers into offsets
977 * from the base of the context area.  Finally some FP units provide
978 * a "dump context" instruction which could fill in from high to low
979 * or low to high based on the whim of the CPU designers.
980 *
981 * @param[in] _base is the lowest physical address of the floating point
982 *        context area
983 * @param[in] _offset is the offset into the floating point area
984 *
985 * Port Specific Information:
986 *
987 * XXX document implementation including references if appropriate
988 */
989#define _CPU_Context_Fp_start( _base, _offset ) \
990   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
991
992/**
993 * This routine initializes the FP context area passed to it to.
994 * There are a few standard ways in which to initialize the
995 * floating point context.  The code included for this macro assumes
996 * that this is a CPU in which a "initial" FP context was saved into
997 * @a _CPU_Null_fp_context and it simply copies it to the destination
998 * context passed to it.
999 *
1000 * Other floating point context save/restore models include:
1001 *   -# not doing anything, and
1002 *   -# putting a "null FP status word" in the correct place in the FP context.
1003 *
1004 * @param[in] _destination is the floating point context area
1005 *
1006 * Port Specific Information:
1007 *
1008 * XXX document implementation including references if appropriate
1009 */
1010#define _CPU_Context_Initialize_fp( _destination ) \
1011  { \
1012   *(*(_destination)) = _CPU_Null_fp_context; \
1013  }
1014
1015/* end of Context handler macros */
1016
1017/* Fatal Error manager macros */
1018
1019/**
1020 * This routine copies _error into a known place -- typically a stack
1021 * location or a register, optionally disables interrupts, and
1022 * halts/stops the CPU.
1023 *
1024 * Port Specific Information:
1025 *
1026 * XXX document implementation including references if appropriate
1027 */
1028#define _CPU_Fatal_halt( _error ) \
1029  { \
1030  }
1031
1032/* end of Fatal Error manager macros */
1033
1034/* Bitfield handler macros */
1035
1036/**
1037 * @defgroup CPUBitfield Processor Dependent Bitfield Manipulation
1038 *
1039 * This set of routines are used to implement fast searches for
1040 * the most important ready task.
1041 *
1042 */
1043/**@{**/
1044
1045/**
1046 * This definition is set to TRUE if the port uses the generic bitfield
1047 * manipulation implementation.
1048 */
1049#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1050
1051/**
1052 * This definition is set to TRUE if the port uses the data tables provided
1053 * by the generic bitfield manipulation implementation.
1054 * This can occur when actually using the generic bitfield manipulation
1055 * implementation or when implementing the same algorithm in assembly
1056 * language for improved performance.  It is unlikely that a port will use
1057 * the data if it has a bitfield scan instruction.
1058 */
1059#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1060
1061/**
1062 * This routine sets @a _output to the bit number of the first bit
1063 * set in @a _value.  @a _value is of CPU dependent type
1064 * @a Priority_bit_map_Word.  This type may be either 16 or 32 bits
1065 * wide although only the 16 least significant bits will be used.
1066 *
1067 * There are a number of variables in using a "find first bit" type
1068 * instruction.
1069 *
1070 *   -# What happens when run on a value of zero?
1071 *   -# Bits may be numbered from MSB to LSB or vice-versa.
1072 *   -# The numbering may be zero or one based.
1073 *   -# The "find first bit" instruction may search from MSB or LSB.
1074 *
1075 * RTEMS guarantees that (1) will never happen so it is not a concern.
1076 * (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and
1077 * @ref _CPU_Priority_bits_index.  These three form a set of routines
1078 * which must logically operate together.  Bits in the _value are
1079 * set and cleared based on masks built by @ref _CPU_Priority_Mask.
1080 * The basic major and minor values calculated by @ref _Priority_Major
1081 * and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index
1082 * to properly range between the values returned by the "find first bit"
1083 * instruction.  This makes it possible for @ref _Priority_Get_highest to
1084 * calculate the major and directly index into the minor table.
1085 * This mapping is necessary to ensure that 0 (a high priority major/minor)
1086 * is the first bit found.
1087 *
1088 * This entire "find first bit" and mapping process depends heavily
1089 * on the manner in which a priority is broken into a major and minor
1090 * components with the major being the 4 MSB of a priority and minor
1091 * the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
1092 * priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
1093 * to the lowest priority.
1094 *
1095 * If your CPU does not have a "find first bit" instruction, then
1096 * there are ways to make do without it.  Here are a handful of ways
1097 * to implement this in software:
1098 *
1099@verbatim
1100      - a series of 16 bit test instructions
1101      - a "binary search using if's"
1102      - _number = 0
1103        if _value > 0x00ff
1104          _value >>=8
1105          _number = 8;
1106
1107        if _value > 0x0000f
1108          _value >=8
1109          _number += 4
1110
1111        _number += bit_set_table[ _value ]
1112@endverbatim
1113
1114 *   where bit_set_table[ 16 ] has values which indicate the first
1115 *     bit set
1116 *
1117 * @param[in] _value is the value to be scanned
1118 * @param[in] _output is the first bit set
1119 *
1120 * Port Specific Information:
1121 *
1122 * XXX document implementation including references if appropriate
1123 */
1124
1125#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1126#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1127  { \
1128    (_output) = 0;   /* do something to prevent warnings */ \
1129  }
1130#endif
1131
1132/** @} */
1133
1134/* end of Bitfield handler macros */
1135
1136/**
1137 * This routine builds the mask which corresponds to the bit fields
1138 * as searched by @ref _CPU_Bitfield_Find_first_bit.  See the discussion
1139 * for that routine.
1140 *
1141 * Port Specific Information:
1142 *
1143 * XXX document implementation including references if appropriate
1144 */
1145#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1146
1147#define _CPU_Priority_Mask( _bit_number ) \
1148  ( 1 << (_bit_number) )
1149
1150#endif
1151
1152/**
1153 * @ingroup CPUBitfield
1154 *
1155 * This routine translates the bit numbers returned by
1156 * @ref _CPU_Bitfield_Find_first_bit into something suitable for use as
1157 * a major or minor component of a priority.  See the discussion
1158 * for that routine.
1159 *
1160 * @param[in] _priority is the major or minor number to translate
1161 *
1162 * Port Specific Information:
1163 *
1164 * XXX document implementation including references if appropriate
1165 */
1166#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1167
1168#define _CPU_Priority_bits_index( _priority ) \
1169  (_priority)
1170
1171#endif
1172
1173/* end of Priority handler macros */
1174
1175/* functions */
1176
1177/**
1178 * This routine performs CPU dependent initialization.
1179 *
1180 * Port Specific Information:
1181 *
1182 * XXX document implementation including references if appropriate
1183 */
1184void _CPU_Initialize(void);
1185
1186/**
1187 * @ingroup CPUInterrupt
1188 *
1189 * This routine installs a "raw" interrupt handler directly into the
1190 * processor's vector table.
1191 *
1192 * @param[in] vector is the vector number
1193 * @param[in] new_handler is the raw ISR handler to install
1194 * @param[in] old_handler is the previously installed ISR Handler
1195 *
1196 * Port Specific Information:
1197 *
1198 * XXX document implementation including references if appropriate
1199 */
1200void _CPU_ISR_install_raw_handler(
1201  uint32_t    vector,
1202  proc_ptr    new_handler,
1203  proc_ptr   *old_handler
1204);
1205
1206/**
1207 * @ingroup CPUInterrupt
1208 *
1209 * This routine installs an interrupt vector.
1210 *
1211 * @param[in] vector is the vector number
1212 * @param[in] new_handler is the RTEMS ISR handler to install
1213 * @param[in] old_handler is the previously installed ISR Handler
1214 *
1215 * Port Specific Information:
1216 *
1217 * XXX document implementation including references if appropriate
1218 */
1219void _CPU_ISR_install_vector(
1220  uint32_t    vector,
1221  proc_ptr    new_handler,
1222  proc_ptr   *old_handler
1223);
1224
1225/**
1226 * @ingroup CPUInterrupt
1227 * This routine installs the hardware interrupt stack pointer.
1228 *
1229 * NOTE:  It need only be provided if @ref CPU_HAS_HARDWARE_INTERRUPT_STACK
1230 *        is TRUE.
1231 *
1232 * Port Specific Information:
1233 *
1234 * XXX document implementation including references if appropriate
1235 */
1236void _CPU_Install_interrupt_stack( void );
1237
1238/**
1239 * This routine is the CPU dependent IDLE thread body.
1240 *
1241 * NOTE:  It need only be provided if @ref CPU_PROVIDES_IDLE_THREAD_BODY
1242 *         is TRUE.
1243 *
1244 * Port Specific Information:
1245 *
1246 * XXX document implementation including references if appropriate
1247 */
1248void *_CPU_Thread_Idle_body( uintptr_t ignored );
1249
1250/**
1251 * @ingroup CPUContext
1252 *
1253 * This routine switches from the run context to the heir context.
1254 *
1255 * @param[in] run points to the context of the currently executing task
1256 * @param[in] heir points to the context of the heir task
1257 *
1258 * Port Specific Information:
1259 *
1260 * XXX document implementation including references if appropriate
1261 */
1262void _CPU_Context_switch(
1263  Context_Control  *run,
1264  Context_Control  *heir
1265);
1266
1267/**
1268 * @ingroup CPUContext
1269 *
1270 * This routine is generally used only to restart self in an
1271 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
1272 *
1273 * @param[in] new_context points to the context to be restored.
1274 *
1275 * NOTE: May be unnecessary to reload some registers.
1276 *
1277 * Port Specific Information:
1278 *
1279 * XXX document implementation including references if appropriate
1280 */
1281void _CPU_Context_restore(
1282  Context_Control *new_context
1283) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1284
1285/**
1286 * @ingroup CPUContext
1287 *
1288 * This routine saves the floating point context passed to it.
1289 *
1290 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1291 * point context area
1292 *
1293 * @return on output @a *fp_context_ptr will contain the address that
1294 * should be used with @ref _CPU_Context_restore_fp to restore this context.
1295 *
1296 * Port Specific Information:
1297 *
1298 * XXX document implementation including references if appropriate
1299 */
1300void _CPU_Context_save_fp(
1301  Context_Control_fp **fp_context_ptr
1302);
1303
1304/**
1305 * @ingroup CPUContext
1306 *
1307 * This routine restores the floating point context passed to it.
1308 *
1309 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1310 * point context area to restore
1311 *
1312 * @return on output @a *fp_context_ptr will contain the address that
1313 * should be used with @ref _CPU_Context_save_fp to save this context.
1314 *
1315 * Port Specific Information:
1316 *
1317 * XXX document implementation including references if appropriate
1318 */
1319void _CPU_Context_restore_fp(
1320  Context_Control_fp **fp_context_ptr
1321);
1322
1323/**
1324 * @ingroup CPUContext
1325 *
1326 * @brief Clobbers all volatile registers with values derived from the pattern
1327 * parameter.
1328 *
1329 * This function is used only in test sptests/spcontext01.
1330 *
1331 * @param[in] pattern Pattern used to generate distinct register values.
1332 *
1333 * @see _CPU_Context_validate().
1334 */
1335void _CPU_Context_volatile_clobber( uintptr_t pattern );
1336
1337/**
1338 * @ingroup CPUContext
1339 *
1340 * @brief Initializes and validates the CPU context with values derived from
1341 * the pattern parameter.
1342 *
1343 * This function will not return if the CPU context remains consistent.  In
1344 * case this function returns the CPU port is broken.
1345 *
1346 * This function is used only in test sptests/spcontext01.
1347 *
1348 * @param[in] pattern Pattern used to generate distinct register values.
1349 *
1350 * @see _CPU_Context_volatile_clobber().
1351 */
1352void _CPU_Context_validate( uintptr_t pattern );
1353
1354/**
1355 * @brief The set of registers that specifies the complete processor state.
1356 *
1357 * The CPU exception frame may be available in fatal error conditions like for
1358 * example illegal opcodes, instruction fetch errors, or data access errors.
1359 *
1360 * @see rtems_fatal(), RTEMS_FATAL_SOURCE_EXCEPTION, and
1361 * rtems_exception_frame_print().
1362 */
1363typedef struct {
1364  uint32_t processor_state_register;
1365  uint32_t integer_registers [1];
1366  double float_registers [1];
1367} CPU_Exception_frame;
1368
1369/**
1370 * @brief Prints the exception frame via printk().
1371 *
1372 * @see rtems_fatal() and RTEMS_FATAL_SOURCE_EXCEPTION.
1373 */
1374void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1375
1376/**
1377 * @ingroup CPUEndian
1378 *
1379 * The following routine swaps the endian format of an unsigned int.
1380 * It must be static because it is referenced indirectly.
1381 *
1382 * This version will work on any processor, but if there is a better
1383 * way for your CPU PLEASE use it.  The most common way to do this is to:
1384 *
1385 *    swap least significant two bytes with 16-bit rotate
1386 *    swap upper and lower 16-bits
1387 *    swap most significant two bytes with 16-bit rotate
1388 *
1389 * Some CPUs have special instructions which swap a 32-bit quantity in
1390 * a single instruction (e.g. i486).  It is probably best to avoid
1391 * an "endian swapping control bit" in the CPU.  One good reason is
1392 * that interrupts would probably have to be disabled to ensure that
1393 * an interrupt does not try to access the same "chunk" with the wrong
1394 * endian.  Another good reason is that on some CPUs, the endian bit
1395 * endianness for ALL fetches -- both code and data -- so the code
1396 * will be fetched incorrectly.
1397 *
1398 * @param[in] value is the value to be swapped
1399 * @return the value after being endian swapped
1400 *
1401 * Port Specific Information:
1402 *
1403 * XXX document implementation including references if appropriate
1404 */
1405static inline uint32_t CPU_swap_u32(
1406  uint32_t value
1407)
1408{
1409  uint32_t byte1, byte2, byte3, byte4, swapped;
1410
1411  byte4 = (value >> 24) & 0xff;
1412  byte3 = (value >> 16) & 0xff;
1413  byte2 = (value >> 8)  & 0xff;
1414  byte1 =  value        & 0xff;
1415
1416  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1417  return swapped;
1418}
1419
1420/**
1421 * @ingroup CPUEndian
1422 *
1423 * This routine swaps a 16 bir quantity.
1424 *
1425 * @param[in] value is the value to be swapped
1426 * @return the value after being endian swapped
1427 */
1428#define CPU_swap_u16( value ) \
1429  (((value&0xff) << 8) | ((value >> 8)&0xff))
1430
1431/**
1432 * @brief Unsigned integer type for CPU counter values.
1433 */
1434typedef uint32_t CPU_Counter_ticks;
1435
1436/**
1437 * @brief Returns the current CPU counter value.
1438 *
1439 * A CPU counter is some free-running counter.  It ticks usually with a
1440 * frequency close to the CPU or system bus clock.  The board support package
1441 * must ensure that this function works before the RTEMS initialization.
1442 * Otherwise invalid profiling statistics will be gathered.
1443 *
1444 * @return The current CPU counter value.
1445 */
1446CPU_Counter_ticks _CPU_Counter_read( void );
1447
1448/**
1449 * @brief Returns the difference between the second and first CPU counter
1450 * value.
1451 *
1452 * This operation may be carried out as a modulo operation depending on the
1453 * range of the CPU counter device.
1454 *
1455 * @param[in] second The second CPU counter value.
1456 * @param[in] first The first CPU counter value.
1457 *
1458 * @return Returns second minus first modulo counter period.
1459 */
1460CPU_Counter_ticks _CPU_Counter_difference(
1461  CPU_Counter_ticks second,
1462  CPU_Counter_ticks first
1463);
1464
1465#ifdef RTEMS_SMP
1466  /**
1467   * @brief Performs CPU specific SMP initialization in the context of the boot
1468   * processor.
1469   *
1470   * This function is invoked on the boot processor by RTEMS during
1471   * initialization.  All interrupt stacks are allocated at this point in case
1472   * the CPU port allocates the interrupt stacks.
1473   *
1474   * The CPU port should start secondary processors now.
1475   *
1476   * @param[in] configured_cpu_count The count of processors requested by the
1477   * application configuration.
1478   *
1479   * @return The count of processors available for the application in the system.
1480   * This value is less than or equal to the configured count of processors.
1481   */
1482  uint32_t _CPU_SMP_Initialize( uint32_t configured_cpu_count );
1483
1484  /**
1485   * @brief Returns the index of the current processor.
1486   *
1487   * An architecture specific method must be used to obtain the index of the
1488   * current processor in the system.  The set of processor indices is the
1489   * range of integers starting with zero up to the processor count minus one.
1490   */
1491  static inline uint32_t _CPU_SMP_Get_current_processor( void )
1492  {
1493    return 123;
1494  }
1495
1496  /**
1497   * @brief Sends an inter-processor interrupt to the specified target
1498   * processor.
1499   *
1500   * This operation is undefined for target processor indices out of range.
1501   *
1502   * @param[in] target_processor_index The target processor index.
1503   */
1504  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1505
1506  /**
1507   * @brief Broadcasts a processor event.
1508   *
1509   * Some architectures provide a low-level synchronization primitive for
1510   * processors in a multi-processor environment.  Processors waiting for this
1511   * event may go into a low-power state and stop generating system bus
1512   * transactions.  This function must ensure that preceding store operations
1513   * can be observed by other processors.
1514   *
1515   * @see _CPU_SMP_Processor_event_receive().
1516   */
1517  static inline void _CPU_SMP_Processor_event_broadcast( void )
1518  {
1519    __asm__ volatile ( "" : : : "memory" );
1520  }
1521
1522  /**
1523   * @brief Receives a processor event.
1524   *
1525   * This function will wait for the processor event and may wait forever if no
1526   * such event arrives.
1527   *
1528   * @see _CPU_SMP_Processor_event_broadcast().
1529   */
1530  static inline void _CPU_SMP_Processor_event_receive( void )
1531  {
1532    __asm__ volatile ( "" : : : "memory" );
1533  }
1534#endif
1535
1536#ifdef __cplusplus
1537}
1538#endif
1539
1540#endif
Note: See TracBrowser for help on using the repository browser.