1 | /** |
---|
2 | * @file rtems/score/cpu.h |
---|
3 | */ |
---|
4 | |
---|
5 | /* |
---|
6 | * This include file contains information pertaining to the XXX |
---|
7 | * processor. |
---|
8 | * |
---|
9 | * @note This file is part of a porting template that is intended |
---|
10 | * to be used as the starting point when porting RTEMS to a new |
---|
11 | * CPU family. The following needs to be done when using this as |
---|
12 | * the starting point for a new port: |
---|
13 | * |
---|
14 | * + Anywhere there is an XXX, it should be replaced |
---|
15 | * with information about the CPU family being ported to. |
---|
16 | * |
---|
17 | * + At the end of each comment section, there is a heading which |
---|
18 | * says "Port Specific Information:". When porting to RTEMS, |
---|
19 | * add CPU family specific information in this section |
---|
20 | */ |
---|
21 | |
---|
22 | /* |
---|
23 | * COPYRIGHT (c) 1989-2008. |
---|
24 | * On-Line Applications Research Corporation (OAR). |
---|
25 | * |
---|
26 | * The license and distribution terms for this file may be |
---|
27 | * found in the file LICENSE in this distribution or at |
---|
28 | * http://www.rtems.com/license/LICENSE. |
---|
29 | * |
---|
30 | * $Id$ |
---|
31 | */ |
---|
32 | |
---|
33 | #ifndef _RTEMS_SCORE_CPU_H |
---|
34 | #define _RTEMS_SCORE_CPU_H |
---|
35 | |
---|
36 | #ifdef __cplusplus |
---|
37 | extern "C" { |
---|
38 | #endif |
---|
39 | |
---|
40 | #include <rtems/score/types.h> |
---|
41 | #include <rtems/score/no_cpu.h> |
---|
42 | |
---|
43 | /* conditional compilation parameters */ |
---|
44 | |
---|
45 | /** |
---|
46 | * Should the calls to @ref _Thread_Enable_dispatch be inlined? |
---|
47 | * |
---|
48 | * If TRUE, then they are inlined. |
---|
49 | * If FALSE, then a subroutine call is made. |
---|
50 | * |
---|
51 | * This conditional is an example of the classic trade-off of size |
---|
52 | * versus speed. Inlining the call (TRUE) typically increases the |
---|
53 | * size of RTEMS while speeding up the enabling of dispatching. |
---|
54 | * |
---|
55 | * @note In general, the @ref _Thread_Dispatch_disable_level will |
---|
56 | * only be 0 or 1 unless you are in an interrupt handler and that |
---|
57 | * interrupt handler invokes the executive.] When not inlined |
---|
58 | * something calls @ref _Thread_Enable_dispatch which in turns calls |
---|
59 | * @ref _Thread_Dispatch. If the enable dispatch is inlined, then |
---|
60 | * one subroutine call is avoided entirely. |
---|
61 | * |
---|
62 | * Port Specific Information: |
---|
63 | * |
---|
64 | * XXX document implementation including references if appropriate |
---|
65 | */ |
---|
66 | #define CPU_INLINE_ENABLE_DISPATCH FALSE |
---|
67 | |
---|
68 | /** |
---|
69 | * Should the body of the search loops in _Thread_queue_Enqueue_priority |
---|
70 | * be unrolled one time? In unrolled each iteration of the loop examines |
---|
71 | * two "nodes" on the chain being searched. Otherwise, only one node |
---|
72 | * is examined per iteration. |
---|
73 | * |
---|
74 | * If TRUE, then the loops are unrolled. |
---|
75 | * If FALSE, then the loops are not unrolled. |
---|
76 | * |
---|
77 | * The primary factor in making this decision is the cost of disabling |
---|
78 | * and enabling interrupts (_ISR_Flash) versus the cost of rest of the |
---|
79 | * body of the loop. On some CPUs, the flash is more expensive than |
---|
80 | * one iteration of the loop body. In this case, it might be desirable |
---|
81 | * to unroll the loop. It is important to note that on some CPUs, this |
---|
82 | * code is the longest interrupt disable period in RTEMS. So it is |
---|
83 | * necessary to strike a balance when setting this parameter. |
---|
84 | * |
---|
85 | * Port Specific Information: |
---|
86 | * |
---|
87 | * XXX document implementation including references if appropriate |
---|
88 | */ |
---|
89 | #define CPU_UNROLL_ENQUEUE_PRIORITY TRUE |
---|
90 | |
---|
91 | /** |
---|
92 | * Does RTEMS manage a dedicated interrupt stack in software? |
---|
93 | * |
---|
94 | * If TRUE, then a stack is allocated in @ref _ISR_Handler_initialization. |
---|
95 | * If FALSE, nothing is done. |
---|
96 | * |
---|
97 | * If the CPU supports a dedicated interrupt stack in hardware, |
---|
98 | * then it is generally the responsibility of the BSP to allocate it |
---|
99 | * and set it up. |
---|
100 | * |
---|
101 | * If the CPU does not support a dedicated interrupt stack, then |
---|
102 | * the porter has two options: (1) execute interrupts on the |
---|
103 | * stack of the interrupted task, and (2) have RTEMS manage a dedicated |
---|
104 | * interrupt stack. |
---|
105 | * |
---|
106 | * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. |
---|
107 | * |
---|
108 | * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and |
---|
109 | * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is |
---|
110 | * possible that both are FALSE for a particular CPU. Although it |
---|
111 | * is unclear what that would imply about the interrupt processing |
---|
112 | * procedure on that CPU. |
---|
113 | * |
---|
114 | * Port Specific Information: |
---|
115 | * |
---|
116 | * XXX document implementation including references if appropriate |
---|
117 | */ |
---|
118 | #define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE |
---|
119 | |
---|
120 | /** |
---|
121 | * Does the CPU follow the simple vectored interrupt model? |
---|
122 | * |
---|
123 | * If TRUE, then RTEMS allocates the vector table it internally manages. |
---|
124 | * If FALSE, then the BSP is assumed to allocate and manage the vector |
---|
125 | * table |
---|
126 | * |
---|
127 | * Port Specific Information: |
---|
128 | * |
---|
129 | * XXX document implementation including references if appropriate |
---|
130 | */ |
---|
131 | #define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE |
---|
132 | |
---|
133 | /** |
---|
134 | * Does this CPU have hardware support for a dedicated interrupt stack? |
---|
135 | * |
---|
136 | * If TRUE, then it must be installed during initialization. |
---|
137 | * If FALSE, then no installation is performed. |
---|
138 | * |
---|
139 | * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. |
---|
140 | * |
---|
141 | * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and |
---|
142 | * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is |
---|
143 | * possible that both are FALSE for a particular CPU. Although it |
---|
144 | * is unclear what that would imply about the interrupt processing |
---|
145 | * procedure on that CPU. |
---|
146 | * |
---|
147 | * Port Specific Information: |
---|
148 | * |
---|
149 | * XXX document implementation including references if appropriate |
---|
150 | */ |
---|
151 | #define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE |
---|
152 | |
---|
153 | /** |
---|
154 | * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager? |
---|
155 | * |
---|
156 | * If TRUE, then the memory is allocated during initialization. |
---|
157 | * If FALSE, then the memory is allocated during initialization. |
---|
158 | * |
---|
159 | * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE. |
---|
160 | * |
---|
161 | * Port Specific Information: |
---|
162 | * |
---|
163 | * XXX document implementation including references if appropriate |
---|
164 | */ |
---|
165 | #define CPU_ALLOCATE_INTERRUPT_STACK TRUE |
---|
166 | |
---|
167 | /** |
---|
168 | * Does the RTEMS invoke the user's ISR with the vector number and |
---|
169 | * a pointer to the saved interrupt frame (1) or just the vector |
---|
170 | * number (0)? |
---|
171 | * |
---|
172 | * Port Specific Information: |
---|
173 | * |
---|
174 | * XXX document implementation including references if appropriate |
---|
175 | */ |
---|
176 | #define CPU_ISR_PASSES_FRAME_POINTER 0 |
---|
177 | |
---|
178 | /** |
---|
179 | * @def CPU_HARDWARE_FP |
---|
180 | * |
---|
181 | * Does the CPU have hardware floating point? |
---|
182 | * |
---|
183 | * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported. |
---|
184 | * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored. |
---|
185 | * |
---|
186 | * If there is a FP coprocessor such as the i387 or mc68881, then |
---|
187 | * the answer is TRUE. |
---|
188 | * |
---|
189 | * The macro name "NO_CPU_HAS_FPU" should be made CPU specific. |
---|
190 | * It indicates whether or not this CPU model has FP support. For |
---|
191 | * example, it would be possible to have an i386_nofp CPU model |
---|
192 | * which set this to false to indicate that you have an i386 without |
---|
193 | * an i387 and wish to leave floating point support out of RTEMS. |
---|
194 | */ |
---|
195 | |
---|
196 | /** |
---|
197 | * @def CPU_SOFTWARE_FP |
---|
198 | * |
---|
199 | * Does the CPU have no hardware floating point and GCC provides a |
---|
200 | * software floating point implementation which must be context |
---|
201 | * switched? |
---|
202 | * |
---|
203 | * This feature conditional is used to indicate whether or not there |
---|
204 | * is software implemented floating point that must be context |
---|
205 | * switched. The determination of whether or not this applies |
---|
206 | * is very tool specific and the state saved/restored is also |
---|
207 | * compiler specific. |
---|
208 | * |
---|
209 | * Port Specific Information: |
---|
210 | * |
---|
211 | * XXX document implementation including references if appropriate |
---|
212 | */ |
---|
213 | #if ( NO_CPU_HAS_FPU == 1 ) |
---|
214 | #define CPU_HARDWARE_FP TRUE |
---|
215 | #else |
---|
216 | #define CPU_HARDWARE_FP FALSE |
---|
217 | #endif |
---|
218 | #define CPU_SOFTWARE_FP FALSE |
---|
219 | |
---|
220 | /** |
---|
221 | * Are all tasks RTEMS_FLOATING_POINT tasks implicitly? |
---|
222 | * |
---|
223 | * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed. |
---|
224 | * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed. |
---|
225 | * |
---|
226 | * So far, the only CPUs in which this option has been used are the |
---|
227 | * HP PA-RISC and PowerPC. On the PA-RISC, The HP C compiler and |
---|
228 | * gcc both implicitly used the floating point registers to perform |
---|
229 | * integer multiplies. Similarly, the PowerPC port of gcc has been |
---|
230 | * seen to allocate floating point local variables and touch the FPU |
---|
231 | * even when the flow through a subroutine (like vfprintf()) might |
---|
232 | * not use floating point formats. |
---|
233 | * |
---|
234 | * If a function which you would not think utilize the FP unit DOES, |
---|
235 | * then one can not easily predict which tasks will use the FP hardware. |
---|
236 | * In this case, this option should be TRUE. |
---|
237 | * |
---|
238 | * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well. |
---|
239 | * |
---|
240 | * Port Specific Information: |
---|
241 | * |
---|
242 | * XXX document implementation including references if appropriate |
---|
243 | */ |
---|
244 | #define CPU_ALL_TASKS_ARE_FP TRUE |
---|
245 | |
---|
246 | /** |
---|
247 | * Should the IDLE task have a floating point context? |
---|
248 | * |
---|
249 | * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task |
---|
250 | * and it has a floating point context which is switched in and out. |
---|
251 | * If FALSE, then the IDLE task does not have a floating point context. |
---|
252 | * |
---|
253 | * Setting this to TRUE negatively impacts the time required to preempt |
---|
254 | * the IDLE task from an interrupt because the floating point context |
---|
255 | * must be saved as part of the preemption. |
---|
256 | * |
---|
257 | * Port Specific Information: |
---|
258 | * |
---|
259 | * XXX document implementation including references if appropriate |
---|
260 | */ |
---|
261 | #define CPU_IDLE_TASK_IS_FP FALSE |
---|
262 | |
---|
263 | /** |
---|
264 | * Should the saving of the floating point registers be deferred |
---|
265 | * until a context switch is made to another different floating point |
---|
266 | * task? |
---|
267 | * |
---|
268 | * If TRUE, then the floating point context will not be stored until |
---|
269 | * necessary. It will remain in the floating point registers and not |
---|
270 | * disturned until another floating point task is switched to. |
---|
271 | * |
---|
272 | * If FALSE, then the floating point context is saved when a floating |
---|
273 | * point task is switched out and restored when the next floating point |
---|
274 | * task is restored. The state of the floating point registers between |
---|
275 | * those two operations is not specified. |
---|
276 | * |
---|
277 | * If the floating point context does NOT have to be saved as part of |
---|
278 | * interrupt dispatching, then it should be safe to set this to TRUE. |
---|
279 | * |
---|
280 | * Setting this flag to TRUE results in using a different algorithm |
---|
281 | * for deciding when to save and restore the floating point context. |
---|
282 | * The deferred FP switch algorithm minimizes the number of times |
---|
283 | * the FP context is saved and restored. The FP context is not saved |
---|
284 | * until a context switch is made to another, different FP task. |
---|
285 | * Thus in a system with only one FP task, the FP context will never |
---|
286 | * be saved or restored. |
---|
287 | * |
---|
288 | * Port Specific Information: |
---|
289 | * |
---|
290 | * XXX document implementation including references if appropriate |
---|
291 | */ |
---|
292 | #define CPU_USE_DEFERRED_FP_SWITCH TRUE |
---|
293 | |
---|
294 | /** |
---|
295 | * Does this port provide a CPU dependent IDLE task implementation? |
---|
296 | * |
---|
297 | * If TRUE, then the routine @ref _CPU_Thread_Idle_body |
---|
298 | * must be provided and is the default IDLE thread body instead of |
---|
299 | * @ref _CPU_Thread_Idle_body. |
---|
300 | * |
---|
301 | * If FALSE, then use the generic IDLE thread body if the BSP does |
---|
302 | * not provide one. |
---|
303 | * |
---|
304 | * This is intended to allow for supporting processors which have |
---|
305 | * a low power or idle mode. When the IDLE thread is executed, then |
---|
306 | * the CPU can be powered down. |
---|
307 | * |
---|
308 | * The order of precedence for selecting the IDLE thread body is: |
---|
309 | * |
---|
310 | * -# BSP provided |
---|
311 | * -# CPU dependent (if provided) |
---|
312 | * -# generic (if no BSP and no CPU dependent) |
---|
313 | * |
---|
314 | * Port Specific Information: |
---|
315 | * |
---|
316 | * XXX document implementation including references if appropriate |
---|
317 | */ |
---|
318 | #define CPU_PROVIDES_IDLE_THREAD_BODY TRUE |
---|
319 | |
---|
320 | /** |
---|
321 | * Does the stack grow up (toward higher addresses) or down |
---|
322 | * (toward lower addresses)? |
---|
323 | * |
---|
324 | * If TRUE, then the grows upward. |
---|
325 | * If FALSE, then the grows toward smaller addresses. |
---|
326 | * |
---|
327 | * Port Specific Information: |
---|
328 | * |
---|
329 | * XXX document implementation including references if appropriate |
---|
330 | */ |
---|
331 | #define CPU_STACK_GROWS_UP TRUE |
---|
332 | |
---|
333 | /** |
---|
334 | * The following is the variable attribute used to force alignment |
---|
335 | * of critical RTEMS structures. On some processors it may make |
---|
336 | * sense to have these aligned on tighter boundaries than |
---|
337 | * the minimum requirements of the compiler in order to have as |
---|
338 | * much of the critical data area as possible in a cache line. |
---|
339 | * |
---|
340 | * The placement of this macro in the declaration of the variables |
---|
341 | * is based on the syntactically requirements of the GNU C |
---|
342 | * "__attribute__" extension. For example with GNU C, use |
---|
343 | * the following to force a structures to a 32 byte boundary. |
---|
344 | * |
---|
345 | * __attribute__ ((aligned (32))) |
---|
346 | * |
---|
347 | * @note Currently only the Priority Bit Map table uses this feature. |
---|
348 | * To benefit from using this, the data must be heavily |
---|
349 | * used so it will stay in the cache and used frequently enough |
---|
350 | * in the executive to justify turning this on. |
---|
351 | * |
---|
352 | * Port Specific Information: |
---|
353 | * |
---|
354 | * XXX document implementation including references if appropriate |
---|
355 | */ |
---|
356 | #define CPU_STRUCTURE_ALIGNMENT |
---|
357 | |
---|
358 | /** |
---|
359 | * @defgroup CPUEndian Processor Dependent Endianness Support |
---|
360 | * |
---|
361 | * This group assists in issues related to processor endianness. |
---|
362 | */ |
---|
363 | |
---|
364 | /** |
---|
365 | * @ingroup CPUEndian |
---|
366 | * Define what is required to specify how the network to host conversion |
---|
367 | * routines are handled. |
---|
368 | * |
---|
369 | * @note @a CPU_BIG_ENDIAN and @a CPU_LITTLE_ENDIAN should NOT have the |
---|
370 | * same values. |
---|
371 | * |
---|
372 | * @see CPU_LITTLE_ENDIAN |
---|
373 | * |
---|
374 | * Port Specific Information: |
---|
375 | * |
---|
376 | * XXX document implementation including references if appropriate |
---|
377 | */ |
---|
378 | #define CPU_BIG_ENDIAN TRUE |
---|
379 | |
---|
380 | /** |
---|
381 | * @ingroup CPUEndian |
---|
382 | * Define what is required to specify how the network to host conversion |
---|
383 | * routines are handled. |
---|
384 | * |
---|
385 | * @note @ref CPU_BIG_ENDIAN and @ref CPU_LITTLE_ENDIAN should NOT have the |
---|
386 | * same values. |
---|
387 | * |
---|
388 | * @see CPU_BIG_ENDIAN |
---|
389 | * |
---|
390 | * Port Specific Information: |
---|
391 | * |
---|
392 | * XXX document implementation including references if appropriate |
---|
393 | */ |
---|
394 | #define CPU_LITTLE_ENDIAN FALSE |
---|
395 | |
---|
396 | /** |
---|
397 | * @ingroup CPUInterrupt |
---|
398 | * The following defines the number of bits actually used in the |
---|
399 | * interrupt field of the task mode. How those bits map to the |
---|
400 | * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level. |
---|
401 | * |
---|
402 | * Port Specific Information: |
---|
403 | * |
---|
404 | * XXX document implementation including references if appropriate |
---|
405 | */ |
---|
406 | #define CPU_MODES_INTERRUPT_MASK 0x00000001 |
---|
407 | |
---|
408 | /* |
---|
409 | * Processor defined structures required for cpukit/score. |
---|
410 | * |
---|
411 | * Port Specific Information: |
---|
412 | * |
---|
413 | * XXX document implementation including references if appropriate |
---|
414 | */ |
---|
415 | |
---|
416 | /* may need to put some structures here. */ |
---|
417 | |
---|
418 | /** |
---|
419 | * @defgroup CPUContext Processor Dependent Context Management |
---|
420 | * |
---|
421 | * From the highest level viewpoint, there are 2 types of context to save. |
---|
422 | * |
---|
423 | * -# Interrupt registers to save |
---|
424 | * -# Task level registers to save |
---|
425 | * |
---|
426 | * Since RTEMS handles integer and floating point contexts separately, this |
---|
427 | * means we have the following 3 context items: |
---|
428 | * |
---|
429 | * -# task level context stuff:: Context_Control |
---|
430 | * -# floating point task stuff:: Context_Control_fp |
---|
431 | * -# special interrupt level context :: CPU_Interrupt_frame |
---|
432 | * |
---|
433 | * On some processors, it is cost-effective to save only the callee |
---|
434 | * preserved registers during a task context switch. This means |
---|
435 | * that the ISR code needs to save those registers which do not |
---|
436 | * persist across function calls. It is not mandatory to make this |
---|
437 | * distinctions between the caller/callee saves registers for the |
---|
438 | * purpose of minimizing context saved during task switch and on interrupts. |
---|
439 | * If the cost of saving extra registers is minimal, simplicity is the |
---|
440 | * choice. Save the same context on interrupt entry as for tasks in |
---|
441 | * this case. |
---|
442 | * |
---|
443 | * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then |
---|
444 | * care should be used in designing the context area. |
---|
445 | * |
---|
446 | * On some CPUs with hardware floating point support, the Context_Control_fp |
---|
447 | * structure will not be used or it simply consist of an array of a |
---|
448 | * fixed number of bytes. This is done when the floating point context |
---|
449 | * is dumped by a "FP save context" type instruction and the format |
---|
450 | * is not really defined by the CPU. In this case, there is no need |
---|
451 | * to figure out the exact format -- only the size. Of course, although |
---|
452 | * this is enough information for RTEMS, it is probably not enough for |
---|
453 | * a debugger such as gdb. But that is another problem. |
---|
454 | * |
---|
455 | * Port Specific Information: |
---|
456 | * |
---|
457 | * XXX document implementation including references if appropriate |
---|
458 | */ |
---|
459 | |
---|
460 | /** |
---|
461 | * @ingroup CPUContext Management |
---|
462 | * This defines the minimal set of integer and processor state registers |
---|
463 | * that must be saved during a voluntary context switch from one thread |
---|
464 | * to another. |
---|
465 | */ |
---|
466 | typedef struct { |
---|
467 | /** This field is a hint that a port will have a number of integer |
---|
468 | * registers that need to be saved at a context switch. |
---|
469 | */ |
---|
470 | uint32_t some_integer_register; |
---|
471 | /** This field is a hint that a port will have a number of system |
---|
472 | * registers that need to be saved at a context switch. |
---|
473 | */ |
---|
474 | uint32_t some_system_register; |
---|
475 | |
---|
476 | /** This field is a hint that a port will have a register that |
---|
477 | * is the stack pointer. |
---|
478 | */ |
---|
479 | uint32_t stack_pointer; |
---|
480 | } Context_Control; |
---|
481 | |
---|
482 | /** |
---|
483 | * @ingroup CPUContext Management |
---|
484 | * |
---|
485 | * This macro returns the stack pointer associated with @a _context. |
---|
486 | * |
---|
487 | * @param[in] _context is the thread context area to access |
---|
488 | * |
---|
489 | * @return This method returns the stack pointer. |
---|
490 | */ |
---|
491 | #define _CPU_Context_Get_SP( _context ) \ |
---|
492 | (_context)->stack_pointer |
---|
493 | |
---|
494 | /** |
---|
495 | * @ingroup CPUContext Management |
---|
496 | * This defines the complete set of floating point registers that must |
---|
497 | * be saved during any context switch from one thread to another. |
---|
498 | */ |
---|
499 | typedef struct { |
---|
500 | /** FPU registers are listed here */ |
---|
501 | double some_float_register; |
---|
502 | } Context_Control_fp; |
---|
503 | |
---|
504 | /** |
---|
505 | * @ingroup CPUContext Management |
---|
506 | * This defines the set of integer and processor state registers that must |
---|
507 | * be saved during an interrupt. This set does not include any which are |
---|
508 | * in @ref Context_Control. |
---|
509 | */ |
---|
510 | typedef struct { |
---|
511 | /** This field is a hint that a port will have a number of integer |
---|
512 | * registers that need to be saved when an interrupt occurs or |
---|
513 | * when a context switch occurs at the end of an ISR. |
---|
514 | */ |
---|
515 | uint32_t special_interrupt_register; |
---|
516 | } CPU_Interrupt_frame; |
---|
517 | |
---|
518 | /** |
---|
519 | * This variable is optional. It is used on CPUs on which it is difficult |
---|
520 | * to generate an "uninitialized" FP context. It is filled in by |
---|
521 | * @ref _CPU_Initialize and copied into the task's FP context area during |
---|
522 | * @ref _CPU_Context_Initialize. |
---|
523 | * |
---|
524 | * Port Specific Information: |
---|
525 | * |
---|
526 | * XXX document implementation including references if appropriate |
---|
527 | */ |
---|
528 | SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context; |
---|
529 | |
---|
530 | /** |
---|
531 | * @defgroup CPUInterrupt Processor Dependent Interrupt Management |
---|
532 | * |
---|
533 | * On some CPUs, RTEMS supports a software managed interrupt stack. |
---|
534 | * This stack is allocated by the Interrupt Manager and the switch |
---|
535 | * is performed in @ref _ISR_Handler. These variables contain pointers |
---|
536 | * to the lowest and highest addresses in the chunk of memory allocated |
---|
537 | * for the interrupt stack. Since it is unknown whether the stack |
---|
538 | * grows up or down (in general), this give the CPU dependent |
---|
539 | * code the option of picking the version it wants to use. |
---|
540 | * |
---|
541 | * @note These two variables are required if the macro |
---|
542 | * @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE. |
---|
543 | * |
---|
544 | * Port Specific Information: |
---|
545 | * |
---|
546 | * XXX document implementation including references if appropriate |
---|
547 | */ |
---|
548 | |
---|
549 | /* |
---|
550 | * Nothing prevents the porter from declaring more CPU specific variables. |
---|
551 | * |
---|
552 | * Port Specific Information: |
---|
553 | * |
---|
554 | * XXX document implementation including references if appropriate |
---|
555 | */ |
---|
556 | |
---|
557 | /* XXX: if needed, put more variables here */ |
---|
558 | |
---|
559 | /** |
---|
560 | * @ingroup CPUContext |
---|
561 | * The size of the floating point context area. On some CPUs this |
---|
562 | * will not be a "sizeof" because the format of the floating point |
---|
563 | * area is not defined -- only the size is. This is usually on |
---|
564 | * CPUs with a "floating point save context" instruction. |
---|
565 | * |
---|
566 | * Port Specific Information: |
---|
567 | * |
---|
568 | * XXX document implementation including references if appropriate |
---|
569 | */ |
---|
570 | #define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) |
---|
571 | |
---|
572 | /** |
---|
573 | * Amount of extra stack (above minimum stack size) required by |
---|
574 | * MPCI receive server thread. Remember that in a multiprocessor |
---|
575 | * system this thread must exist and be able to process all directives. |
---|
576 | * |
---|
577 | * Port Specific Information: |
---|
578 | * |
---|
579 | * XXX document implementation including references if appropriate |
---|
580 | */ |
---|
581 | #define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0 |
---|
582 | |
---|
583 | /** |
---|
584 | * @ingroup CPUInterrupt |
---|
585 | * This defines the number of entries in the @ref _ISR_Vector_table managed |
---|
586 | * by RTEMS. |
---|
587 | * |
---|
588 | * Port Specific Information: |
---|
589 | * |
---|
590 | * XXX document implementation including references if appropriate |
---|
591 | */ |
---|
592 | #define CPU_INTERRUPT_NUMBER_OF_VECTORS 32 |
---|
593 | |
---|
594 | /** |
---|
595 | * @ingroup CPUInterrupt |
---|
596 | * This defines the highest interrupt vector number for this port. |
---|
597 | */ |
---|
598 | #define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1) |
---|
599 | |
---|
600 | /** |
---|
601 | * @ingroup CPUInterrupt |
---|
602 | * This is defined if the port has a special way to report the ISR nesting |
---|
603 | * level. Most ports maintain the variable @a _ISR_Nest_level. |
---|
604 | */ |
---|
605 | #define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE |
---|
606 | |
---|
607 | /** |
---|
608 | * @ingroup CPUContext |
---|
609 | * Should be large enough to run all RTEMS tests. This ensures |
---|
610 | * that a "reasonable" small application should not have any problems. |
---|
611 | * |
---|
612 | * Port Specific Information: |
---|
613 | * |
---|
614 | * XXX document implementation including references if appropriate |
---|
615 | */ |
---|
616 | #define CPU_STACK_MINIMUM_SIZE (1024*4) |
---|
617 | |
---|
618 | /** |
---|
619 | * CPU's worst alignment requirement for data types on a byte boundary. This |
---|
620 | * alignment does not take into account the requirements for the stack. |
---|
621 | * |
---|
622 | * Port Specific Information: |
---|
623 | * |
---|
624 | * XXX document implementation including references if appropriate |
---|
625 | */ |
---|
626 | #define CPU_ALIGNMENT 8 |
---|
627 | |
---|
628 | /** |
---|
629 | * This number corresponds to the byte alignment requirement for the |
---|
630 | * heap handler. This alignment requirement may be stricter than that |
---|
631 | * for the data types alignment specified by @ref CPU_ALIGNMENT. It is |
---|
632 | * common for the heap to follow the same alignment requirement as |
---|
633 | * @ref CPU_ALIGNMENT. If the @ref CPU_ALIGNMENT is strict enough for |
---|
634 | * the heap, then this should be set to @ref CPU_ALIGNMENT. |
---|
635 | * |
---|
636 | * @note This does not have to be a power of 2 although it should be |
---|
637 | * a multiple of 2 greater than or equal to 2. The requirement |
---|
638 | * to be a multiple of 2 is because the heap uses the least |
---|
639 | * significant field of the front and back flags to indicate |
---|
640 | * that a block is in use or free. So you do not want any odd |
---|
641 | * length blocks really putting length data in that bit. |
---|
642 | * |
---|
643 | * On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will |
---|
644 | * have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that |
---|
645 | * elements allocated from the heap meet all restrictions. |
---|
646 | * |
---|
647 | * Port Specific Information: |
---|
648 | * |
---|
649 | * XXX document implementation including references if appropriate |
---|
650 | */ |
---|
651 | #define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT |
---|
652 | |
---|
653 | /** |
---|
654 | * This number corresponds to the byte alignment requirement for memory |
---|
655 | * buffers allocated by the partition manager. This alignment requirement |
---|
656 | * may be stricter than that for the data types alignment specified by |
---|
657 | * @ref CPU_ALIGNMENT. It is common for the partition to follow the same |
---|
658 | * alignment requirement as @ref CPU_ALIGNMENT. If the @ref CPU_ALIGNMENT is |
---|
659 | * strict enough for the partition, then this should be set to |
---|
660 | * @ref CPU_ALIGNMENT. |
---|
661 | * |
---|
662 | * @note This does not have to be a power of 2. It does have to |
---|
663 | * be greater or equal to than @ref CPU_ALIGNMENT. |
---|
664 | * |
---|
665 | * Port Specific Information: |
---|
666 | * |
---|
667 | * XXX document implementation including references if appropriate |
---|
668 | */ |
---|
669 | #define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT |
---|
670 | |
---|
671 | /** |
---|
672 | * This number corresponds to the byte alignment requirement for the |
---|
673 | * stack. This alignment requirement may be stricter than that for the |
---|
674 | * data types alignment specified by @ref CPU_ALIGNMENT. If the |
---|
675 | * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be |
---|
676 | * set to 0. |
---|
677 | * |
---|
678 | * @note This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT. |
---|
679 | * |
---|
680 | * Port Specific Information: |
---|
681 | * |
---|
682 | * XXX document implementation including references if appropriate |
---|
683 | */ |
---|
684 | #define CPU_STACK_ALIGNMENT 0 |
---|
685 | |
---|
686 | /* |
---|
687 | * ISR handler macros |
---|
688 | */ |
---|
689 | |
---|
690 | /** |
---|
691 | * @ingroup CPUInterrupt |
---|
692 | * Support routine to initialize the RTEMS vector table after it is allocated. |
---|
693 | * |
---|
694 | * Port Specific Information: |
---|
695 | * |
---|
696 | * XXX document implementation including references if appropriate |
---|
697 | */ |
---|
698 | #define _CPU_Initialize_vectors() |
---|
699 | |
---|
700 | /** |
---|
701 | * @ingroup CPUInterrupt |
---|
702 | * Disable all interrupts for an RTEMS critical section. The previous |
---|
703 | * level is returned in @a _isr_cookie. |
---|
704 | * |
---|
705 | * @param[out] _isr_cookie will contain the previous level cookie |
---|
706 | * |
---|
707 | * Port Specific Information: |
---|
708 | * |
---|
709 | * XXX document implementation including references if appropriate |
---|
710 | */ |
---|
711 | #define _CPU_ISR_Disable( _isr_cookie ) \ |
---|
712 | { \ |
---|
713 | (_isr_cookie) = 0; /* do something to prevent warnings */ \ |
---|
714 | } |
---|
715 | |
---|
716 | /** |
---|
717 | * @ingroup CPUInterrupt |
---|
718 | * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). |
---|
719 | * This indicates the end of an RTEMS critical section. The parameter |
---|
720 | * @a _isr_cookie is not modified. |
---|
721 | * |
---|
722 | * @param[in] _isr_cookie contain the previous level cookie |
---|
723 | * |
---|
724 | * Port Specific Information: |
---|
725 | * |
---|
726 | * XXX document implementation including references if appropriate |
---|
727 | */ |
---|
728 | #define _CPU_ISR_Enable( _isr_cookie ) \ |
---|
729 | { \ |
---|
730 | } |
---|
731 | |
---|
732 | /** |
---|
733 | * @ingroup CPUInterrupt |
---|
734 | * This temporarily restores the interrupt to @a _isr_cookie before immediately |
---|
735 | * disabling them again. This is used to divide long RTEMS critical |
---|
736 | * sections into two or more parts. The parameter @a _isr_cookie is not |
---|
737 | * modified. |
---|
738 | * |
---|
739 | * @param[in] _isr_cookie contain the previous level cookie |
---|
740 | * |
---|
741 | * Port Specific Information: |
---|
742 | * |
---|
743 | * XXX document implementation including references if appropriate |
---|
744 | */ |
---|
745 | #define _CPU_ISR_Flash( _isr_cookie ) \ |
---|
746 | { \ |
---|
747 | } |
---|
748 | |
---|
749 | /** |
---|
750 | * @ingroup CPUInterrupt |
---|
751 | * |
---|
752 | * This routine and @ref _CPU_ISR_Get_level |
---|
753 | * Map the interrupt level in task mode onto the hardware that the CPU |
---|
754 | * actually provides. Currently, interrupt levels which do not |
---|
755 | * map onto the CPU in a generic fashion are undefined. Someday, |
---|
756 | * it would be nice if these were "mapped" by the application |
---|
757 | * via a callout. For example, m68k has 8 levels 0 - 7, levels |
---|
758 | * 8 - 255 would be available for bsp/application specific meaning. |
---|
759 | * This could be used to manage a programmable interrupt controller |
---|
760 | * via the rtems_task_mode directive. |
---|
761 | * |
---|
762 | * Port Specific Information: |
---|
763 | * |
---|
764 | * XXX document implementation including references if appropriate |
---|
765 | */ |
---|
766 | #define _CPU_ISR_Set_level( new_level ) \ |
---|
767 | { \ |
---|
768 | } |
---|
769 | |
---|
770 | /** |
---|
771 | * @ingroup CPUInterrupt |
---|
772 | * Return the current interrupt disable level for this task in |
---|
773 | * the format used by the interrupt level portion of the task mode. |
---|
774 | * |
---|
775 | * @note This routine usually must be implemented as a subroutine. |
---|
776 | * |
---|
777 | * Port Specific Information: |
---|
778 | * |
---|
779 | * XXX document implementation including references if appropriate |
---|
780 | */ |
---|
781 | uint32_t _CPU_ISR_Get_level( void ); |
---|
782 | |
---|
783 | /* end of ISR handler macros */ |
---|
784 | |
---|
785 | /* Context handler macros */ |
---|
786 | |
---|
787 | /** |
---|
788 | * @ingroup CPUContext |
---|
789 | * Initialize the context to a state suitable for starting a |
---|
790 | * task after a context restore operation. Generally, this |
---|
791 | * involves: |
---|
792 | * |
---|
793 | * - setting a starting address |
---|
794 | * - preparing the stack |
---|
795 | * - preparing the stack and frame pointers |
---|
796 | * - setting the proper interrupt level in the context |
---|
797 | * - initializing the floating point context |
---|
798 | * |
---|
799 | * This routine generally does not set any unnecessary register |
---|
800 | * in the context. The state of the "general data" registers is |
---|
801 | * undefined at task start time. |
---|
802 | * |
---|
803 | * @param[in] _the_context is the context structure to be initialized |
---|
804 | * @param[in] _stack_base is the lowest physical address of this task's stack |
---|
805 | * @param[in] _size is the size of this task's stack |
---|
806 | * @param[in] _isr is the interrupt disable level |
---|
807 | * @param[in] _entry_point is the thread's entry point. This is |
---|
808 | * always @a _Thread_Handler |
---|
809 | * @param[in] _is_fp is TRUE if the thread is to be a floating |
---|
810 | * point thread. This is typically only used on CPUs where the |
---|
811 | * FPU may be easily disabled by software such as on the SPARC |
---|
812 | * where the PSR contains an enable FPU bit. |
---|
813 | * |
---|
814 | * Port Specific Information: |
---|
815 | * |
---|
816 | * XXX document implementation including references if appropriate |
---|
817 | */ |
---|
818 | #define _CPU_Context_Initialize( _the_context, _stack_base, _size, \ |
---|
819 | _isr, _entry_point, _is_fp ) \ |
---|
820 | { \ |
---|
821 | } |
---|
822 | |
---|
823 | /** |
---|
824 | * This routine is responsible for somehow restarting the currently |
---|
825 | * executing task. If you are lucky, then all that is necessary |
---|
826 | * is restoring the context. Otherwise, there will need to be |
---|
827 | * a special assembly routine which does something special in this |
---|
828 | * case. For many ports, simply adding a label to the restore path |
---|
829 | * of @ref _CPU_Context_switch will work. On other ports, it may be |
---|
830 | * possibly to load a few arguments and jump to the restore path. It will |
---|
831 | * not work if restarting self conflicts with the stack frame |
---|
832 | * assumptions of restoring a context. |
---|
833 | * |
---|
834 | * Port Specific Information: |
---|
835 | * |
---|
836 | * XXX document implementation including references if appropriate |
---|
837 | */ |
---|
838 | #define _CPU_Context_Restart_self( _the_context ) \ |
---|
839 | _CPU_Context_restore( (_the_context) ); |
---|
840 | |
---|
841 | /** |
---|
842 | * @ingroup CPUContext |
---|
843 | * The purpose of this macro is to allow the initial pointer into |
---|
844 | * a floating point context area (used to save the floating point |
---|
845 | * context) to be at an arbitrary place in the floating point |
---|
846 | * context area. |
---|
847 | * |
---|
848 | * This is necessary because some FP units are designed to have |
---|
849 | * their context saved as a stack which grows into lower addresses. |
---|
850 | * Other FP units can be saved by simply moving registers into offsets |
---|
851 | * from the base of the context area. Finally some FP units provide |
---|
852 | * a "dump context" instruction which could fill in from high to low |
---|
853 | * or low to high based on the whim of the CPU designers. |
---|
854 | * |
---|
855 | * @param[in] _base is the lowest physical address of the floating point |
---|
856 | * context area |
---|
857 | * @param[in] _offset is the offset into the floating point area |
---|
858 | * |
---|
859 | * Port Specific Information: |
---|
860 | * |
---|
861 | * XXX document implementation including references if appropriate |
---|
862 | */ |
---|
863 | #define _CPU_Context_Fp_start( _base, _offset ) \ |
---|
864 | ( (void *) _Addresses_Add_offset( (_base), (_offset) ) ) |
---|
865 | |
---|
866 | /** |
---|
867 | * This routine initializes the FP context area passed to it to. |
---|
868 | * There are a few standard ways in which to initialize the |
---|
869 | * floating point context. The code included for this macro assumes |
---|
870 | * that this is a CPU in which a "initial" FP context was saved into |
---|
871 | * @a _CPU_Null_fp_context and it simply copies it to the destination |
---|
872 | * context passed to it. |
---|
873 | * |
---|
874 | * Other floating point context save/restore models include: |
---|
875 | * -# not doing anything, and |
---|
876 | * -# putting a "null FP status word" in the correct place in the FP context. |
---|
877 | * |
---|
878 | * @param[in] _destination is the floating point context area |
---|
879 | * |
---|
880 | * Port Specific Information: |
---|
881 | * |
---|
882 | * XXX document implementation including references if appropriate |
---|
883 | */ |
---|
884 | #define _CPU_Context_Initialize_fp( _destination ) \ |
---|
885 | { \ |
---|
886 | *(*(_destination)) = _CPU_Null_fp_context; \ |
---|
887 | } |
---|
888 | |
---|
889 | /* end of Context handler macros */ |
---|
890 | |
---|
891 | /* Fatal Error manager macros */ |
---|
892 | |
---|
893 | /** |
---|
894 | * This routine copies _error into a known place -- typically a stack |
---|
895 | * location or a register, optionally disables interrupts, and |
---|
896 | * halts/stops the CPU. |
---|
897 | * |
---|
898 | * Port Specific Information: |
---|
899 | * |
---|
900 | * XXX document implementation including references if appropriate |
---|
901 | */ |
---|
902 | #define _CPU_Fatal_halt( _error ) \ |
---|
903 | { \ |
---|
904 | } |
---|
905 | |
---|
906 | /* end of Fatal Error manager macros */ |
---|
907 | |
---|
908 | /* Bitfield handler macros */ |
---|
909 | |
---|
910 | /** |
---|
911 | * @defgroup CPUBitfield Processor Dependent Bitfield Manipulation |
---|
912 | * |
---|
913 | * This set of routines are used to implement fast searches for |
---|
914 | * the most important ready task. |
---|
915 | */ |
---|
916 | |
---|
917 | /** |
---|
918 | * @ingroup CPUBitfield |
---|
919 | * This definition is set to TRUE if the port uses the generic bitfield |
---|
920 | * manipulation implementation. |
---|
921 | */ |
---|
922 | #define CPU_USE_GENERIC_BITFIELD_CODE TRUE |
---|
923 | |
---|
924 | /** |
---|
925 | * @ingroup CPUBitfield |
---|
926 | * This definition is set to TRUE if the port uses the data tables provided |
---|
927 | * by the generic bitfield manipulation implementation. |
---|
928 | * This can occur when actually using the generic bitfield manipulation |
---|
929 | * implementation or when implementing the same algorithm in assembly |
---|
930 | * language for improved performance. It is unlikely that a port will use |
---|
931 | * the data if it has a bitfield scan instruction. |
---|
932 | */ |
---|
933 | #define CPU_USE_GENERIC_BITFIELD_DATA TRUE |
---|
934 | |
---|
935 | /** |
---|
936 | * @ingroup CPUBitfield |
---|
937 | * This routine sets @a _output to the bit number of the first bit |
---|
938 | * set in @a _value. @a _value is of CPU dependent type |
---|
939 | * @a Priority_bit_map_Control. This type may be either 16 or 32 bits |
---|
940 | * wide although only the 16 least significant bits will be used. |
---|
941 | * |
---|
942 | * There are a number of variables in using a "find first bit" type |
---|
943 | * instruction. |
---|
944 | * |
---|
945 | * -# What happens when run on a value of zero? |
---|
946 | * -# Bits may be numbered from MSB to LSB or vice-versa. |
---|
947 | * -# The numbering may be zero or one based. |
---|
948 | * -# The "find first bit" instruction may search from MSB or LSB. |
---|
949 | * |
---|
950 | * RTEMS guarantees that (1) will never happen so it is not a concern. |
---|
951 | * (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and |
---|
952 | * @ref _CPU_Priority_bits_index. These three form a set of routines |
---|
953 | * which must logically operate together. Bits in the _value are |
---|
954 | * set and cleared based on masks built by @ref _CPU_Priority_Mask. |
---|
955 | * The basic major and minor values calculated by @ref _Priority_Major |
---|
956 | * and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index |
---|
957 | * to properly range between the values returned by the "find first bit" |
---|
958 | * instruction. This makes it possible for @ref _Priority_Get_highest to |
---|
959 | * calculate the major and directly index into the minor table. |
---|
960 | * This mapping is necessary to ensure that 0 (a high priority major/minor) |
---|
961 | * is the first bit found. |
---|
962 | * |
---|
963 | * This entire "find first bit" and mapping process depends heavily |
---|
964 | * on the manner in which a priority is broken into a major and minor |
---|
965 | * components with the major being the 4 MSB of a priority and minor |
---|
966 | * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest |
---|
967 | * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next |
---|
968 | * to the lowest priority. |
---|
969 | * |
---|
970 | * If your CPU does not have a "find first bit" instruction, then |
---|
971 | * there are ways to make do without it. Here are a handful of ways |
---|
972 | * to implement this in software: |
---|
973 | * |
---|
974 | @verbatim |
---|
975 | - a series of 16 bit test instructions |
---|
976 | - a "binary search using if's" |
---|
977 | - _number = 0 |
---|
978 | if _value > 0x00ff |
---|
979 | _value >>=8 |
---|
980 | _number = 8; |
---|
981 | |
---|
982 | if _value > 0x0000f |
---|
983 | _value >=8 |
---|
984 | _number += 4 |
---|
985 | |
---|
986 | _number += bit_set_table[ _value ] |
---|
987 | @endverbatim |
---|
988 | |
---|
989 | * where bit_set_table[ 16 ] has values which indicate the first |
---|
990 | * bit set |
---|
991 | * |
---|
992 | * @param[in] _value is the value to be scanned |
---|
993 | * @param[in] _output is the first bit set |
---|
994 | * |
---|
995 | * Port Specific Information: |
---|
996 | * |
---|
997 | * XXX document implementation including references if appropriate |
---|
998 | */ |
---|
999 | |
---|
1000 | #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) |
---|
1001 | #define _CPU_Bitfield_Find_first_bit( _value, _output ) \ |
---|
1002 | { \ |
---|
1003 | (_output) = 0; /* do something to prevent warnings */ \ |
---|
1004 | } |
---|
1005 | #endif |
---|
1006 | |
---|
1007 | /* end of Bitfield handler macros */ |
---|
1008 | |
---|
1009 | /** |
---|
1010 | * This routine builds the mask which corresponds to the bit fields |
---|
1011 | * as searched by @ref _CPU_Bitfield_Find_first_bit. See the discussion |
---|
1012 | * for that routine. |
---|
1013 | * |
---|
1014 | * Port Specific Information: |
---|
1015 | * |
---|
1016 | * XXX document implementation including references if appropriate |
---|
1017 | */ |
---|
1018 | #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) |
---|
1019 | |
---|
1020 | #define _CPU_Priority_Mask( _bit_number ) \ |
---|
1021 | ( 1 << (_bit_number) ) |
---|
1022 | |
---|
1023 | #endif |
---|
1024 | |
---|
1025 | /** |
---|
1026 | * @ingroup CPUBitfield |
---|
1027 | * This routine translates the bit numbers returned by |
---|
1028 | * @ref _CPU_Bitfield_Find_first_bit into something suitable for use as |
---|
1029 | * a major or minor component of a priority. See the discussion |
---|
1030 | * for that routine. |
---|
1031 | * |
---|
1032 | * @param[in] _priority is the major or minor number to translate |
---|
1033 | * |
---|
1034 | * Port Specific Information: |
---|
1035 | * |
---|
1036 | * XXX document implementation including references if appropriate |
---|
1037 | */ |
---|
1038 | #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) |
---|
1039 | |
---|
1040 | #define _CPU_Priority_bits_index( _priority ) \ |
---|
1041 | (_priority) |
---|
1042 | |
---|
1043 | #endif |
---|
1044 | |
---|
1045 | /* end of Priority handler macros */ |
---|
1046 | |
---|
1047 | /* functions */ |
---|
1048 | |
---|
1049 | /** |
---|
1050 | * This routine performs CPU dependent initialization. |
---|
1051 | * |
---|
1052 | * Port Specific Information: |
---|
1053 | * |
---|
1054 | * XXX document implementation including references if appropriate |
---|
1055 | */ |
---|
1056 | void _CPU_Initialize(void); |
---|
1057 | |
---|
1058 | /** |
---|
1059 | * @ingroup CPUInterrupt |
---|
1060 | * This routine installs a "raw" interrupt handler directly into the |
---|
1061 | * processor's vector table. |
---|
1062 | * |
---|
1063 | * @param[in] vector is the vector number |
---|
1064 | * @param[in] new_handler is the raw ISR handler to install |
---|
1065 | * @param[in] old_handler is the previously installed ISR Handler |
---|
1066 | * |
---|
1067 | * Port Specific Information: |
---|
1068 | * |
---|
1069 | * XXX document implementation including references if appropriate |
---|
1070 | */ |
---|
1071 | void _CPU_ISR_install_raw_handler( |
---|
1072 | uint32_t vector, |
---|
1073 | proc_ptr new_handler, |
---|
1074 | proc_ptr *old_handler |
---|
1075 | ); |
---|
1076 | |
---|
1077 | /** |
---|
1078 | * @ingroup CPUInterrupt |
---|
1079 | * This routine installs an interrupt vector. |
---|
1080 | * |
---|
1081 | * @param[in] vector is the vector number |
---|
1082 | * @param[in] new_handler is the RTEMS ISR handler to install |
---|
1083 | * @param[in] old_handler is the previously installed ISR Handler |
---|
1084 | * |
---|
1085 | * Port Specific Information: |
---|
1086 | * |
---|
1087 | * XXX document implementation including references if appropriate |
---|
1088 | */ |
---|
1089 | void _CPU_ISR_install_vector( |
---|
1090 | uint32_t vector, |
---|
1091 | proc_ptr new_handler, |
---|
1092 | proc_ptr *old_handler |
---|
1093 | ); |
---|
1094 | |
---|
1095 | /** |
---|
1096 | * @ingroup CPUInterrupt |
---|
1097 | * This routine installs the hardware interrupt stack pointer. |
---|
1098 | * |
---|
1099 | * @note It need only be provided if @ref CPU_HAS_HARDWARE_INTERRUPT_STACK |
---|
1100 | * is TRUE. |
---|
1101 | * |
---|
1102 | * Port Specific Information: |
---|
1103 | * |
---|
1104 | * XXX document implementation including references if appropriate |
---|
1105 | */ |
---|
1106 | void _CPU_Install_interrupt_stack( void ); |
---|
1107 | |
---|
1108 | /** |
---|
1109 | * This routine is the CPU dependent IDLE thread body. |
---|
1110 | * |
---|
1111 | * @note It need only be provided if @ref CPU_PROVIDES_IDLE_THREAD_BODY |
---|
1112 | * is TRUE. |
---|
1113 | * |
---|
1114 | * Port Specific Information: |
---|
1115 | * |
---|
1116 | * XXX document implementation including references if appropriate |
---|
1117 | */ |
---|
1118 | void *_CPU_Thread_Idle_body( uintptr_t ignored ); |
---|
1119 | |
---|
1120 | /** |
---|
1121 | * @ingroup CPUContext |
---|
1122 | * This routine switches from the run context to the heir context. |
---|
1123 | * |
---|
1124 | * @param[in] run points to the context of the currently executing task |
---|
1125 | * @param[in] heir points to the context of the heir task |
---|
1126 | * |
---|
1127 | * Port Specific Information: |
---|
1128 | * |
---|
1129 | * XXX document implementation including references if appropriate |
---|
1130 | */ |
---|
1131 | void _CPU_Context_switch( |
---|
1132 | Context_Control *run, |
---|
1133 | Context_Control *heir |
---|
1134 | ); |
---|
1135 | |
---|
1136 | /** |
---|
1137 | * @ingroup CPUContext |
---|
1138 | * This routine is generally used only to restart self in an |
---|
1139 | * efficient manner. It may simply be a label in @ref _CPU_Context_switch. |
---|
1140 | * |
---|
1141 | * @param[in] new_context points to the context to be restored. |
---|
1142 | * |
---|
1143 | * @note May be unnecessary to reload some registers. |
---|
1144 | * |
---|
1145 | * Port Specific Information: |
---|
1146 | * |
---|
1147 | * XXX document implementation including references if appropriate |
---|
1148 | */ |
---|
1149 | void _CPU_Context_restore( |
---|
1150 | Context_Control *new_context |
---|
1151 | ) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE; |
---|
1152 | |
---|
1153 | /** |
---|
1154 | * @ingroup CPUContext |
---|
1155 | * This routine saves the floating point context passed to it. |
---|
1156 | * |
---|
1157 | * @param[in] fp_context_ptr is a pointer to a pointer to a floating |
---|
1158 | * point context area |
---|
1159 | * |
---|
1160 | * @return on output @a *fp_context_ptr will contain the address that |
---|
1161 | * should be used with @ref _CPU_Context_restore_fp to restore this context. |
---|
1162 | * |
---|
1163 | * Port Specific Information: |
---|
1164 | * |
---|
1165 | * XXX document implementation including references if appropriate |
---|
1166 | */ |
---|
1167 | void _CPU_Context_save_fp( |
---|
1168 | Context_Control_fp **fp_context_ptr |
---|
1169 | ); |
---|
1170 | |
---|
1171 | /** |
---|
1172 | * @ingroup CPUContext |
---|
1173 | * This routine restores the floating point context passed to it. |
---|
1174 | * |
---|
1175 | * @param[in] fp_context_ptr is a pointer to a pointer to a floating |
---|
1176 | * point context area to restore |
---|
1177 | * |
---|
1178 | * @return on output @a *fp_context_ptr will contain the address that |
---|
1179 | * should be used with @ref _CPU_Context_save_fp to save this context. |
---|
1180 | * |
---|
1181 | * Port Specific Information: |
---|
1182 | * |
---|
1183 | * XXX document implementation including references if appropriate |
---|
1184 | */ |
---|
1185 | void _CPU_Context_restore_fp( |
---|
1186 | Context_Control_fp **fp_context_ptr |
---|
1187 | ); |
---|
1188 | |
---|
1189 | /** |
---|
1190 | * @ingroup CPUEndian |
---|
1191 | * The following routine swaps the endian format of an unsigned int. |
---|
1192 | * It must be static because it is referenced indirectly. |
---|
1193 | * |
---|
1194 | * This version will work on any processor, but if there is a better |
---|
1195 | * way for your CPU PLEASE use it. The most common way to do this is to: |
---|
1196 | * |
---|
1197 | * swap least significant two bytes with 16-bit rotate |
---|
1198 | * swap upper and lower 16-bits |
---|
1199 | * swap most significant two bytes with 16-bit rotate |
---|
1200 | * |
---|
1201 | * Some CPUs have special instructions which swap a 32-bit quantity in |
---|
1202 | * a single instruction (e.g. i486). It is probably best to avoid |
---|
1203 | * an "endian swapping control bit" in the CPU. One good reason is |
---|
1204 | * that interrupts would probably have to be disabled to ensure that |
---|
1205 | * an interrupt does not try to access the same "chunk" with the wrong |
---|
1206 | * endian. Another good reason is that on some CPUs, the endian bit |
---|
1207 | * endianness for ALL fetches -- both code and data -- so the code |
---|
1208 | * will be fetched incorrectly. |
---|
1209 | * |
---|
1210 | * @param[in] value is the value to be swapped |
---|
1211 | * @return the value after being endian swapped |
---|
1212 | * |
---|
1213 | * Port Specific Information: |
---|
1214 | * |
---|
1215 | * XXX document implementation including references if appropriate |
---|
1216 | */ |
---|
1217 | static inline uint32_t CPU_swap_u32( |
---|
1218 | uint32_t value |
---|
1219 | ) |
---|
1220 | { |
---|
1221 | uint32_t byte1, byte2, byte3, byte4, swapped; |
---|
1222 | |
---|
1223 | byte4 = (value >> 24) & 0xff; |
---|
1224 | byte3 = (value >> 16) & 0xff; |
---|
1225 | byte2 = (value >> 8) & 0xff; |
---|
1226 | byte1 = value & 0xff; |
---|
1227 | |
---|
1228 | swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4; |
---|
1229 | return swapped; |
---|
1230 | } |
---|
1231 | |
---|
1232 | /** |
---|
1233 | * @ingroup CPUEndian |
---|
1234 | * This routine swaps a 16 bir quantity. |
---|
1235 | * |
---|
1236 | * @param[in] value is the value to be swapped |
---|
1237 | * @return the value after being endian swapped |
---|
1238 | */ |
---|
1239 | #define CPU_swap_u16( value ) \ |
---|
1240 | (((value&0xff) << 8) | ((value >> 8)&0xff)) |
---|
1241 | |
---|
1242 | #ifdef __cplusplus |
---|
1243 | } |
---|
1244 | #endif |
---|
1245 | |
---|
1246 | #endif |
---|