source: rtems/cpukit/score/cpu/no_cpu/include/rtems/score/cpu.h @ 2afb22b

5
Last change on this file since 2afb22b was 2afb22b, checked in by Chris Johns <chrisj@…>, on 12/23/17 at 07:18:56

Remove make preinstall

A speciality of the RTEMS build system was the make preinstall step. It
copied header files from arbitrary locations into the build tree. The
header files were included via the -Bsome/build/tree/path GCC command
line option.

This has at least seven problems:

  • The make preinstall step itself needs time and disk space.
  • Errors in header files show up in the build tree copy. This makes it hard for editors to open the right file to fix the error.
  • There is no clear relationship between source and build tree header files. This makes an audit of the build process difficult.
  • The visibility of all header files in the build tree makes it difficult to enforce API barriers. For example it is discouraged to use BSP-specifics in the cpukit.
  • An introduction of a new build system is difficult.
  • Include paths specified by the -B option are system headers. This may suppress warnings.
  • The parallel build had sporadic failures on some hosts.

This patch removes the make preinstall step. All installed header
files are moved to dedicated include directories in the source tree.
Let @RTEMS_CPU@ be the target architecture, e.g. arm, powerpc, sparc,
etc. Let @RTEMS_BSP_FAMILIY@ be a BSP family base directory, e.g.
erc32, imx, qoriq, etc.

The new cpukit include directories are:

  • cpukit/include
  • cpukit/score/cpu/@RTEMS_CPU@/include
  • cpukit/libnetworking

The new BSP include directories are:

  • bsps/include
  • bsps/@RTEMS_CPU@/include
  • bsps/@RTEMS_CPU@/@RTEMS_BSP_FAMILIY@/include

There are build tree include directories for generated files.

The include directory order favours the most general header file, e.g.
it is not possible to override general header files via the include path
order.

The "bootstrap -p" option was removed. The new "bootstrap -H" option
should be used to regenerate the "headers.am" files.

Update #3254.

  • Property mode set to 100644
File size: 46.7 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 *
4 * @brief NO_CPU Department Source
5 *
6 * This include file contains information pertaining to the NO_CPU
7 * processor.
8 */
9
10/*
11 *  This include file contains information pertaining to the XXX
12 *  processor.
13 *
14 *  @note This file is part of a porting template that is intended
15 *  to be used as the starting point when porting RTEMS to a new
16 *  CPU family.  The following needs to be done when using this as
17 *  the starting point for a new port:
18 *
19 *  + Anywhere there is an XXX, it should be replaced
20 *    with information about the CPU family being ported to.
21 *
22 *  + At the end of each comment section, there is a heading which
23 *    says "Port Specific Information:".  When porting to RTEMS,
24 *    add CPU family specific information in this section
25 */
26
27/*
28 *  COPYRIGHT (c) 1989-2008.
29 *  On-Line Applications Research Corporation (OAR).
30 *
31 *  The license and distribution terms for this file may be
32 *  found in the file LICENSE in this distribution or at
33 *  http://www.rtems.org/license/LICENSE.
34 */
35
36#ifndef _RTEMS_SCORE_CPU_H
37#define _RTEMS_SCORE_CPU_H
38
39#ifdef __cplusplus
40extern "C" {
41#endif
42
43#include <rtems/score/types.h>
44#include <rtems/score/no_cpu.h>
45
46/* conditional compilation parameters */
47
48/**
49 * Does RTEMS manage a dedicated interrupt stack in software?
50 *
51 * If TRUE, then a stack is allocated in @ref _ISR_Handler_initialization.
52 * If FALSE, nothing is done.
53 *
54 * If the CPU supports a dedicated interrupt stack in hardware,
55 * then it is generally the responsibility of the BSP to allocate it
56 * and set it up.
57 *
58 * If the CPU does not support a dedicated interrupt stack, then
59 * the porter has two options: (1) execute interrupts on the
60 * stack of the interrupted task, and (2) have RTEMS manage a dedicated
61 * interrupt stack.
62 *
63 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
64 *
65 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
66 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
67 * possible that both are FALSE for a particular CPU.  Although it
68 * is unclear what that would imply about the interrupt processing
69 * procedure on that CPU.
70 *
71 * Port Specific Information:
72 *
73 * XXX document implementation including references if appropriate
74 */
75#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
76
77/**
78 * Does the CPU follow the simple vectored interrupt model?
79 *
80 * If TRUE, then RTEMS allocates the vector table it internally manages.
81 * If FALSE, then the BSP is assumed to allocate and manage the vector
82 * table
83 *
84 * Port Specific Information:
85 *
86 * XXX document implementation including references if appropriate
87 */
88#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
89
90/**
91 * Does this CPU have hardware support for a dedicated interrupt stack?
92 *
93 * If TRUE, then it must be installed during initialization.
94 * If FALSE, then no installation is performed.
95 *
96 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
97 *
98 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
99 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
100 * possible that both are FALSE for a particular CPU.  Although it
101 * is unclear what that would imply about the interrupt processing
102 * procedure on that CPU.
103 *
104 * Port Specific Information:
105 *
106 * XXX document implementation including references if appropriate
107 */
108#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
109
110/**
111 * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
112 *
113 * If TRUE, then the memory is allocated during initialization.
114 * If FALSE, then the memory is allocated during initialization.
115 *
116 * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
117 *
118 * Port Specific Information:
119 *
120 * XXX document implementation including references if appropriate
121 */
122#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
123
124/**
125 * Does the RTEMS invoke the user's ISR with the vector number and
126 * a pointer to the saved interrupt frame (1) or just the vector
127 * number (0)?
128 *
129 * Port Specific Information:
130 *
131 * XXX document implementation including references if appropriate
132 */
133#define CPU_ISR_PASSES_FRAME_POINTER FALSE
134
135/**
136 * @def CPU_HARDWARE_FP
137 *
138 * Does the CPU have hardware floating point?
139 *
140 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
141 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
142 *
143 * If there is a FP coprocessor such as the i387 or mc68881, then
144 * the answer is TRUE.
145 *
146 * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
147 * It indicates whether or not this CPU model has FP support.  For
148 * example, it would be possible to have an i386_nofp CPU model
149 * which set this to false to indicate that you have an i386 without
150 * an i387 and wish to leave floating point support out of RTEMS.
151 */
152
153/**
154 * @def CPU_SOFTWARE_FP
155 *
156 * Does the CPU have no hardware floating point and GCC provides a
157 * software floating point implementation which must be context
158 * switched?
159 *
160 * This feature conditional is used to indicate whether or not there
161 * is software implemented floating point that must be context
162 * switched.  The determination of whether or not this applies
163 * is very tool specific and the state saved/restored is also
164 * compiler specific.
165 *
166 * Port Specific Information:
167 *
168 * XXX document implementation including references if appropriate
169 */
170#if ( NO_CPU_HAS_FPU == 1 )
171#define CPU_HARDWARE_FP     TRUE
172#else
173#define CPU_HARDWARE_FP     FALSE
174#endif
175#define CPU_SOFTWARE_FP     FALSE
176
177/**
178 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
179 *
180 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
181 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
182 *
183 * So far, the only CPUs in which this option has been used are the
184 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
185 * gcc both implicitly used the floating point registers to perform
186 * integer multiplies.  Similarly, the PowerPC port of gcc has been
187 * seen to allocate floating point local variables and touch the FPU
188 * even when the flow through a subroutine (like vfprintf()) might
189 * not use floating point formats.
190 *
191 * If a function which you would not think utilize the FP unit DOES,
192 * then one can not easily predict which tasks will use the FP hardware.
193 * In this case, this option should be TRUE.
194 *
195 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
196 *
197 * Port Specific Information:
198 *
199 * XXX document implementation including references if appropriate
200 */
201#define CPU_ALL_TASKS_ARE_FP     TRUE
202
203/**
204 * Should the IDLE task have a floating point context?
205 *
206 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
207 * and it has a floating point context which is switched in and out.
208 * If FALSE, then the IDLE task does not have a floating point context.
209 *
210 * Setting this to TRUE negatively impacts the time required to preempt
211 * the IDLE task from an interrupt because the floating point context
212 * must be saved as part of the preemption.
213 *
214 * Port Specific Information:
215 *
216 * XXX document implementation including references if appropriate
217 */
218#define CPU_IDLE_TASK_IS_FP      FALSE
219
220/**
221 * Should the saving of the floating point registers be deferred
222 * until a context switch is made to another different floating point
223 * task?
224 *
225 * If TRUE, then the floating point context will not be stored until
226 * necessary.  It will remain in the floating point registers and not
227 * disturned until another floating point task is switched to.
228 *
229 * If FALSE, then the floating point context is saved when a floating
230 * point task is switched out and restored when the next floating point
231 * task is restored.  The state of the floating point registers between
232 * those two operations is not specified.
233 *
234 * If the floating point context does NOT have to be saved as part of
235 * interrupt dispatching, then it should be safe to set this to TRUE.
236 *
237 * Setting this flag to TRUE results in using a different algorithm
238 * for deciding when to save and restore the floating point context.
239 * The deferred FP switch algorithm minimizes the number of times
240 * the FP context is saved and restored.  The FP context is not saved
241 * until a context switch is made to another, different FP task.
242 * Thus in a system with only one FP task, the FP context will never
243 * be saved or restored.
244 *
245 * Port Specific Information:
246 *
247 * XXX document implementation including references if appropriate
248 */
249#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
250
251/**
252 * @brief Enables a robust thread dispatch if set to TRUE.
253 *
254 * In general, it is an application bug to call blocking operating system
255 * services with interrupts disabled.  In most situations this only increases
256 * the interrupt latency.  However, on SMP configurations or on some CPU port
257 * like ARM Cortex-M it leads to undefined system behaviour.  It order to ease
258 * the application development, this error condition is checked at run-time in
259 * case this CPU port option is defined to TRUE.
260 */
261#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
262
263/**
264 * Does this port provide a CPU dependent IDLE task implementation?
265 *
266 * If TRUE, then the routine @ref _CPU_Thread_Idle_body
267 * must be provided and is the default IDLE thread body instead of
268 * @ref _CPU_Thread_Idle_body.
269 *
270 * If FALSE, then use the generic IDLE thread body if the BSP does
271 * not provide one.
272 *
273 * This is intended to allow for supporting processors which have
274 * a low power or idle mode.  When the IDLE thread is executed, then
275 * the CPU can be powered down.
276 *
277 * The order of precedence for selecting the IDLE thread body is:
278 *
279 *   -#  BSP provided
280 *   -#  CPU dependent (if provided)
281 *   -#  generic (if no BSP and no CPU dependent)
282 *
283 * Port Specific Information:
284 *
285 * XXX document implementation including references if appropriate
286 */
287#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
288
289/**
290 * Does the stack grow up (toward higher addresses) or down
291 * (toward lower addresses)?
292 *
293 * If TRUE, then the grows upward.
294 * If FALSE, then the grows toward smaller addresses.
295 *
296 * Port Specific Information:
297 *
298 * XXX document implementation including references if appropriate
299 */
300#define CPU_STACK_GROWS_UP               TRUE
301
302/**
303 * The maximum cache line size in bytes.
304 *
305 * The actual processor may use no cache or a smaller cache line size.
306 */
307#define CPU_CACHE_LINE_BYTES 32
308
309/**
310 * The following is the variable attribute used to force alignment
311 * of critical RTEMS structures.  On some processors it may make
312 * sense to have these aligned on tighter boundaries than
313 * the minimum requirements of the compiler in order to have as
314 * much of the critical data area as possible in a cache line.
315 *
316 * Port Specific Information:
317 *
318 * XXX document implementation including references if appropriate
319 */
320#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
321
322/**
323 * @ingroup CPUInterrupt
324 *
325 * The following defines the number of bits actually used in the
326 * interrupt field of the task mode.  How those bits map to the
327 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
328 *
329 * Port Specific Information:
330 *
331 * XXX document implementation including references if appropriate
332 */
333#define CPU_MODES_INTERRUPT_MASK   0x00000001
334
335/**
336 * @brief Maximum number of processors of all systems supported by this CPU
337 * port.
338 */
339#define CPU_MAXIMUM_PROCESSORS 32
340
341/*
342 *  Processor defined structures required for cpukit/score.
343 *
344 *  Port Specific Information:
345 *
346 *  XXX document implementation including references if appropriate
347 */
348
349/* may need to put some structures here.  */
350
351/**
352 * @defgroup CPUContext Processor Dependent Context Management
353 *
354 * From the highest level viewpoint, there are 2 types of context to save.
355 *
356 *    -# Interrupt registers to save
357 *    -# Task level registers to save
358 *
359 * Since RTEMS handles integer and floating point contexts separately, this
360 * means we have the following 3 context items:
361 *
362 *    -# task level context stuff::  Context_Control
363 *    -# floating point task stuff:: Context_Control_fp
364 *    -# special interrupt level context :: CPU_Interrupt_frame
365 *
366 * On some processors, it is cost-effective to save only the callee
367 * preserved registers during a task context switch.  This means
368 * that the ISR code needs to save those registers which do not
369 * persist across function calls.  It is not mandatory to make this
370 * distinctions between the caller/callee saves registers for the
371 * purpose of minimizing context saved during task switch and on interrupts.
372 * If the cost of saving extra registers is minimal, simplicity is the
373 * choice.  Save the same context on interrupt entry as for tasks in
374 * this case.
375 *
376 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
377 * care should be used in designing the context area.
378 *
379 * On some CPUs with hardware floating point support, the Context_Control_fp
380 * structure will not be used or it simply consist of an array of a
381 * fixed number of bytes.   This is done when the floating point context
382 * is dumped by a "FP save context" type instruction and the format
383 * is not really defined by the CPU.  In this case, there is no need
384 * to figure out the exact format -- only the size.  Of course, although
385 * this is enough information for RTEMS, it is probably not enough for
386 * a debugger such as gdb.  But that is another problem.
387 *
388 * Port Specific Information:
389 *
390 * XXX document implementation including references if appropriate
391 *
392 */
393/**@{**/
394
395/**
396 * @ingroup Management
397 * This defines the minimal set of integer and processor state registers
398 * that must be saved during a voluntary context switch from one thread
399 * to another.
400 */
401typedef struct {
402    /**
403     * This field is a hint that a port will have a number of integer
404     * registers that need to be saved at a context switch.
405     */
406    uint32_t   some_integer_register;
407    /**
408     * This field is a hint that a port will have a number of system
409     * registers that need to be saved at a context switch.
410     */
411    uint32_t   some_system_register;
412
413    /**
414     * This field is a hint that a port will have a register that
415     * is the stack pointer.
416     */
417    uint32_t   stack_pointer;
418
419#ifdef RTEMS_SMP
420    /**
421     * @brief On SMP configurations the thread context must contain a boolean
422     * indicator to signal if this context is executing on a processor.
423     *
424     * This field must be updated during a context switch.  The context switch
425     * to the heir must wait until the heir context indicates that it is no
426     * longer executing on a processor.  This indicator must be updated using
427     * an atomic test and set operation to ensure that at most one processor
428     * uses the heir context at the same time.  The context switch must also
429     * check for a potential new heir thread for this processor in case the
430     * heir context is not immediately available.  Update the executing thread
431     * for this processor only if necessary to avoid a cache line
432     * monopolization.
433     *
434     * @code
435     * void _CPU_Context_switch(
436     *   Context_Control *executing_context,
437     *   Context_Control *heir_context
438     * )
439     * {
440     *   save( executing_context );
441     *
442     *   executing_context->is_executing = false;
443     *   memory_barrier();
444     *
445     *   if ( test_and_set( &heir_context->is_executing ) ) {
446     *     do {
447     *       Per_CPU_Control *cpu_self = _Per_CPU_Get_snapshot();
448     *       Thread_Control *executing = cpu_self->executing;
449     *       Thread_Control *heir = cpu_self->heir;
450     *
451     *       if ( heir != executing ) {
452     *         cpu_self->executing = heir;
453     *         heir_context = (Context_Control *)
454     *           ((uintptr_t) heir + (uintptr_t) executing_context
455     *             - (uintptr_t) executing)
456     *       }
457     *     } while ( test_and_set( &heir_context->is_executing ) );
458     *   }
459     *
460     *   restore( heir_context );
461     * }
462     * @endcode
463     */
464    volatile bool is_executing;
465#endif
466} Context_Control;
467
468/**
469 * @ingroup Management
470 *
471 * This macro returns the stack pointer associated with @a _context.
472 *
473 * @param[in] _context is the thread context area to access
474 *
475 * @return This method returns the stack pointer.
476 */
477#define _CPU_Context_Get_SP( _context ) \
478  (_context)->stack_pointer
479
480/**
481 * @ingroup Management
482 *
483 * This defines the complete set of floating point registers that must
484 * be saved during any context switch from one thread to another.
485 */
486typedef struct {
487    /** FPU registers are listed here */
488    double      some_float_register;
489} Context_Control_fp;
490
491/**
492 * @ingroup Management
493 *
494 * This defines the set of integer and processor state registers that must
495 * be saved during an interrupt.  This set does not include any which are
496 * in @ref Context_Control.
497 */
498typedef struct {
499    /**
500     * This field is a hint that a port will have a number of integer
501     * registers that need to be saved when an interrupt occurs or
502     * when a context switch occurs at the end of an ISR.
503     */
504    uint32_t   special_interrupt_register;
505} CPU_Interrupt_frame;
506
507/**
508 * This variable is optional.  It is used on CPUs on which it is difficult
509 * to generate an "uninitialized" FP context.  It is filled in by
510 * @ref _CPU_Initialize and copied into the task's FP context area during
511 * @ref _CPU_Context_Initialize.
512 *
513 * Port Specific Information:
514 *
515 * XXX document implementation including references if appropriate
516 */
517extern Context_Control_fp _CPU_Null_fp_context;
518
519/** @} */
520
521/**
522 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
523 *
524 * On some CPUs, RTEMS supports a software managed interrupt stack.
525 * This stack is allocated by the Interrupt Manager and the switch
526 * is performed in @ref _ISR_Handler.  These variables contain pointers
527 * to the lowest and highest addresses in the chunk of memory allocated
528 * for the interrupt stack.  Since it is unknown whether the stack
529 * grows up or down (in general), this give the CPU dependent
530 * code the option of picking the version it wants to use.
531 *
532 * NOTE: These two variables are required if the macro
533 *       @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
534 *
535 * Port Specific Information:
536 *
537 * XXX document implementation including references if appropriate
538 */
539
540/*
541 *  Nothing prevents the porter from declaring more CPU specific variables.
542 *
543 *  Port Specific Information:
544 *
545 *  XXX document implementation including references if appropriate
546 */
547
548/* XXX: if needed, put more variables here */
549
550/**
551 * @ingroup CPUContext
552 *
553 * The size of the floating point context area.  On some CPUs this
554 * will not be a "sizeof" because the format of the floating point
555 * area is not defined -- only the size is.  This is usually on
556 * CPUs with a "floating point save context" instruction.
557 *
558 * Port Specific Information:
559 *
560 * XXX document implementation including references if appropriate
561 */
562#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
563
564/**
565 * Amount of extra stack (above minimum stack size) required by
566 * MPCI receive server thread.  Remember that in a multiprocessor
567 * system this thread must exist and be able to process all directives.
568 *
569 * Port Specific Information:
570 *
571 * XXX document implementation including references if appropriate
572 */
573#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
574
575/**
576 * @ingroup CPUInterrupt
577 *
578 * This defines the number of entries in the _ISR_Vector_table managed by RTEMS
579 * in case CPU_SIMPLE_VECTORED_INTERRUPTS is defined to TRUE.  It must be a
580 * compile-time constant.
581 *
582 * It must be undefined in case CPU_SIMPLE_VECTORED_INTERRUPTS is defined to
583 * FALSE.
584 */
585#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
586
587/**
588 * @ingroup CPUInterrupt
589 *
590 * This defines the highest interrupt vector number for this port in case
591 * CPU_SIMPLE_VECTORED_INTERRUPTS is defined to TRUE.  It must be less than
592 * CPU_INTERRUPT_NUMBER_OF_VECTORS.  It may be not a compile-time constant.
593 *
594 * It must be undefined in case CPU_SIMPLE_VECTORED_INTERRUPTS is defined to
595 * FALSE.
596 */
597#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
598
599/**
600 * @ingroup CPUInterrupt
601 *
602 * This is defined if the port has a special way to report the ISR nesting
603 * level.  Most ports maintain the variable @a _ISR_Nest_level.
604 */
605#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
606
607/**
608 * @ingroup CPUContext
609 *
610 * Should be large enough to run all RTEMS tests.  This ensures
611 * that a "reasonable" small application should not have any problems.
612 *
613 * Port Specific Information:
614 *
615 * XXX document implementation including references if appropriate
616 */
617#define CPU_STACK_MINIMUM_SIZE          (1024*4)
618
619/**
620 * Size of a pointer.
621 *
622 * This must be an integer literal that can be used by the assembler.  This
623 * value will be used to calculate offsets of structure members.  These
624 * offsets will be used in assembler code.
625 */
626#define CPU_SIZEOF_POINTER         4
627
628/**
629 * CPU's worst alignment requirement for data types on a byte boundary.  This
630 * alignment does not take into account the requirements for the stack.  It
631 * must be a power of two greater than or equal to two.  The power of two
632 * requirement makes it possible to align values easily using simple bit
633 * operations.
634 *
635 * Port Specific Information:
636 *
637 * XXX document implementation including references if appropriate
638 */
639#define CPU_ALIGNMENT              8
640
641/**
642 * This number corresponds to the byte alignment requirement for the
643 * heap handler.  This alignment requirement may be stricter than that
644 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
645 * common for the heap to follow the same alignment requirement as
646 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
647 * the heap, then this should be set to @ref CPU_ALIGNMENT.
648 *
649 * NOTE:  It must be a power of two greater than or equal to two.  The
650 *        requirement to be a multiple of two is because the heap uses the
651 *        least significant field of the front and back flags to indicate that
652 *        a block is in use or free.  So you do not want any odd length blocks
653 *        really putting length data in that bit.
654 *
655 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
656 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
657 *        elements allocated from the heap meet all restrictions.
658 *
659 * Port Specific Information:
660 *
661 * XXX document implementation including references if appropriate
662 */
663#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
664
665/**
666 * This number corresponds to the byte alignment requirement for memory
667 * buffers allocated by the partition manager.  This alignment requirement
668 * may be stricter than that for the data types alignment specified by
669 * @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
670 * alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
671 * strict enough for the partition, then this should be set to
672 * @ref CPU_ALIGNMENT.
673 *
674 * NOTE:  This does not have to be a power of 2.  It does have to
675 *        be greater or equal to than @ref CPU_ALIGNMENT.
676 *
677 * Port Specific Information:
678 *
679 * XXX document implementation including references if appropriate
680 */
681#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
682
683/**
684 * This number corresponds to the byte alignment requirement for the
685 * stack.  This alignment requirement may be stricter than that for the
686 * data types alignment specified by @ref CPU_ALIGNMENT.  If the
687 * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
688 * set to 0.
689 *
690 * NOTE: This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
691 *
692 * Port Specific Information:
693 *
694 * XXX document implementation including references if appropriate
695 */
696#define CPU_STACK_ALIGNMENT        0
697
698/*
699 *  ISR handler macros
700 */
701
702/**
703 * @ingroup CPUInterrupt
704 *
705 * Support routine to initialize the RTEMS vector table after it is allocated.
706 *
707 * Port Specific Information:
708 *
709 * XXX document implementation including references if appropriate
710 */
711#define _CPU_Initialize_vectors()
712
713/**
714 * @ingroup CPUInterrupt
715 *
716 * Disable all interrupts for an RTEMS critical section.  The previous
717 * level is returned in @a _isr_cookie.
718 *
719 * @param[out] _isr_cookie will contain the previous level cookie
720 *
721 * Port Specific Information:
722 *
723 * XXX document implementation including references if appropriate
724 */
725#define _CPU_ISR_Disable( _isr_cookie ) \
726  { \
727    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
728  }
729
730/**
731 * @ingroup CPUInterrupt
732 *
733 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
734 * This indicates the end of an RTEMS critical section.  The parameter
735 * @a _isr_cookie is not modified.
736 *
737 * @param[in] _isr_cookie contain the previous level cookie
738 *
739 * Port Specific Information:
740 *
741 * XXX document implementation including references if appropriate
742 */
743#define _CPU_ISR_Enable( _isr_cookie )  \
744  { \
745  }
746
747/**
748 * @ingroup CPUInterrupt
749 *
750 * This temporarily restores the interrupt to @a _isr_cookie before immediately
751 * disabling them again.  This is used to divide long RTEMS critical
752 * sections into two or more parts.  The parameter @a _isr_cookie is not
753 * modified.
754 *
755 * @param[in] _isr_cookie contain the previous level cookie
756 *
757 * Port Specific Information:
758 *
759 * XXX document implementation including references if appropriate
760 */
761#define _CPU_ISR_Flash( _isr_cookie ) \
762  { \
763  }
764
765/**
766 * @brief Returns true if interrupts are enabled in the specified ISR level,
767 * otherwise returns false.
768 *
769 * @param[in] level The ISR level.
770 *
771 * @retval true Interrupts are enabled in the ISR level.
772 * @retval false Otherwise.
773 */
774RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
775{
776  return false;
777}
778
779/**
780 * @ingroup CPUInterrupt
781 *
782 * This routine and @ref _CPU_ISR_Get_level
783 * Map the interrupt level in task mode onto the hardware that the CPU
784 * actually provides.  Currently, interrupt levels which do not
785 * map onto the CPU in a generic fashion are undefined.  Someday,
786 * it would be nice if these were "mapped" by the application
787 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
788 * 8 - 255 would be available for bsp/application specific meaning.
789 * This could be used to manage a programmable interrupt controller
790 * via the rtems_task_mode directive.
791 *
792 * Port Specific Information:
793 *
794 * XXX document implementation including references if appropriate
795 */
796#define _CPU_ISR_Set_level( new_level ) \
797  { \
798  }
799
800/**
801 * @ingroup CPUInterrupt
802 *
803 * Return the current interrupt disable level for this task in
804 * the format used by the interrupt level portion of the task mode.
805 *
806 * NOTE: This routine usually must be implemented as a subroutine.
807 *
808 * Port Specific Information:
809 *
810 * XXX document implementation including references if appropriate
811 */
812uint32_t   _CPU_ISR_Get_level( void );
813
814/* end of ISR handler macros */
815
816/* Context handler macros */
817
818/**
819 * @ingroup CPUContext
820 *
821 * @brief Destroys the context of the thread.
822 *
823 * It must be implemented as a macro and an implementation is optional.  The
824 * default implementation does nothing.
825 *
826 * @param[in] _the_thread The corresponding thread.
827 * @param[in] _the_context The context to destroy.
828 *
829 * Port Specific Information:
830 *
831 * XXX document implementation including references if appropriate
832 */
833#define _CPU_Context_Destroy( _the_thread, _the_context ) \
834  { \
835  }
836
837/**
838 *  @ingroup CPUContext
839 *
840 * Initialize the context to a state suitable for starting a
841 * task after a context restore operation.  Generally, this
842 * involves:
843 *
844 *    - setting a starting address
845 *    - preparing the stack
846 *    - preparing the stack and frame pointers
847 *    - setting the proper interrupt level in the context
848 *    - initializing the floating point context
849 *
850 * This routine generally does not set any unnecessary register
851 * in the context.  The state of the "general data" registers is
852 * undefined at task start time.
853 *
854 * The ISR dispatch disable field of the context must be cleared to zero if it
855 * is used by the CPU port.  Otherwise, a thread restart results in
856 * unpredictable behaviour.
857 *
858 * @param[in] _the_context is the context structure to be initialized
859 * @param[in] _stack_base is the lowest physical address of this task's stack
860 * @param[in] _size is the size of this task's stack
861 * @param[in] _isr is the interrupt disable level
862 * @param[in] _entry_point is the thread's entry point.  This is
863 *        always @a _Thread_Handler
864 * @param[in] _is_fp is TRUE if the thread is to be a floating
865 *       point thread.  This is typically only used on CPUs where the
866 *       FPU may be easily disabled by software such as on the SPARC
867 *       where the PSR contains an enable FPU bit.
868 * @param[in] _tls_area The thread-local storage (TLS) area.
869 *
870 * Port Specific Information:
871 *
872 * XXX document implementation including references if appropriate
873 */
874#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
875                                 _isr, _entry_point, _is_fp, _tls_area ) \
876  { \
877  }
878
879/**
880 * This routine is responsible for somehow restarting the currently
881 * executing task.  If you are lucky, then all that is necessary
882 * is restoring the context.  Otherwise, there will need to be
883 * a special assembly routine which does something special in this
884 * case.  For many ports, simply adding a label to the restore path
885 * of @ref _CPU_Context_switch will work.  On other ports, it may be
886 * possibly to load a few arguments and jump to the restore path. It will
887 * not work if restarting self conflicts with the stack frame
888 * assumptions of restoring a context.
889 *
890 * Port Specific Information:
891 *
892 * XXX document implementation including references if appropriate
893 */
894#define _CPU_Context_Restart_self( _the_context ) \
895   _CPU_Context_restore( (_the_context) );
896
897/**
898 * This routine initializes the FP context area passed to it to.
899 * There are a few standard ways in which to initialize the
900 * floating point context.  The code included for this macro assumes
901 * that this is a CPU in which a "initial" FP context was saved into
902 * @a _CPU_Null_fp_context and it simply copies it to the destination
903 * context passed to it.
904 *
905 * Other floating point context save/restore models include:
906 *   -# not doing anything, and
907 *   -# putting a "null FP status word" in the correct place in the FP context.
908 *
909 * @param[in] _destination is the floating point context area
910 *
911 * Port Specific Information:
912 *
913 * XXX document implementation including references if appropriate
914 */
915#define _CPU_Context_Initialize_fp( _destination ) \
916  { \
917   *(*(_destination)) = _CPU_Null_fp_context; \
918  }
919
920/* end of Context handler macros */
921
922/* Fatal Error manager macros */
923
924/**
925 * This routine copies _error into a known place -- typically a stack
926 * location or a register, optionally disables interrupts, and
927 * halts/stops the CPU.
928 *
929 * Port Specific Information:
930 *
931 * XXX document implementation including references if appropriate
932 */
933#define _CPU_Fatal_halt( _source, _error ) \
934  { \
935  }
936
937/* end of Fatal Error manager macros */
938
939/* Bitfield handler macros */
940
941/**
942 * @defgroup CPUBitfield Processor Dependent Bitfield Manipulation
943 *
944 * This set of routines are used to implement fast searches for
945 * the most important ready task.
946 *
947 */
948/**@{**/
949
950/**
951 * This definition is set to TRUE if the port uses the generic bitfield
952 * manipulation implementation.
953 */
954#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
955
956/**
957 * This routine sets @a _output to the bit number of the first bit
958 * set in @a _value.  @a _value is of CPU dependent type
959 * @a Priority_bit_map_Word.  This type may be either 16 or 32 bits
960 * wide although only the 16 least significant bits will be used.
961 *
962 * There are a number of variables in using a "find first bit" type
963 * instruction.
964 *
965 *   -# What happens when run on a value of zero?
966 *   -# Bits may be numbered from MSB to LSB or vice-versa.
967 *   -# The numbering may be zero or one based.
968 *   -# The "find first bit" instruction may search from MSB or LSB.
969 *
970 * RTEMS guarantees that (1) will never happen so it is not a concern.
971 * (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and
972 * @ref _CPU_Priority_bits_index.  These three form a set of routines
973 * which must logically operate together.  Bits in the _value are
974 * set and cleared based on masks built by @ref _CPU_Priority_Mask.
975 * The basic major and minor values calculated by @ref _Priority_Major
976 * and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index
977 * to properly range between the values returned by the "find first bit"
978 * instruction.  This makes it possible for @ref _Priority_Get_highest to
979 * calculate the major and directly index into the minor table.
980 * This mapping is necessary to ensure that 0 (a high priority major/minor)
981 * is the first bit found.
982 *
983 * This entire "find first bit" and mapping process depends heavily
984 * on the manner in which a priority is broken into a major and minor
985 * components with the major being the 4 MSB of a priority and minor
986 * the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
987 * priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
988 * to the lowest priority.
989 *
990 * If your CPU does not have a "find first bit" instruction, then
991 * there are ways to make do without it.  Here are a handful of ways
992 * to implement this in software:
993 *
994@verbatim
995      - a series of 16 bit test instructions
996      - a "binary search using if's"
997      - _number = 0
998        if _value > 0x00ff
999          _value >>=8
1000          _number = 8;
1001
1002        if _value > 0x0000f
1003          _value >=8
1004          _number += 4
1005
1006        _number += bit_set_table[ _value ]
1007@endverbatim
1008
1009 *   where bit_set_table[ 16 ] has values which indicate the first
1010 *     bit set
1011 *
1012 * @param[in] _value is the value to be scanned
1013 * @param[in] _output is the first bit set
1014 *
1015 * Port Specific Information:
1016 *
1017 * XXX document implementation including references if appropriate
1018 */
1019
1020#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1021#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1022  { \
1023    (_output) = 0;   /* do something to prevent warnings */ \
1024  }
1025#endif
1026
1027/** @} */
1028
1029/* end of Bitfield handler macros */
1030
1031/**
1032 * This routine builds the mask which corresponds to the bit fields
1033 * as searched by @ref _CPU_Bitfield_Find_first_bit.  See the discussion
1034 * for that routine.
1035 *
1036 * Port Specific Information:
1037 *
1038 * XXX document implementation including references if appropriate
1039 */
1040#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1041
1042#define _CPU_Priority_Mask( _bit_number ) \
1043  ( 1 << (_bit_number) )
1044
1045#endif
1046
1047/**
1048 * @ingroup CPUBitfield
1049 *
1050 * This routine translates the bit numbers returned by
1051 * @ref _CPU_Bitfield_Find_first_bit into something suitable for use as
1052 * a major or minor component of a priority.  See the discussion
1053 * for that routine.
1054 *
1055 * @param[in] _priority is the major or minor number to translate
1056 *
1057 * Port Specific Information:
1058 *
1059 * XXX document implementation including references if appropriate
1060 */
1061#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1062
1063#define _CPU_Priority_bits_index( _priority ) \
1064  (_priority)
1065
1066#endif
1067
1068/* end of Priority handler macros */
1069
1070/* functions */
1071
1072/**
1073 * This routine performs CPU dependent initialization.
1074 *
1075 * Port Specific Information:
1076 *
1077 * XXX document implementation including references if appropriate
1078 */
1079void _CPU_Initialize(void);
1080
1081/**
1082 * @ingroup CPUInterrupt
1083 *
1084 * This routine installs a "raw" interrupt handler directly into the
1085 * processor's vector table.
1086 *
1087 * @param[in] vector is the vector number
1088 * @param[in] new_handler is the raw ISR handler to install
1089 * @param[in] old_handler is the previously installed ISR Handler
1090 *
1091 * Port Specific Information:
1092 *
1093 * XXX document implementation including references if appropriate
1094 */
1095void _CPU_ISR_install_raw_handler(
1096  uint32_t    vector,
1097  proc_ptr    new_handler,
1098  proc_ptr   *old_handler
1099);
1100
1101/**
1102 * @ingroup CPUInterrupt
1103 *
1104 * This routine installs an interrupt vector.
1105 *
1106 * @param[in] vector is the vector number
1107 * @param[in] new_handler is the RTEMS ISR handler to install
1108 * @param[in] old_handler is the previously installed ISR Handler
1109 *
1110 * Port Specific Information:
1111 *
1112 * XXX document implementation including references if appropriate
1113 */
1114void _CPU_ISR_install_vector(
1115  uint32_t    vector,
1116  proc_ptr    new_handler,
1117  proc_ptr   *old_handler
1118);
1119
1120/**
1121 * @ingroup CPUInterrupt
1122 * This routine installs the hardware interrupt stack pointer.
1123 *
1124 * NOTE:  It need only be provided if @ref CPU_HAS_HARDWARE_INTERRUPT_STACK
1125 *        is TRUE.
1126 *
1127 * Port Specific Information:
1128 *
1129 * XXX document implementation including references if appropriate
1130 */
1131void _CPU_Install_interrupt_stack( void );
1132
1133/**
1134 * This routine is the CPU dependent IDLE thread body.
1135 *
1136 * NOTE:  It need only be provided if @ref CPU_PROVIDES_IDLE_THREAD_BODY
1137 *         is TRUE.
1138 *
1139 * Port Specific Information:
1140 *
1141 * XXX document implementation including references if appropriate
1142 */
1143void *_CPU_Thread_Idle_body( uintptr_t ignored );
1144
1145/**
1146 * @ingroup CPUContext
1147 *
1148 * This routine switches from the run context to the heir context.
1149 *
1150 * @param[in] run points to the context of the currently executing task
1151 * @param[in] heir points to the context of the heir task
1152 *
1153 * Port Specific Information:
1154 *
1155 * XXX document implementation including references if appropriate
1156 */
1157void _CPU_Context_switch(
1158  Context_Control  *run,
1159  Context_Control  *heir
1160);
1161
1162/**
1163 * @ingroup CPUContext
1164 *
1165 * This routine is generally used only to restart self in an
1166 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
1167 *
1168 * @param[in] new_context points to the context to be restored.
1169 *
1170 * NOTE: May be unnecessary to reload some registers.
1171 *
1172 * Port Specific Information:
1173 *
1174 * XXX document implementation including references if appropriate
1175 */
1176void _CPU_Context_restore(
1177  Context_Control *new_context
1178) RTEMS_NO_RETURN;
1179
1180/**
1181 * @ingroup CPUContext
1182 *
1183 * This routine saves the floating point context passed to it.
1184 *
1185 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1186 * point context area
1187 *
1188 * @return on output @a *fp_context_ptr will contain the address that
1189 * should be used with @ref _CPU_Context_restore_fp to restore this context.
1190 *
1191 * Port Specific Information:
1192 *
1193 * XXX document implementation including references if appropriate
1194 */
1195void _CPU_Context_save_fp(
1196  Context_Control_fp **fp_context_ptr
1197);
1198
1199/**
1200 * @ingroup CPUContext
1201 *
1202 * This routine restores the floating point context passed to it.
1203 *
1204 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1205 * point context area to restore
1206 *
1207 * @return on output @a *fp_context_ptr will contain the address that
1208 * should be used with @ref _CPU_Context_save_fp to save this context.
1209 *
1210 * Port Specific Information:
1211 *
1212 * XXX document implementation including references if appropriate
1213 */
1214void _CPU_Context_restore_fp(
1215  Context_Control_fp **fp_context_ptr
1216);
1217
1218/**
1219 * @ingroup CPUContext
1220 *
1221 * @brief Clobbers all volatile registers with values derived from the pattern
1222 * parameter.
1223 *
1224 * This function is used only in test sptests/spcontext01.
1225 *
1226 * @param[in] pattern Pattern used to generate distinct register values.
1227 *
1228 * @see _CPU_Context_validate().
1229 */
1230void _CPU_Context_volatile_clobber( uintptr_t pattern );
1231
1232/**
1233 * @ingroup CPUContext
1234 *
1235 * @brief Initializes and validates the CPU context with values derived from
1236 * the pattern parameter.
1237 *
1238 * This function will not return if the CPU context remains consistent.  In
1239 * case this function returns the CPU port is broken.
1240 *
1241 * This function is used only in test sptests/spcontext01.
1242 *
1243 * @param[in] pattern Pattern used to generate distinct register values.
1244 *
1245 * @see _CPU_Context_volatile_clobber().
1246 */
1247void _CPU_Context_validate( uintptr_t pattern );
1248
1249/**
1250 * @brief The set of registers that specifies the complete processor state.
1251 *
1252 * The CPU exception frame may be available in fatal error conditions like for
1253 * example illegal opcodes, instruction fetch errors, or data access errors.
1254 *
1255 * @see rtems_fatal(), RTEMS_FATAL_SOURCE_EXCEPTION, and
1256 * rtems_exception_frame_print().
1257 */
1258typedef struct {
1259  uint32_t processor_state_register;
1260  uint32_t integer_registers [1];
1261  double float_registers [1];
1262} CPU_Exception_frame;
1263
1264/**
1265 * @brief Prints the exception frame via printk().
1266 *
1267 * @see rtems_fatal() and RTEMS_FATAL_SOURCE_EXCEPTION.
1268 */
1269void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1270
1271/**
1272 * @ingroup CPUEndian
1273 *
1274 * The following routine swaps the endian format of an unsigned int.
1275 * It must be static because it is referenced indirectly.
1276 *
1277 * This version will work on any processor, but if there is a better
1278 * way for your CPU PLEASE use it.  The most common way to do this is to:
1279 *
1280 *    swap least significant two bytes with 16-bit rotate
1281 *    swap upper and lower 16-bits
1282 *    swap most significant two bytes with 16-bit rotate
1283 *
1284 * Some CPUs have special instructions which swap a 32-bit quantity in
1285 * a single instruction (e.g. i486).  It is probably best to avoid
1286 * an "endian swapping control bit" in the CPU.  One good reason is
1287 * that interrupts would probably have to be disabled to ensure that
1288 * an interrupt does not try to access the same "chunk" with the wrong
1289 * endian.  Another good reason is that on some CPUs, the endian bit
1290 * endianness for ALL fetches -- both code and data -- so the code
1291 * will be fetched incorrectly.
1292 *
1293 * @param[in] value is the value to be swapped
1294 * @return the value after being endian swapped
1295 *
1296 * Port Specific Information:
1297 *
1298 * XXX document implementation including references if appropriate
1299 */
1300static inline uint32_t CPU_swap_u32(
1301  uint32_t value
1302)
1303{
1304  uint32_t byte1, byte2, byte3, byte4, swapped;
1305
1306  byte4 = (value >> 24) & 0xff;
1307  byte3 = (value >> 16) & 0xff;
1308  byte2 = (value >> 8)  & 0xff;
1309  byte1 =  value        & 0xff;
1310
1311  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1312  return swapped;
1313}
1314
1315/**
1316 * @ingroup CPUEndian
1317 *
1318 * This routine swaps a 16 bir quantity.
1319 *
1320 * @param[in] value is the value to be swapped
1321 * @return the value after being endian swapped
1322 */
1323#define CPU_swap_u16( value ) \
1324  (((value&0xff) << 8) | ((value >> 8)&0xff))
1325
1326/**
1327 * @brief Unsigned integer type for CPU counter values.
1328 */
1329typedef uint32_t CPU_Counter_ticks;
1330
1331/**
1332 * @brief Returns the current CPU counter value.
1333 *
1334 * A CPU counter is some free-running counter.  It ticks usually with a
1335 * frequency close to the CPU or system bus clock.  The board support package
1336 * must ensure that this function works before the RTEMS initialization.
1337 * Otherwise invalid profiling statistics will be gathered.
1338 *
1339 * @return The current CPU counter value.
1340 */
1341CPU_Counter_ticks _CPU_Counter_read( void );
1342
1343/**
1344 * @brief Returns the difference between the second and first CPU counter
1345 * value.
1346 *
1347 * This operation may be carried out as a modulo operation depending on the
1348 * range of the CPU counter device.
1349 *
1350 * @param[in] second The second CPU counter value.
1351 * @param[in] first The first CPU counter value.
1352 *
1353 * @return Returns second minus first modulo counter period.
1354 */
1355CPU_Counter_ticks _CPU_Counter_difference(
1356  CPU_Counter_ticks second,
1357  CPU_Counter_ticks first
1358);
1359
1360#ifdef RTEMS_SMP
1361  /**
1362   * @brief Performs CPU specific SMP initialization in the context of the boot
1363   * processor.
1364   *
1365   * This function is invoked on the boot processor during system
1366   * initialization.  All interrupt stacks are allocated at this point in case
1367   * the CPU port allocates the interrupt stacks.  This function is called
1368   * before _CPU_SMP_Start_processor() or _CPU_SMP_Finalize_initialization() is
1369   * used.
1370   *
1371   * @return The count of physically or virtually available processors.
1372   * Depending on the configuration the application may use not all processors.
1373   */
1374  uint32_t _CPU_SMP_Initialize( void );
1375
1376  /**
1377   * @brief Starts a processor specified by its index.
1378   *
1379   * This function is invoked on the boot processor during system
1380   * initialization.
1381   *
1382   * This function will be called after _CPU_SMP_Initialize().
1383   *
1384   * @param[in] cpu_index The processor index.
1385   *
1386   * @retval true Successful operation.
1387   * @retval false Unable to start this processor.
1388   */
1389  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1390
1391  /**
1392   * @brief Performs final steps of CPU specific SMP initialization in the
1393   * context of the boot processor.
1394   *
1395   * This function is invoked on the boot processor during system
1396   * initialization.
1397   *
1398   * This function will be called after all processors requested by the
1399   * application have been started.
1400   *
1401   * @param[in] cpu_count The minimum value of the count of processors
1402   * requested by the application configuration and the count of physically or
1403   * virtually available processors.
1404   */
1405  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1406
1407  /**
1408   * @brief Prepares a CPU to start multitasking in terms of SMP.
1409   *
1410   * This function is invoked on all processors requested by the application
1411   * during system initialization.
1412   *
1413   * This function will be called after all processors requested by the
1414   * application have been started right before the context switch to the first
1415   * thread takes place.
1416   */
1417  void _CPU_SMP_Prepare_start_multitasking( void );
1418
1419  /**
1420   * @brief Returns the index of the current processor.
1421   *
1422   * An architecture specific method must be used to obtain the index of the
1423   * current processor in the system.  The set of processor indices is the
1424   * range of integers starting with zero up to the processor count minus one.
1425   */
1426  static inline uint32_t _CPU_SMP_Get_current_processor( void )
1427  {
1428    return 123;
1429  }
1430
1431  /**
1432   * @brief Sends an inter-processor interrupt to the specified target
1433   * processor.
1434   *
1435   * This operation is undefined for target processor indices out of range.
1436   *
1437   * @param[in] target_processor_index The target processor index.
1438   */
1439  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1440
1441  /**
1442   * @brief Broadcasts a processor event.
1443   *
1444   * Some architectures provide a low-level synchronization primitive for
1445   * processors in a multi-processor environment.  Processors waiting for this
1446   * event may go into a low-power state and stop generating system bus
1447   * transactions.  This function must ensure that preceding store operations
1448   * can be observed by other processors.
1449   *
1450   * @see _CPU_SMP_Processor_event_receive().
1451   */
1452  static inline void _CPU_SMP_Processor_event_broadcast( void )
1453  {
1454    __asm__ volatile ( "" : : : "memory" );
1455  }
1456
1457  /**
1458   * @brief Receives a processor event.
1459   *
1460   * This function will wait for the processor event and may wait forever if no
1461   * such event arrives.
1462   *
1463   * @see _CPU_SMP_Processor_event_broadcast().
1464   */
1465  static inline void _CPU_SMP_Processor_event_receive( void )
1466  {
1467    __asm__ volatile ( "" : : : "memory" );
1468  }
1469
1470  /**
1471   * @brief Gets the is executing indicator of the thread context.
1472   *
1473   * @param[in] context The context.
1474   */
1475  static inline bool _CPU_Context_Get_is_executing(
1476    const Context_Control *context
1477  )
1478  {
1479    return context->is_executing;
1480  }
1481
1482  /**
1483   * @brief Sets the is executing indicator of the thread context.
1484   *
1485   * @param[in] context The context.
1486   * @param[in] is_executing The new value for the is executing indicator.
1487   */
1488  static inline void _CPU_Context_Set_is_executing(
1489    Context_Control *context,
1490    bool is_executing
1491  )
1492  {
1493    context->is_executing = is_executing;
1494  }
1495#endif
1496
1497#ifdef __cplusplus
1498}
1499#endif
1500
1501#endif
Note: See TracBrowser for help on using the repository browser.