source: rtems/cpukit/score/cpu/no_cpu/include/rtems/score/cpu.h @ 0446f680

5
Last change on this file since 0446f680 was 0446f680, checked in by Marçal Comajoan Cara <mcomajoancara@…>, on 12/03/18 at 20:37:32

Spelling and grammar fixes in source code comments (GCI 2018)

  • Property mode set to 100644
File size: 42.4 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 *
4 * @brief NO_CPU Department Source
5 *
6 * This include file contains information pertaining to the NO_CPU
7 * processor.
8 */
9
10/*
11 *  This include file contains information pertaining to the XXX
12 *  processor.
13 *
14 *  @note This file is part of a porting template that is intended
15 *  to be used as the starting point when porting RTEMS to a new
16 *  CPU family.  The following needs to be done when using this as
17 *  the starting point for a new port:
18 *
19 *  + Anywhere there is an XXX, it should be replaced
20 *    with information about the CPU family being ported to.
21 *
22 *  + At the end of each comment section, there is a heading which
23 *    says "Port Specific Information:".  When porting to RTEMS,
24 *    add CPU family specific information in this section
25 */
26
27/*
28 *  COPYRIGHT (c) 1989-2008.
29 *  On-Line Applications Research Corporation (OAR).
30 *
31 *  The license and distribution terms for this file may be
32 *  found in the file LICENSE in this distribution or at
33 *  http://www.rtems.org/license/LICENSE.
34 */
35
36#ifndef _RTEMS_SCORE_CPU_H
37#define _RTEMS_SCORE_CPU_H
38
39#ifdef __cplusplus
40extern "C" {
41#endif
42
43#include <rtems/score/basedefs.h>
44#include <rtems/score/no_cpu.h>
45
46/* conditional compilation parameters */
47
48/**
49 * Does the CPU follow the simple vectored interrupt model?
50 *
51 * If TRUE, then RTEMS allocates the vector table it internally manages.
52 * If FALSE, then the BSP is assumed to allocate and manage the vector
53 * table
54 *
55 * Port Specific Information:
56 *
57 * XXX document implementation including references if appropriate
58 */
59#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
60
61/**
62 * Does the RTEMS invoke the user's ISR with the vector number and
63 * a pointer to the saved interrupt frame (1) or just the vector
64 * number (0)?
65 *
66 * Port Specific Information:
67 *
68 * XXX document implementation including references if appropriate
69 */
70#define CPU_ISR_PASSES_FRAME_POINTER FALSE
71
72/**
73 * @def CPU_HARDWARE_FP
74 *
75 * Does the CPU have hardware floating point?
76 *
77 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
78 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
79 *
80 * If there is a FP coprocessor such as the i387 or mc68881, then
81 * the answer is TRUE.
82 *
83 * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
84 * It indicates whether or not this CPU model has FP support.  For
85 * example, it would be possible to have an i386_nofp CPU model
86 * which set this to false to indicate that you have an i386 without
87 * an i387 and wish to leave floating point support out of RTEMS.
88 */
89
90/**
91 * @def CPU_SOFTWARE_FP
92 *
93 * Does the CPU have no hardware floating point and GCC provides a
94 * software floating point implementation which must be context
95 * switched?
96 *
97 * This feature conditional is used to indicate whether or not there
98 * is software implemented floating point that must be context
99 * switched.  The determination of whether or not this applies
100 * is very tool specific and the state saved/restored is also
101 * compiler specific.
102 *
103 * Port Specific Information:
104 *
105 * XXX document implementation including references if appropriate
106 */
107#if ( NO_CPU_HAS_FPU == 1 )
108#define CPU_HARDWARE_FP     TRUE
109#else
110#define CPU_HARDWARE_FP     FALSE
111#endif
112#define CPU_SOFTWARE_FP     FALSE
113
114/**
115 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
116 *
117 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
118 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
119 *
120 * So far, the only CPUs in which this option has been used are the
121 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
122 * gcc both implicitly used the floating point registers to perform
123 * integer multiplies.  Similarly, the PowerPC port of gcc has been
124 * seen to allocate floating point local variables and touch the FPU
125 * even when the flow through a subroutine (like vfprintf()) might
126 * not use floating point formats.
127 *
128 * If a function which you would not think utilize the FP unit DOES,
129 * then one can not easily predict which tasks will use the FP hardware.
130 * In this case, this option should be TRUE.
131 *
132 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
133 *
134 * Port Specific Information:
135 *
136 * XXX document implementation including references if appropriate
137 */
138#define CPU_ALL_TASKS_ARE_FP     TRUE
139
140/**
141 * Should the IDLE task have a floating point context?
142 *
143 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
144 * and it has a floating point context which is switched in and out.
145 * If FALSE, then the IDLE task does not have a floating point context.
146 *
147 * Setting this to TRUE negatively impacts the time required to preempt
148 * the IDLE task from an interrupt because the floating point context
149 * must be saved as part of the preemption.
150 *
151 * Port Specific Information:
152 *
153 * XXX document implementation including references if appropriate
154 */
155#define CPU_IDLE_TASK_IS_FP      FALSE
156
157/**
158 * Should the saving of the floating point registers be deferred
159 * until a context switch is made to another different floating point
160 * task?
161 *
162 * If TRUE, then the floating point context will not be stored until
163 * necessary.  It will remain in the floating point registers and not
164 * disturned until another floating point task is switched to.
165 *
166 * If FALSE, then the floating point context is saved when a floating
167 * point task is switched out and restored when the next floating point
168 * task is restored.  The state of the floating point registers between
169 * those two operations is not specified.
170 *
171 * If the floating point context does NOT have to be saved as part of
172 * interrupt dispatching, then it should be safe to set this to TRUE.
173 *
174 * Setting this flag to TRUE results in using a different algorithm
175 * for deciding when to save and restore the floating point context.
176 * The deferred FP switch algorithm minimizes the number of times
177 * the FP context is saved and restored.  The FP context is not saved
178 * until a context switch is made to another, different FP task.
179 * Thus in a system with only one FP task, the FP context will never
180 * be saved or restored.
181 *
182 * Port Specific Information:
183 *
184 * XXX document implementation including references if appropriate
185 */
186#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
187
188/**
189 * @brief Enables a robust thread dispatch if set to TRUE.
190 *
191 * In general, it is an application bug to call blocking operating system
192 * services with interrupts disabled.  In most situations this only increases
193 * the interrupt latency.  However, on SMP configurations or on some CPU port
194 * like ARM Cortex-M it leads to undefined system behaviour.  It order to ease
195 * the application development, this error condition is checked at run-time in
196 * case this CPU port option is defined to TRUE.
197 */
198#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
199
200/**
201 * Does the stack grow up (toward higher addresses) or down
202 * (toward lower addresses)?
203 *
204 * If TRUE, then the grows upward.
205 * If FALSE, then the grows toward smaller addresses.
206 *
207 * Port Specific Information:
208 *
209 * XXX document implementation including references if appropriate
210 */
211#define CPU_STACK_GROWS_UP               TRUE
212
213/**
214 * The maximum cache line size in bytes.
215 *
216 * The actual processor may use no cache or a smaller cache line size.
217 */
218#define CPU_CACHE_LINE_BYTES 32
219
220/**
221 * The following is the variable attribute used to force alignment
222 * of critical RTEMS structures.  On some processors it may make
223 * sense to have these aligned on tighter boundaries than
224 * the minimum requirements of the compiler in order to have as
225 * much of the critical data area as possible in a cache line.
226 *
227 * Port Specific Information:
228 *
229 * XXX document implementation including references if appropriate
230 */
231#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
232
233/**
234 * @ingroup CPUInterrupt
235 *
236 * The following defines the number of bits actually used in the
237 * interrupt field of the task mode.  How those bits map to the
238 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
239 *
240 * Port Specific Information:
241 *
242 * XXX document implementation including references if appropriate
243 */
244#define CPU_MODES_INTERRUPT_MASK   0x00000001
245
246/**
247 * @brief Maximum number of processors of all systems supported by this CPU
248 * port.
249 */
250#define CPU_MAXIMUM_PROCESSORS 32
251
252/*
253 *  Processor defined structures required for cpukit/score.
254 *
255 *  Port Specific Information:
256 *
257 *  XXX document implementation including references if appropriate
258 */
259
260/* may need to put some structures here.  */
261
262/**
263 * @defgroup CPUContext Processor Dependent Context Management
264 *
265 * From the highest level viewpoint, there are 2 types of context to save.
266 *
267 *    -# Interrupt registers to save
268 *    -# Task level registers to save
269 *
270 * Since RTEMS handles integer and floating point contexts separately, this
271 * means we have the following 3 context items:
272 *
273 *    -# task level context stuff::  Context_Control
274 *    -# floating point task stuff:: Context_Control_fp
275 *    -# special interrupt level context :: CPU_Interrupt_frame
276 *
277 * On some processors, it is cost-effective to save only the callee
278 * preserved registers during a task context switch.  This means
279 * that the ISR code needs to save those registers which do not
280 * persist across function calls.  It is not mandatory to make this
281 * distinctions between the caller/callee saves registers for the
282 * purpose of minimizing context saved during task switch and on interrupts.
283 * If the cost of saving extra registers is minimal, simplicity is the
284 * choice.  Save the same context on interrupt entry as for tasks in
285 * this case.
286 *
287 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
288 * care should be used in designing the context area.
289 *
290 * On some CPUs with hardware floating point support, the Context_Control_fp
291 * structure will not be used or it simply consist of an array of a
292 * fixed number of bytes.   This is done when the floating point context
293 * is dumped by a "FP save context" type instruction and the format
294 * is not really defined by the CPU.  In this case, there is no need
295 * to figure out the exact format -- only the size.  Of course, although
296 * this is enough information for RTEMS, it is probably not enough for
297 * a debugger such as gdb.  But that is another problem.
298 *
299 * Port Specific Information:
300 *
301 * XXX document implementation including references if appropriate
302 *
303 */
304/**@{**/
305
306/**
307 * @ingroup Management
308 * This defines the minimal set of integer and processor state registers
309 * that must be saved during a voluntary context switch from one thread
310 * to another.
311 */
312typedef struct {
313    /**
314     * This field is a hint that a port will have a number of integer
315     * registers that need to be saved at a context switch.
316     */
317    uint32_t   some_integer_register;
318    /**
319     * This field is a hint that a port will have a number of system
320     * registers that need to be saved at a context switch.
321     */
322    uint32_t   some_system_register;
323
324    /**
325     * This field is a hint that a port will have a register that
326     * is the stack pointer.
327     */
328    uint32_t   stack_pointer;
329
330#ifdef RTEMS_SMP
331    /**
332     * @brief On SMP configurations the thread context must contain a boolean
333     * indicator to signal if this context is executing on a processor.
334     *
335     * This field must be updated during a context switch.  The context switch
336     * to the heir must wait until the heir context indicates that it is no
337     * longer executing on a processor.  This indicator must be updated using
338     * an atomic test and set operation to ensure that at most one processor
339     * uses the heir context at the same time.  The context switch must also
340     * check for a potential new heir thread for this processor in case the
341     * heir context is not immediately available.  Update the executing thread
342     * for this processor only if necessary to avoid a cache line
343     * monopolization.
344     *
345     * @code
346     * void _CPU_Context_switch(
347     *   Context_Control *executing_context,
348     *   Context_Control *heir_context
349     * )
350     * {
351     *   save( executing_context );
352     *
353     *   executing_context->is_executing = false;
354     *   memory_barrier();
355     *
356     *   if ( test_and_set( &heir_context->is_executing ) ) {
357     *     do {
358     *       Per_CPU_Control *cpu_self = _Per_CPU_Get_snapshot();
359     *       Thread_Control *executing = cpu_self->executing;
360     *       Thread_Control *heir = cpu_self->heir;
361     *
362     *       if ( heir != executing ) {
363     *         cpu_self->executing = heir;
364     *         heir_context = (Context_Control *)
365     *           ((uintptr_t) heir + (uintptr_t) executing_context
366     *             - (uintptr_t) executing)
367     *       }
368     *     } while ( test_and_set( &heir_context->is_executing ) );
369     *   }
370     *
371     *   restore( heir_context );
372     * }
373     * @endcode
374     */
375    volatile bool is_executing;
376#endif
377} Context_Control;
378
379/**
380 * @ingroup Management
381 *
382 * This macro returns the stack pointer associated with @a _context.
383 *
384 * @param[in] _context is the thread context area to access
385 *
386 * @return This method returns the stack pointer.
387 */
388#define _CPU_Context_Get_SP( _context ) \
389  (_context)->stack_pointer
390
391/**
392 * @ingroup Management
393 *
394 * This defines the complete set of floating point registers that must
395 * be saved during any context switch from one thread to another.
396 */
397typedef struct {
398    /** FPU registers are listed here */
399    double      some_float_register;
400} Context_Control_fp;
401
402/**
403 * @ingroup Management
404 *
405 * This defines the set of integer and processor state registers that must
406 * be saved during an interrupt.  This set does not include any which are
407 * in @ref Context_Control.
408 */
409typedef struct {
410    /**
411     * This field is a hint that a port will have a number of integer
412     * registers that need to be saved when an interrupt occurs or
413     * when a context switch occurs at the end of an ISR.
414     */
415    uint32_t   special_interrupt_register;
416} CPU_Interrupt_frame;
417
418/**
419 * This variable is optional.  It is used on CPUs on which it is difficult
420 * to generate an "uninitialized" FP context.  It is filled in by
421 * @ref _CPU_Initialize and copied into the task's FP context area during
422 * @ref _CPU_Context_Initialize.
423 *
424 * Port Specific Information:
425 *
426 * XXX document implementation including references if appropriate
427 */
428extern Context_Control_fp _CPU_Null_fp_context;
429
430/** @} */
431
432/**
433 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
434 *
435 * RTEMS supports a software managed interrupt stack.  The interrupt stacks
436 * are statically allocated by <rtems/confdefs.h> and the switch is performed
437 * by hardware or the interrupt processing code.  These variables contain
438 * pointers to the lowest and highest addresses in the chunk of memory
439 * allocated for the interrupt stack.  Since it is unknown whether the stack
440 * grows up or down (in general), this gives the CPU dependent code the option
441 * of picking the version it wants to use.
442 *
443 * Port Specific Information:
444 *
445 * XXX document implementation including references if appropriate
446 */
447
448/*
449 *  Nothing prevents the porter from declaring more CPU specific variables.
450 *
451 *  Port Specific Information:
452 *
453 *  XXX document implementation including references if appropriate
454 */
455
456/* XXX: if needed, put more variables here */
457
458/**
459 * @ingroup CPUContext
460 *
461 * The size of the floating point context area.  On some CPUs this
462 * will not be a "sizeof" because the format of the floating point
463 * area is not defined -- only the size is.  This is usually on
464 * CPUs with a "floating point save context" instruction.
465 *
466 * Port Specific Information:
467 *
468 * XXX document implementation including references if appropriate
469 */
470#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
471
472/**
473 * Amount of extra stack (above minimum stack size) required by
474 * MPCI receive server thread.  Remember that in a multiprocessor
475 * system this thread must exist and be able to process all directives.
476 *
477 * Port Specific Information:
478 *
479 * XXX document implementation including references if appropriate
480 */
481#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
482
483/**
484 * @ingroup CPUInterrupt
485 *
486 * This defines the number of entries in the _ISR_Vector_table managed by RTEMS
487 * in case CPU_SIMPLE_VECTORED_INTERRUPTS is defined to TRUE.  It must be a
488 * compile-time constant.
489 *
490 * It must be undefined in case CPU_SIMPLE_VECTORED_INTERRUPTS is defined to
491 * FALSE.
492 */
493#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
494
495/**
496 * @ingroup CPUInterrupt
497 *
498 * This defines the highest interrupt vector number for this port in case
499 * CPU_SIMPLE_VECTORED_INTERRUPTS is defined to TRUE.  It must be less than
500 * CPU_INTERRUPT_NUMBER_OF_VECTORS.  It may be not a compile-time constant.
501 *
502 * It must be undefined in case CPU_SIMPLE_VECTORED_INTERRUPTS is defined to
503 * FALSE.
504 */
505#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
506
507/**
508 * @ingroup CPUInterrupt
509 *
510 * This is defined if the port has a special way to report the ISR nesting
511 * level.  Most ports maintain the variable @a _ISR_Nest_level.
512 */
513#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
514
515/**
516 * @ingroup CPUContext
517 *
518 * Should be large enough to run all RTEMS tests.  This ensures
519 * that a "reasonable" small application should not have any problems.
520 *
521 * Port Specific Information:
522 *
523 * XXX document implementation including references if appropriate
524 */
525#define CPU_STACK_MINIMUM_SIZE          (1024*4)
526
527/**
528 * Size of a pointer.
529 *
530 * This must be an integer literal that can be used by the assembler.  This
531 * value will be used to calculate offsets of structure members.  These
532 * offsets will be used in assembler code.
533 */
534#define CPU_SIZEOF_POINTER         4
535
536/**
537 * CPU's worst alignment requirement for data types on a byte boundary.  This
538 * alignment does not take into account the requirements for the stack.  It
539 * must be a power of two greater than or equal to two.  The power of two
540 * requirement makes it possible to align values easily using simple bit
541 * operations.
542 *
543 * Port Specific Information:
544 *
545 * XXX document implementation including references if appropriate
546 */
547#define CPU_ALIGNMENT              8
548
549/**
550 * This number corresponds to the byte alignment requirement for the
551 * heap handler.  This alignment requirement may be stricter than that
552 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
553 * common for the heap to follow the same alignment requirement as
554 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
555 * the heap, then this should be set to @ref CPU_ALIGNMENT.
556 *
557 * NOTE:  It must be a power of two greater than or equal to two.  The
558 *        requirement to be a multiple of two is because the heap uses the
559 *        least significant field of the front and back flags to indicate that
560 *        a block is in use or free.  So you do not want any odd length blocks
561 *        really putting length data in that bit.
562 *
563 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
564 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
565 *        elements allocated from the heap meet all restrictions.
566 *
567 * Port Specific Information:
568 *
569 * XXX document implementation including references if appropriate
570 */
571#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
572
573/**
574 * This number corresponds to the byte alignment requirement for the
575 * stack.  This alignment requirement may be stricter than that for the
576 * data types alignment specified by @ref CPU_ALIGNMENT.  If the
577 * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
578 * set to 0.
579 *
580 * NOTE: This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
581 *
582 * Port Specific Information:
583 *
584 * XXX document implementation including references if appropriate
585 */
586#define CPU_STACK_ALIGNMENT        0
587
588/**
589 * The alignment of the interrupt stack in bytes.
590 *
591 * The alignment should take the stack ABI and the cache line size into
592 * account.
593 */
594#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
595
596/*
597 *  ISR handler macros
598 */
599
600/**
601 * @ingroup CPUInterrupt
602 *
603 * Support routine to initialize the RTEMS vector table after it is allocated.
604 *
605 * Port Specific Information:
606 *
607 * XXX document implementation including references if appropriate
608 */
609#define _CPU_Initialize_vectors()
610
611/**
612 * @ingroup CPUInterrupt
613 *
614 * Disable all interrupts for an RTEMS critical section.  The previous
615 * level is returned in @a _isr_cookie.
616 *
617 * @param[out] _isr_cookie will contain the previous level cookie
618 *
619 * Port Specific Information:
620 *
621 * XXX document implementation including references if appropriate
622 */
623#define _CPU_ISR_Disable( _isr_cookie ) \
624  { \
625    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
626  }
627
628/**
629 * @ingroup CPUInterrupt
630 *
631 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
632 * This indicates the end of an RTEMS critical section.  The parameter
633 * @a _isr_cookie is not modified.
634 *
635 * @param[in] _isr_cookie contain the previous level cookie
636 *
637 * Port Specific Information:
638 *
639 * XXX document implementation including references if appropriate
640 */
641#define _CPU_ISR_Enable( _isr_cookie )  \
642  { \
643  }
644
645/**
646 * @ingroup CPUInterrupt
647 *
648 * This temporarily restores the interrupt to @a _isr_cookie before immediately
649 * disabling them again.  This is used to divide long RTEMS critical
650 * sections into two or more parts.  The parameter @a _isr_cookie is not
651 * modified.
652 *
653 * @param[in] _isr_cookie contain the previous level cookie
654 *
655 * Port Specific Information:
656 *
657 * XXX document implementation including references if appropriate
658 */
659#define _CPU_ISR_Flash( _isr_cookie ) \
660  { \
661  }
662
663/**
664 * @brief Returns true if interrupts are enabled in the specified ISR level,
665 * otherwise returns false.
666 *
667 * @param[in] level The ISR level.
668 *
669 * @retval true Interrupts are enabled in the ISR level.
670 * @retval false Otherwise.
671 */
672RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
673{
674  return false;
675}
676
677/**
678 * @ingroup CPUInterrupt
679 *
680 * This routine and @ref _CPU_ISR_Get_level
681 * Map the interrupt level in task mode onto the hardware that the CPU
682 * actually provides.  Currently, interrupt levels which do not
683 * map onto the CPU in a generic fashion are undefined.  Someday,
684 * it would be nice if these were "mapped" by the application
685 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
686 * 8 - 255 would be available for bsp/application specific meaning.
687 * This could be used to manage a programmable interrupt controller
688 * via the rtems_task_mode directive.
689 *
690 * Port Specific Information:
691 *
692 * XXX document implementation including references if appropriate
693 */
694#define _CPU_ISR_Set_level( new_level ) \
695  { \
696  }
697
698/**
699 * @ingroup CPUInterrupt
700 *
701 * Return the current interrupt disable level for this task in
702 * the format used by the interrupt level portion of the task mode.
703 *
704 * NOTE: This routine usually must be implemented as a subroutine.
705 *
706 * Port Specific Information:
707 *
708 * XXX document implementation including references if appropriate
709 */
710uint32_t   _CPU_ISR_Get_level( void );
711
712/* end of ISR handler macros */
713
714/* Context handler macros */
715
716/**
717 * @ingroup CPUContext
718 *
719 * @brief Destroys the context of the thread.
720 *
721 * It must be implemented as a macro and an implementation is optional.  The
722 * default implementation does nothing.
723 *
724 * @param[in] _the_thread The corresponding thread.
725 * @param[in] _the_context The context to destroy.
726 *
727 * Port Specific Information:
728 *
729 * XXX document implementation including references if appropriate
730 */
731#define _CPU_Context_Destroy( _the_thread, _the_context ) \
732  { \
733  }
734
735/**
736 *  @ingroup CPUContext
737 *
738 * Initialize the context to a state suitable for starting a
739 * task after a context restore operation.  Generally, this
740 * involves:
741 *
742 *    - setting a starting address
743 *    - preparing the stack
744 *    - preparing the stack and frame pointers
745 *    - setting the proper interrupt level in the context
746 *    - initializing the floating point context
747 *
748 * This routine generally does not set any unnecessary register
749 * in the context.  The state of the "general data" registers is
750 * undefined at task start time.
751 *
752 * The ISR dispatch disable field of the context must be cleared to zero if it
753 * is used by the CPU port.  Otherwise, a thread restart results in
754 * unpredictable behaviour.
755 *
756 * @param[in] _the_context is the context structure to be initialized
757 * @param[in] _stack_base is the lowest physical address of this task's stack
758 * @param[in] _size is the size of this task's stack
759 * @param[in] _isr is the interrupt disable level
760 * @param[in] _entry_point is the thread's entry point.  This is
761 *        always @a _Thread_Handler
762 * @param[in] _is_fp is TRUE if the thread is to be a floating
763 *       point thread.  This is typically only used on CPUs where the
764 *       FPU may be easily disabled by software such as on the SPARC
765 *       where the PSR contains an enable FPU bit.
766 * @param[in] _tls_area The thread-local storage (TLS) area.
767 *
768 * Port Specific Information:
769 *
770 * XXX document implementation including references if appropriate
771 */
772#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
773                                 _isr, _entry_point, _is_fp, _tls_area ) \
774  { \
775  }
776
777/**
778 * This routine is responsible for somehow restarting the currently
779 * executing task.  If you are lucky, then all that is necessary
780 * is restoring the context.  Otherwise, there will need to be
781 * a special assembly routine which does something special in this
782 * case.  For many ports, simply adding a label to the restore path
783 * of @ref _CPU_Context_switch will work.  On other ports, it may be
784 * possibly to load a few arguments and jump to the restore path. It will
785 * not work if restarting self conflicts with the stack frame
786 * assumptions of restoring a context.
787 *
788 * Port Specific Information:
789 *
790 * XXX document implementation including references if appropriate
791 */
792#define _CPU_Context_Restart_self( _the_context ) \
793   _CPU_Context_restore( (_the_context) );
794
795/**
796 * This routine initializes the FP context area passed to it to.
797 * There are a few standard ways in which to initialize the
798 * floating point context.  The code included for this macro assumes
799 * that this is a CPU in which a "initial" FP context was saved into
800 * @a _CPU_Null_fp_context and it simply copies it to the destination
801 * context passed to it.
802 *
803 * Other floating point context save/restore models include:
804 *   -# not doing anything, and
805 *   -# putting a "null FP status word" in the correct place in the FP context.
806 *
807 * @param[in] _destination is the floating point context area
808 *
809 * Port Specific Information:
810 *
811 * XXX document implementation including references if appropriate
812 */
813#define _CPU_Context_Initialize_fp( _destination ) \
814  { \
815   *(*(_destination)) = _CPU_Null_fp_context; \
816  }
817
818/* end of Context handler macros */
819
820/* Fatal Error manager macros */
821
822/**
823 * This routine copies _error into a known place -- typically a stack
824 * location or a register, optionally disables interrupts, and
825 * halts/stops the CPU.
826 *
827 * Port Specific Information:
828 *
829 * XXX document implementation including references if appropriate
830 */
831#define _CPU_Fatal_halt( _source, _error ) \
832  { \
833  }
834
835/* end of Fatal Error manager macros */
836
837/* Bitfield handler macros */
838
839/**
840 * @defgroup CPUBitfield Processor Dependent Bitfield Manipulation
841 *
842 * This set of routines are used to implement fast searches for
843 * the most important ready task.
844 *
845 */
846/**@{**/
847
848/**
849 * This definition is set to TRUE if the port uses the generic bitfield
850 * manipulation implementation.
851 */
852#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
853
854/**
855 * This routine sets @a _output to the bit number of the first bit
856 * set in @a _value.  @a _value is of CPU dependent type
857 * @a Priority_bit_map_Word.  This type may be either 16 or 32 bits
858 * wide although only the 16 least significant bits will be used.
859 *
860 * There are a number of variables in using a "find first bit" type
861 * instruction.
862 *
863 *   -# What happens when run on a value of zero?
864 *   -# Bits may be numbered from MSB to LSB or vice-versa.
865 *   -# The numbering may be zero or one based.
866 *   -# The "find first bit" instruction may search from MSB or LSB.
867 *
868 * RTEMS guarantees that (1) will never happen so it is not a concern.
869 * (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and
870 * @ref _CPU_Priority_bits_index.  These three form a set of routines
871 * which must logically operate together.  Bits in the _value are
872 * set and cleared based on masks built by @ref _CPU_Priority_Mask.
873 * The basic major and minor values calculated by @ref _Priority_Major
874 * and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index
875 * to properly range between the values returned by the "find first bit"
876 * instruction.  This makes it possible for @ref _Priority_Get_highest to
877 * calculate the major and directly index into the minor table.
878 * This mapping is necessary to ensure that 0 (a high priority major/minor)
879 * is the first bit found.
880 *
881 * This entire "find first bit" and mapping process depends heavily
882 * on the manner in which a priority is broken into a major and minor
883 * components with the major being the 4 MSB of a priority and minor
884 * the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
885 * priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
886 * to the lowest priority.
887 *
888 * If your CPU does not have a "find first bit" instruction, then
889 * there are ways to make do without it.  Here are a handful of ways
890 * to implement this in software:
891 *
892@verbatim
893      - a series of 16 bit test instructions
894      - a "binary search using if's"
895      - _number = 0
896        if _value > 0x00ff
897          _value >>=8
898          _number = 8;
899
900        if _value > 0x0000f
901          _value >=8
902          _number += 4
903
904        _number += bit_set_table[ _value ]
905@endverbatim
906
907 *   where bit_set_table[ 16 ] has values which indicate the first
908 *     bit set
909 *
910 * @param[in] _value is the value to be scanned
911 * @param[in] _output is the first bit set
912 *
913 * Port Specific Information:
914 *
915 * XXX document implementation including references if appropriate
916 */
917
918#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
919#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
920  { \
921    (_output) = 0;   /* do something to prevent warnings */ \
922  }
923#endif
924
925/** @} */
926
927/* end of Bitfield handler macros */
928
929/**
930 * This routine builds the mask which corresponds to the bit fields
931 * as searched by @ref _CPU_Bitfield_Find_first_bit.  See the discussion
932 * for that routine.
933 *
934 * Port Specific Information:
935 *
936 * XXX document implementation including references if appropriate
937 */
938#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
939
940#define _CPU_Priority_Mask( _bit_number ) \
941  ( 1 << (_bit_number) )
942
943#endif
944
945/**
946 * @ingroup CPUBitfield
947 *
948 * This routine translates the bit numbers returned by
949 * @ref _CPU_Bitfield_Find_first_bit into something suitable for use as
950 * a major or minor component of a priority.  See the discussion
951 * for that routine.
952 *
953 * @param[in] _priority is the major or minor number to translate
954 *
955 * Port Specific Information:
956 *
957 * XXX document implementation including references if appropriate
958 */
959#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
960
961#define _CPU_Priority_bits_index( _priority ) \
962  (_priority)
963
964#endif
965
966/* end of Priority handler macros */
967
968/* functions */
969
970/**
971 * This routine performs CPU dependent initialization.
972 *
973 * Port Specific Information:
974 *
975 * XXX document implementation including references if appropriate
976 */
977void _CPU_Initialize(void);
978
979typedef void ( *CPU_ISR_raw_handler )( void );
980
981/**
982 * @ingroup CPUInterrupt
983 *
984 * This routine installs a "raw" interrupt handler directly into the
985 * processor's vector table.
986 *
987 * This routine is not used by architecture-independent code and thus optional.
988 *
989 * @param[in] vector is the vector number
990 * @param[in] new_handler is the raw ISR handler to install
991 * @param[in] old_handler is the previously installed ISR Handler
992 *
993 * Port Specific Information:
994 *
995 * XXX document implementation including references if appropriate
996 */
997void _CPU_ISR_install_raw_handler(
998  uint32_t             vector,
999  CPU_ISR_raw_handler  new_handler,
1000  CPU_ISR_raw_handler *old_handler
1001);
1002
1003typedef void ( *CPU_ISR_handler )( uint32_t );
1004
1005/**
1006 * @ingroup CPUInterrupt
1007 *
1008 * This routine installs an interrupt vector.
1009 *
1010 * This routine is only used by architecture-independent code if
1011 * CPU_SIMPLE_VECTORED_INTERRUPTS == TRUE, otherwise it is optional.
1012 *
1013 * @param[in] vector is the vector number
1014 * @param[in] new_handler is the RTEMS ISR handler to install
1015 * @param[in] old_handler is the previously installed ISR Handler
1016 *
1017 * Port Specific Information:
1018 *
1019 * XXX document implementation including references if appropriate
1020 */
1021void _CPU_ISR_install_vector(
1022  uint32_t         vector,
1023  CPU_ISR_handler  new_handler,
1024  CPU_ISR_handler *old_handler
1025);
1026
1027/**
1028 * This routine is the CPU dependent IDLE thread body.
1029 *
1030 * Port Specific Information:
1031 *
1032 * XXX document implementation including references if appropriate
1033 */
1034void *_CPU_Thread_Idle_body( uintptr_t ignored );
1035
1036/**
1037 * @ingroup CPUContext
1038 *
1039 * This routine switches from the run context to the heir context.
1040 *
1041 * @param[in] run points to the context of the currently executing task
1042 * @param[in] heir points to the context of the heir task
1043 *
1044 * Port Specific Information:
1045 *
1046 * XXX document implementation including references if appropriate
1047 */
1048void _CPU_Context_switch(
1049  Context_Control  *run,
1050  Context_Control  *heir
1051);
1052
1053/**
1054 * @ingroup CPUContext
1055 *
1056 * This routine is generally used only to restart self in an
1057 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
1058 *
1059 * @param[in] new_context points to the context to be restored.
1060 *
1061 * NOTE: May be unnecessary to reload some registers.
1062 *
1063 * Port Specific Information:
1064 *
1065 * XXX document implementation including references if appropriate
1066 */
1067void _CPU_Context_restore(
1068  Context_Control *new_context
1069) RTEMS_NO_RETURN;
1070
1071/**
1072 * @ingroup CPUContext
1073 *
1074 * This routine saves the floating point context passed to it.
1075 *
1076 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1077 * point context area
1078 *
1079 * @return on output @a *fp_context_ptr will contain the address that
1080 * should be used with @ref _CPU_Context_restore_fp to restore this context.
1081 *
1082 * Port Specific Information:
1083 *
1084 * XXX document implementation including references if appropriate
1085 */
1086void _CPU_Context_save_fp(
1087  Context_Control_fp **fp_context_ptr
1088);
1089
1090/**
1091 * @ingroup CPUContext
1092 *
1093 * This routine restores the floating point context passed to it.
1094 *
1095 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
1096 * point context area to restore
1097 *
1098 * @return on output @a *fp_context_ptr will contain the address that
1099 * should be used with @ref _CPU_Context_save_fp to save this context.
1100 *
1101 * Port Specific Information:
1102 *
1103 * XXX document implementation including references if appropriate
1104 */
1105void _CPU_Context_restore_fp(
1106  Context_Control_fp **fp_context_ptr
1107);
1108
1109/**
1110 * @brief The set of registers that specifies the complete processor state.
1111 *
1112 * The CPU exception frame may be available in fatal error conditions like for
1113 * example illegal opcodes, instruction fetch errors, or data access errors.
1114 *
1115 * @see rtems_fatal(), RTEMS_FATAL_SOURCE_EXCEPTION, and
1116 * rtems_exception_frame_print().
1117 */
1118typedef struct {
1119  uint32_t processor_state_register;
1120  uint32_t integer_registers [1];
1121  double float_registers [1];
1122} CPU_Exception_frame;
1123
1124/**
1125 * @brief Prints the exception frame via printk().
1126 *
1127 * @see rtems_fatal() and RTEMS_FATAL_SOURCE_EXCEPTION.
1128 */
1129void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1130
1131/**
1132 * @ingroup CPUEndian
1133 *
1134 * The following routine swaps the endian format of an unsigned int.
1135 * It must be static because it is referenced indirectly.
1136 *
1137 * This version will work on any processor, but if there is a better
1138 * way for your CPU PLEASE use it.  The most common way to do this is to:
1139 *
1140 *    swap least significant two bytes with 16-bit rotate
1141 *    swap upper and lower 16-bits
1142 *    swap most significant two bytes with 16-bit rotate
1143 *
1144 * Some CPUs have special instructions which swap a 32-bit quantity in
1145 * a single instruction (e.g. i486).  It is probably best to avoid
1146 * an "endian swapping control bit" in the CPU.  One good reason is
1147 * that interrupts would probably have to be disabled to ensure that
1148 * an interrupt does not try to access the same "chunk" with the wrong
1149 * endian.  Another good reason is that on some CPUs, the endian bit
1150 * endianness for ALL fetches -- both code and data -- so the code
1151 * will be fetched incorrectly.
1152 *
1153 * @param[in] value is the value to be swapped
1154 * @return the value after being endian swapped
1155 *
1156 * Port Specific Information:
1157 *
1158 * XXX document implementation including references if appropriate
1159 */
1160static inline uint32_t CPU_swap_u32(
1161  uint32_t value
1162)
1163{
1164  uint32_t byte1, byte2, byte3, byte4, swapped;
1165
1166  byte4 = (value >> 24) & 0xff;
1167  byte3 = (value >> 16) & 0xff;
1168  byte2 = (value >> 8)  & 0xff;
1169  byte1 =  value        & 0xff;
1170
1171  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1172  return swapped;
1173}
1174
1175/**
1176 * @ingroup CPUEndian
1177 *
1178 * This routine swaps a 16 bir quantity.
1179 *
1180 * @param[in] value is the value to be swapped
1181 * @return the value after being endian swapped
1182 */
1183#define CPU_swap_u16( value ) \
1184  (((value&0xff) << 8) | ((value >> 8)&0xff))
1185
1186/**
1187 * @brief Unsigned integer type for CPU counter values.
1188 */
1189typedef uint32_t CPU_Counter_ticks;
1190
1191/**
1192 * @brief Returns the current CPU counter frequency in Hz.
1193 *
1194 * @return The current CPU counter frequency in Hz.
1195 */
1196uint32_t _CPU_Counter_frequency( void );
1197
1198/**
1199 * @brief Returns the current CPU counter value.
1200 *
1201 * A CPU counter is some free-running counter.  It ticks usually with a
1202 * frequency close to the CPU or system bus clock.  The board support package
1203 * must ensure that this function works before the RTEMS initialization.
1204 * Otherwise invalid profiling statistics will be gathered.
1205 *
1206 * @return The current CPU counter value.
1207 */
1208CPU_Counter_ticks _CPU_Counter_read( void );
1209
1210/**
1211 * @brief Returns the difference between the second and first CPU counter
1212 * value.
1213 *
1214 * This operation may be carried out as a modulo operation depending on the
1215 * range of the CPU counter device.
1216 *
1217 * @param[in] second The second CPU counter value.
1218 * @param[in] first The first CPU counter value.
1219 *
1220 * @return Returns second minus first modulo counter period.
1221 */
1222CPU_Counter_ticks _CPU_Counter_difference(
1223  CPU_Counter_ticks second,
1224  CPU_Counter_ticks first
1225);
1226
1227#ifdef RTEMS_SMP
1228  /**
1229   * @brief Performs CPU specific SMP initialization in the context of the boot
1230   * processor.
1231   *
1232   * This function is invoked on the boot processor during system
1233   * initialization.  All interrupt stacks are allocated at this point in case
1234   * the CPU port allocates the interrupt stacks.  This function is called
1235   * before _CPU_SMP_Start_processor() or _CPU_SMP_Finalize_initialization() is
1236   * used.
1237   *
1238   * @return The count of physically or virtually available processors.
1239   * Depending on the configuration the application may use not all processors.
1240   */
1241  uint32_t _CPU_SMP_Initialize( void );
1242
1243  /**
1244   * @brief Starts a processor specified by its index.
1245   *
1246   * This function is invoked on the boot processor during system
1247   * initialization.
1248   *
1249   * This function will be called after _CPU_SMP_Initialize().
1250   *
1251   * @param[in] cpu_index The processor index.
1252   *
1253   * @retval true Successful operation.
1254   * @retval false Unable to start this processor.
1255   */
1256  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
1257
1258  /**
1259   * @brief Performs final steps of CPU specific SMP initialization in the
1260   * context of the boot processor.
1261   *
1262   * This function is invoked on the boot processor during system
1263   * initialization.
1264   *
1265   * This function will be called after all processors requested by the
1266   * application have been started.
1267   *
1268   * @param[in] cpu_count The minimum value of the count of processors
1269   * requested by the application configuration and the count of physically or
1270   * virtually available processors.
1271   */
1272  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
1273
1274  /**
1275   * @brief Prepares a CPU to start multitasking in terms of SMP.
1276   *
1277   * This function is invoked on all processors requested by the application
1278   * during system initialization.
1279   *
1280   * This function will be called after all processors requested by the
1281   * application have been started right before the context switch to the first
1282   * thread takes place.
1283   */
1284  void _CPU_SMP_Prepare_start_multitasking( void );
1285
1286  /**
1287   * @brief Returns the index of the current processor.
1288   *
1289   * An architecture specific method must be used to obtain the index of the
1290   * current processor in the system.  The set of processor indices is the
1291   * range of integers starting with zero up to the processor count minus one.
1292   */
1293  static inline uint32_t _CPU_SMP_Get_current_processor( void )
1294  {
1295    return 123;
1296  }
1297
1298  /**
1299   * @brief Sends an inter-processor interrupt to the specified target
1300   * processor.
1301   *
1302   * This operation is undefined for target processor indices out of range.
1303   *
1304   * @param[in] target_processor_index The target processor index.
1305   */
1306  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
1307
1308  /**
1309   * @brief Broadcasts a processor event.
1310   *
1311   * Some architectures provide a low-level synchronization primitive for
1312   * processors in a multi-processor environment.  Processors waiting for this
1313   * event may go into a low-power state and stop generating system bus
1314   * transactions.  This function must ensure that preceding store operations
1315   * can be observed by other processors.
1316   *
1317   * @see _CPU_SMP_Processor_event_receive().
1318   */
1319  static inline void _CPU_SMP_Processor_event_broadcast( void )
1320  {
1321    __asm__ volatile ( "" : : : "memory" );
1322  }
1323
1324  /**
1325   * @brief Receives a processor event.
1326   *
1327   * This function will wait for the processor event and may wait forever if no
1328   * such event arrives.
1329   *
1330   * @see _CPU_SMP_Processor_event_broadcast().
1331   */
1332  static inline void _CPU_SMP_Processor_event_receive( void )
1333  {
1334    __asm__ volatile ( "" : : : "memory" );
1335  }
1336
1337  /**
1338   * @brief Gets the is executing indicator of the thread context.
1339   *
1340   * @param[in] context The context.
1341   */
1342  static inline bool _CPU_Context_Get_is_executing(
1343    const Context_Control *context
1344  )
1345  {
1346    return context->is_executing;
1347  }
1348
1349  /**
1350   * @brief Sets the is executing indicator of the thread context.
1351   *
1352   * @param[in] context The context.
1353   * @param[in] is_executing The new value for the is executing indicator.
1354   */
1355  static inline void _CPU_Context_Set_is_executing(
1356    Context_Control *context,
1357    bool is_executing
1358  )
1359  {
1360    context->is_executing = is_executing;
1361  }
1362
1363/** Type that can store a 32-bit integer or a pointer. */
1364typedef uintptr_t CPU_Uint32ptr;
1365
1366#endif
1367
1368#ifdef __cplusplus
1369}
1370#endif
1371
1372#endif
Note: See TracBrowser for help on using the repository browser.