1 | /** |
---|
2 | * @file rtems/score/cpu.h |
---|
3 | */ |
---|
4 | |
---|
5 | /* |
---|
6 | * This include file contains information pertaining to the Moxie |
---|
7 | * processor. |
---|
8 | * |
---|
9 | * Copyright (c) 2013 Anthony Green |
---|
10 | * |
---|
11 | * Based on code with the following copyright.. |
---|
12 | * COPYRIGHT (c) 1989-2006, 2010. |
---|
13 | * On-Line Applications Research Corporation (OAR). |
---|
14 | * |
---|
15 | * The license and distribution terms for this file may be |
---|
16 | * found in the file LICENSE in this distribution or at |
---|
17 | * http://www.rtems.org/license/LICENSE. |
---|
18 | */ |
---|
19 | |
---|
20 | #ifndef _RTEMS_SCORE_CPU_H |
---|
21 | #define _RTEMS_SCORE_CPU_H |
---|
22 | |
---|
23 | #ifdef __cplusplus |
---|
24 | extern "C" { |
---|
25 | #endif |
---|
26 | |
---|
27 | #include <rtems/score/basedefs.h> |
---|
28 | #include <rtems/score/moxie.h> /* pick up machine definitions */ |
---|
29 | |
---|
30 | #include <rtems/bspIo.h> /* printk */ |
---|
31 | |
---|
32 | /* conditional compilation parameters */ |
---|
33 | |
---|
34 | /* |
---|
35 | * Should this target use 16 or 32 bit object Ids? |
---|
36 | * |
---|
37 | */ |
---|
38 | #define RTEMS_USE_32_BIT_OBJECT |
---|
39 | |
---|
40 | /* |
---|
41 | * Does RTEMS manage a dedicated interrupt stack in software? |
---|
42 | * |
---|
43 | * If TRUE, then a stack is allocated in _ISR_Handler_initialization. |
---|
44 | * If FALSE, nothing is done. |
---|
45 | * |
---|
46 | * If the CPU supports a dedicated interrupt stack in hardware, |
---|
47 | * then it is generally the responsibility of the BSP to allocate it |
---|
48 | * and set it up. |
---|
49 | * |
---|
50 | * If the CPU does not support a dedicated interrupt stack, then |
---|
51 | * the porter has two options: (1) execute interrupts on the |
---|
52 | * stack of the interrupted task, and (2) have RTEMS manage a dedicated |
---|
53 | * interrupt stack. |
---|
54 | * |
---|
55 | * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. |
---|
56 | * |
---|
57 | * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and |
---|
58 | * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is |
---|
59 | * possible that both are FALSE for a particular CPU. Although it |
---|
60 | * is unclear what that would imply about the interrupt processing |
---|
61 | * procedure on that CPU. |
---|
62 | * |
---|
63 | * MOXIE Specific Information: |
---|
64 | * |
---|
65 | * XXX |
---|
66 | */ |
---|
67 | #define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE |
---|
68 | |
---|
69 | /* |
---|
70 | * Does the CPU follow the simple vectored interrupt model? |
---|
71 | * |
---|
72 | * If TRUE, then RTEMS allocates the vector table it internally manages. |
---|
73 | * If FALSE, then the BSP is assumed to allocate and manage the vector |
---|
74 | * table |
---|
75 | * |
---|
76 | * MOXIE Specific Information: |
---|
77 | * |
---|
78 | * XXX document implementation including references if appropriate |
---|
79 | */ |
---|
80 | #define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE |
---|
81 | |
---|
82 | /* |
---|
83 | * Does this CPU have hardware support for a dedicated interrupt stack? |
---|
84 | * |
---|
85 | * If TRUE, then it must be installed during initialization. |
---|
86 | * If FALSE, then no installation is performed. |
---|
87 | * |
---|
88 | * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. |
---|
89 | * |
---|
90 | * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and |
---|
91 | * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is |
---|
92 | * possible that both are FALSE for a particular CPU. Although it |
---|
93 | * is unclear what that would imply about the interrupt processing |
---|
94 | * procedure on that CPU. |
---|
95 | * |
---|
96 | * MOXIE Specific Information: |
---|
97 | * |
---|
98 | * XXX |
---|
99 | */ |
---|
100 | #define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE |
---|
101 | |
---|
102 | /* |
---|
103 | * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager? |
---|
104 | * |
---|
105 | * If TRUE, then the memory is allocated during initialization. |
---|
106 | * If FALSE, then the memory is allocated during initialization. |
---|
107 | * |
---|
108 | * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE. |
---|
109 | * |
---|
110 | * MOXIE Specific Information: |
---|
111 | * |
---|
112 | * XXX |
---|
113 | */ |
---|
114 | #define CPU_ALLOCATE_INTERRUPT_STACK TRUE |
---|
115 | |
---|
116 | /* |
---|
117 | * Does the CPU have hardware floating point? |
---|
118 | * |
---|
119 | * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported. |
---|
120 | * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored. |
---|
121 | * |
---|
122 | * If there is a FP coprocessor such as the i387 or mc68881, then |
---|
123 | * the answer is TRUE. |
---|
124 | * |
---|
125 | * The macro name "MOXIE_HAS_FPU" should be made CPU specific. |
---|
126 | * It indicates whether or not this CPU model has FP support. For |
---|
127 | * example, it would be possible to have an i386_nofp CPU model |
---|
128 | * which set this to false to indicate that you have an i386 without |
---|
129 | * an i387 and wish to leave floating point support out of RTEMS. |
---|
130 | * |
---|
131 | * MOXIE Specific Information: |
---|
132 | * |
---|
133 | * XXX |
---|
134 | */ |
---|
135 | #define CPU_HARDWARE_FP FALSE |
---|
136 | |
---|
137 | /* |
---|
138 | * Are all tasks RTEMS_FLOATING_POINT tasks implicitly? |
---|
139 | * |
---|
140 | * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed. |
---|
141 | * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed. |
---|
142 | * |
---|
143 | * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well. |
---|
144 | * |
---|
145 | * MOXIE Specific Information: |
---|
146 | * |
---|
147 | * XXX |
---|
148 | */ |
---|
149 | #define CPU_ALL_TASKS_ARE_FP FALSE |
---|
150 | |
---|
151 | /* |
---|
152 | * Should the IDLE task have a floating point context? |
---|
153 | * |
---|
154 | * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task |
---|
155 | * and it has a floating point context which is switched in and out. |
---|
156 | * If FALSE, then the IDLE task does not have a floating point context. |
---|
157 | * |
---|
158 | * Setting this to TRUE negatively impacts the time required to preempt |
---|
159 | * the IDLE task from an interrupt because the floating point context |
---|
160 | * must be saved as part of the preemption. |
---|
161 | * |
---|
162 | * MOXIE Specific Information: |
---|
163 | * |
---|
164 | * XXX |
---|
165 | */ |
---|
166 | #define CPU_IDLE_TASK_IS_FP FALSE |
---|
167 | |
---|
168 | /* |
---|
169 | * Should the saving of the floating point registers be deferred |
---|
170 | * until a context switch is made to another different floating point |
---|
171 | * task? |
---|
172 | * |
---|
173 | * If TRUE, then the floating point context will not be stored until |
---|
174 | * necessary. It will remain in the floating point registers and not |
---|
175 | * disturned until another floating point task is switched to. |
---|
176 | * |
---|
177 | * If FALSE, then the floating point context is saved when a floating |
---|
178 | * point task is switched out and restored when the next floating point |
---|
179 | * task is restored. The state of the floating point registers between |
---|
180 | * those two operations is not specified. |
---|
181 | * |
---|
182 | * If the floating point context does NOT have to be saved as part of |
---|
183 | * interrupt dispatching, then it should be safe to set this to TRUE. |
---|
184 | * |
---|
185 | * Setting this flag to TRUE results in using a different algorithm |
---|
186 | * for deciding when to save and restore the floating point context. |
---|
187 | * The deferred FP switch algorithm minimizes the number of times |
---|
188 | * the FP context is saved and restored. The FP context is not saved |
---|
189 | * until a context switch is made to another, different FP task. |
---|
190 | * Thus in a system with only one FP task, the FP context will never |
---|
191 | * be saved or restored. |
---|
192 | * |
---|
193 | * MOXIE Specific Information: |
---|
194 | * |
---|
195 | * XXX |
---|
196 | */ |
---|
197 | #define CPU_USE_DEFERRED_FP_SWITCH TRUE |
---|
198 | |
---|
199 | #define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE |
---|
200 | |
---|
201 | /* |
---|
202 | * Does this port provide a CPU dependent IDLE task implementation? |
---|
203 | * |
---|
204 | * If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body |
---|
205 | * must be provided and is the default IDLE thread body instead of |
---|
206 | * _Internal_threads_Idle_thread_body. |
---|
207 | * |
---|
208 | * If FALSE, then use the generic IDLE thread body if the BSP does |
---|
209 | * not provide one. |
---|
210 | * |
---|
211 | * This is intended to allow for supporting processors which have |
---|
212 | * a low power or idle mode. When the IDLE thread is executed, then |
---|
213 | * the CPU can be powered down. |
---|
214 | * |
---|
215 | * The order of precedence for selecting the IDLE thread body is: |
---|
216 | * |
---|
217 | * 1. BSP provided |
---|
218 | * 2. CPU dependent (if provided) |
---|
219 | * 3. generic (if no BSP and no CPU dependent) |
---|
220 | * |
---|
221 | * MOXIE Specific Information: |
---|
222 | * |
---|
223 | * XXX |
---|
224 | * The port initially called a BSP dependent routine called |
---|
225 | * IDLE_Monitor. The idle task body can be overridden by |
---|
226 | * the BSP in newer versions of RTEMS. |
---|
227 | */ |
---|
228 | #define CPU_PROVIDES_IDLE_THREAD_BODY FALSE |
---|
229 | |
---|
230 | /* |
---|
231 | * Does the stack grow up (toward higher addresses) or down |
---|
232 | * (toward lower addresses)? |
---|
233 | * |
---|
234 | * If TRUE, then the grows upward. |
---|
235 | * If FALSE, then the grows toward smaller addresses. |
---|
236 | * |
---|
237 | * MOXIE Specific Information: |
---|
238 | * |
---|
239 | * XXX |
---|
240 | */ |
---|
241 | #define CPU_STACK_GROWS_UP FALSE |
---|
242 | |
---|
243 | /* FIXME: Is this the right value? */ |
---|
244 | #define CPU_CACHE_LINE_BYTES 32 |
---|
245 | |
---|
246 | #define CPU_STRUCTURE_ALIGNMENT |
---|
247 | |
---|
248 | /* |
---|
249 | * The following defines the number of bits actually used in the |
---|
250 | * interrupt field of the task mode. How those bits map to the |
---|
251 | * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level(). |
---|
252 | * |
---|
253 | * MOXIE Specific Information: |
---|
254 | * |
---|
255 | * XXX |
---|
256 | */ |
---|
257 | #define CPU_MODES_INTERRUPT_MASK 0x00000001 |
---|
258 | |
---|
259 | #define CPU_MAXIMUM_PROCESSORS 32 |
---|
260 | |
---|
261 | /* |
---|
262 | * Processor defined structures required for cpukit/score. |
---|
263 | * |
---|
264 | * MOXIE Specific Information: |
---|
265 | * |
---|
266 | * XXX |
---|
267 | */ |
---|
268 | |
---|
269 | /* may need to put some structures here. */ |
---|
270 | |
---|
271 | /* |
---|
272 | * Contexts |
---|
273 | * |
---|
274 | * Generally there are 2 types of context to save. |
---|
275 | * 1. Interrupt registers to save |
---|
276 | * 2. Task level registers to save |
---|
277 | * |
---|
278 | * This means we have the following 3 context items: |
---|
279 | * 1. task level context stuff:: Context_Control |
---|
280 | * 2. floating point task stuff:: Context_Control_fp |
---|
281 | * 3. special interrupt level context :: Context_Control_interrupt |
---|
282 | * |
---|
283 | * On some processors, it is cost-effective to save only the callee |
---|
284 | * preserved registers during a task context switch. This means |
---|
285 | * that the ISR code needs to save those registers which do not |
---|
286 | * persist across function calls. It is not mandatory to make this |
---|
287 | * distinctions between the caller/callee saves registers for the |
---|
288 | * purpose of minimizing context saved during task switch and on interrupts. |
---|
289 | * If the cost of saving extra registers is minimal, simplicity is the |
---|
290 | * choice. Save the same context on interrupt entry as for tasks in |
---|
291 | * this case. |
---|
292 | * |
---|
293 | * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then |
---|
294 | * care should be used in designing the context area. |
---|
295 | * |
---|
296 | * On some CPUs with hardware floating point support, the Context_Control_fp |
---|
297 | * structure will not be used or it simply consist of an array of a |
---|
298 | * fixed number of bytes. This is done when the floating point context |
---|
299 | * is dumped by a "FP save context" type instruction and the format |
---|
300 | * is not really defined by the CPU. In this case, there is no need |
---|
301 | * to figure out the exact format -- only the size. Of course, although |
---|
302 | * this is enough information for RTEMS, it is probably not enough for |
---|
303 | * a debugger such as gdb. But that is another problem. |
---|
304 | * |
---|
305 | * MOXIE Specific Information: |
---|
306 | * |
---|
307 | * XXX |
---|
308 | */ |
---|
309 | |
---|
310 | #define nogap __attribute__ ((packed)) |
---|
311 | |
---|
312 | typedef struct { |
---|
313 | void *fp nogap; |
---|
314 | void *sp nogap; |
---|
315 | uint32_t r0 nogap; |
---|
316 | uint32_t r1 nogap; |
---|
317 | uint32_t r2 nogap; |
---|
318 | uint32_t r3 nogap; |
---|
319 | uint32_t r4 nogap; |
---|
320 | uint32_t r5 nogap; |
---|
321 | uint32_t r6 nogap; |
---|
322 | uint32_t r7 nogap; |
---|
323 | uint32_t r8 nogap; |
---|
324 | uint32_t r9 nogap; |
---|
325 | uint32_t r10 nogap; |
---|
326 | uint32_t r11 nogap; |
---|
327 | uint32_t r12 nogap; |
---|
328 | uint32_t r13 nogap; |
---|
329 | } Context_Control; |
---|
330 | |
---|
331 | #define _CPU_Context_Get_SP( _context ) \ |
---|
332 | (_context)->sp |
---|
333 | |
---|
334 | typedef struct { |
---|
335 | double some_float_register[2]; |
---|
336 | } Context_Control_fp; |
---|
337 | |
---|
338 | typedef struct { |
---|
339 | uint32_t special_interrupt_register; |
---|
340 | } CPU_Interrupt_frame; |
---|
341 | |
---|
342 | /* |
---|
343 | * Nothing prevents the porter from declaring more CPU specific variables. |
---|
344 | * |
---|
345 | * MOXIE Specific Information: |
---|
346 | * |
---|
347 | * XXX |
---|
348 | */ |
---|
349 | |
---|
350 | /* |
---|
351 | * The size of the floating point context area. On some CPUs this |
---|
352 | * will not be a "sizeof" because the format of the floating point |
---|
353 | * area is not defined -- only the size is. This is usually on |
---|
354 | * CPUs with a "floating point save context" instruction. |
---|
355 | * |
---|
356 | * MOXIE Specific Information: |
---|
357 | * |
---|
358 | * XXX |
---|
359 | */ |
---|
360 | #define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) |
---|
361 | |
---|
362 | /* |
---|
363 | * Amount of extra stack (above minimum stack size) required by |
---|
364 | * system initialization thread. Remember that in a multiprocessor |
---|
365 | * system the system intialization thread becomes the MP server thread. |
---|
366 | * |
---|
367 | * MOXIE Specific Information: |
---|
368 | * |
---|
369 | * It is highly unlikely the MOXIE will get used in a multiprocessor system. |
---|
370 | */ |
---|
371 | #define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0 |
---|
372 | |
---|
373 | /* |
---|
374 | * This defines the number of entries in the ISR_Vector_table managed |
---|
375 | * by RTEMS. |
---|
376 | * |
---|
377 | * MOXIE Specific Information: |
---|
378 | * |
---|
379 | * XXX |
---|
380 | */ |
---|
381 | #define CPU_INTERRUPT_NUMBER_OF_VECTORS 64 |
---|
382 | #define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER \ |
---|
383 | (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1) |
---|
384 | |
---|
385 | /* |
---|
386 | * This is defined if the port has a special way to report the ISR nesting |
---|
387 | * level. Most ports maintain the variable _ISR_Nest_level. |
---|
388 | */ |
---|
389 | #define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE |
---|
390 | |
---|
391 | /* |
---|
392 | * Should be large enough to run all RTEMS tests. This ensures |
---|
393 | * that a "reasonable" small application should not have any problems. |
---|
394 | * |
---|
395 | * MOXIE Specific Information: |
---|
396 | * |
---|
397 | * XXX |
---|
398 | */ |
---|
399 | #define CPU_STACK_MINIMUM_SIZE (1536) |
---|
400 | |
---|
401 | /** |
---|
402 | * Size of a pointer. |
---|
403 | * |
---|
404 | * This must be an integer literal that can be used by the assembler. This |
---|
405 | * value will be used to calculate offsets of structure members. These |
---|
406 | * offsets will be used in assembler code. |
---|
407 | */ |
---|
408 | #define CPU_SIZEOF_POINTER 4 |
---|
409 | |
---|
410 | /* |
---|
411 | * CPU's worst alignment requirement for data types on a byte boundary. This |
---|
412 | * alignment does not take into account the requirements for the stack. |
---|
413 | * |
---|
414 | * MOXIE Specific Information: |
---|
415 | * |
---|
416 | * XXX |
---|
417 | */ |
---|
418 | #define CPU_ALIGNMENT 8 |
---|
419 | |
---|
420 | /* |
---|
421 | * This number corresponds to the byte alignment requirement for the |
---|
422 | * heap handler. This alignment requirement may be stricter than that |
---|
423 | * for the data types alignment specified by CPU_ALIGNMENT. It is |
---|
424 | * common for the heap to follow the same alignment requirement as |
---|
425 | * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, |
---|
426 | * then this should be set to CPU_ALIGNMENT. |
---|
427 | * |
---|
428 | * NOTE: This does not have to be a power of 2. It does have to |
---|
429 | * be greater or equal to than CPU_ALIGNMENT. |
---|
430 | * |
---|
431 | * MOXIE Specific Information: |
---|
432 | * |
---|
433 | * XXX |
---|
434 | */ |
---|
435 | #define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT |
---|
436 | |
---|
437 | /* |
---|
438 | * This number corresponds to the byte alignment requirement for memory |
---|
439 | * buffers allocated by the partition manager. This alignment requirement |
---|
440 | * may be stricter than that for the data types alignment specified by |
---|
441 | * CPU_ALIGNMENT. It is common for the partition to follow the same |
---|
442 | * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict |
---|
443 | * enough for the partition, then this should be set to CPU_ALIGNMENT. |
---|
444 | * |
---|
445 | * NOTE: This does not have to be a power of 2. It does have to |
---|
446 | * be greater or equal to than CPU_ALIGNMENT. |
---|
447 | * |
---|
448 | * MOXIE Specific Information: |
---|
449 | * |
---|
450 | * XXX |
---|
451 | */ |
---|
452 | #define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT |
---|
453 | |
---|
454 | /* |
---|
455 | * This number corresponds to the byte alignment requirement for the |
---|
456 | * stack. This alignment requirement may be stricter than that for the |
---|
457 | * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT |
---|
458 | * is strict enough for the stack, then this should be set to 0. |
---|
459 | * |
---|
460 | * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT. |
---|
461 | * |
---|
462 | * MOXIE Specific Information: |
---|
463 | * |
---|
464 | * XXX |
---|
465 | */ |
---|
466 | #define CPU_STACK_ALIGNMENT 0 |
---|
467 | |
---|
468 | #define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES |
---|
469 | |
---|
470 | /* |
---|
471 | * ISR handler macros |
---|
472 | */ |
---|
473 | |
---|
474 | /* |
---|
475 | * Support routine to initialize the RTEMS vector table after it is allocated. |
---|
476 | */ |
---|
477 | #define _CPU_Initialize_vectors() |
---|
478 | |
---|
479 | /* |
---|
480 | * Disable all interrupts for an RTEMS critical section. The previous |
---|
481 | * level is returned in _level. |
---|
482 | * |
---|
483 | * MOXIE Specific Information: |
---|
484 | * |
---|
485 | * TODO: As of 7 October 2014, this method is not implemented. |
---|
486 | */ |
---|
487 | #define _CPU_ISR_Disable( _isr_cookie ) \ |
---|
488 | do { \ |
---|
489 | (_isr_cookie) = 0; \ |
---|
490 | } while (0) |
---|
491 | |
---|
492 | /* |
---|
493 | * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). |
---|
494 | * This indicates the end of an RTEMS critical section. The parameter |
---|
495 | * _level is not modified. |
---|
496 | * |
---|
497 | * MOXIE Specific Information: |
---|
498 | * |
---|
499 | * TODO: As of 7 October 2014, this method is not implemented. |
---|
500 | */ |
---|
501 | #define _CPU_ISR_Enable( _isr_cookie ) \ |
---|
502 | do { \ |
---|
503 | (_isr_cookie) = (_isr_cookie); \ |
---|
504 | } while (0) |
---|
505 | |
---|
506 | /* |
---|
507 | * This temporarily restores the interrupt to _level before immediately |
---|
508 | * disabling them again. This is used to divide long RTEMS critical |
---|
509 | * sections into two or more parts. The parameter _level is not |
---|
510 | * modified. |
---|
511 | * |
---|
512 | * MOXIE Specific Information: |
---|
513 | * |
---|
514 | * TODO: As of 7 October 2014, this method is not implemented. |
---|
515 | */ |
---|
516 | #define _CPU_ISR_Flash( _isr_cookie ) \ |
---|
517 | do { \ |
---|
518 | _CPU_ISR_Enable( _isr_cookie ); \ |
---|
519 | _CPU_ISR_Disable( _isr_cookie ); \ |
---|
520 | } while (0) |
---|
521 | |
---|
522 | RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level ) |
---|
523 | { |
---|
524 | return true; |
---|
525 | } |
---|
526 | |
---|
527 | /* |
---|
528 | * Map interrupt level in task mode onto the hardware that the CPU |
---|
529 | * actually provides. Currently, interrupt levels which do not |
---|
530 | * map onto the CPU in a generic fashion are undefined. Someday, |
---|
531 | * it would be nice if these were "mapped" by the application |
---|
532 | * via a callout. For example, m68k has 8 levels 0 - 7, levels |
---|
533 | * 8 - 255 would be available for bsp/application specific meaning. |
---|
534 | * This could be used to manage a programmable interrupt controller |
---|
535 | * via the rtems_task_mode directive. |
---|
536 | * |
---|
537 | * MOXIE Specific Information: |
---|
538 | * |
---|
539 | * TODO: As of 7 October 2014, this method is not implemented. |
---|
540 | */ |
---|
541 | #define _CPU_ISR_Set_level( _new_level ) \ |
---|
542 | { \ |
---|
543 | if (_new_level) asm volatile ( "nop\n" ); \ |
---|
544 | else asm volatile ( "nop\n" ); \ |
---|
545 | } |
---|
546 | |
---|
547 | uint32_t _CPU_ISR_Get_level( void ); |
---|
548 | |
---|
549 | /* end of ISR handler macros */ |
---|
550 | |
---|
551 | /* Context handler macros */ |
---|
552 | |
---|
553 | /* |
---|
554 | * Initialize the context to a state suitable for starting a |
---|
555 | * task after a context restore operation. Generally, this |
---|
556 | * involves: |
---|
557 | * |
---|
558 | * - setting a starting address |
---|
559 | * - preparing the stack |
---|
560 | * - preparing the stack and frame pointers |
---|
561 | * - setting the proper interrupt level in the context |
---|
562 | * - initializing the floating point context |
---|
563 | * |
---|
564 | * This routine generally does not set any unnecessary register |
---|
565 | * in the context. The state of the "general data" registers is |
---|
566 | * undefined at task start time. |
---|
567 | * |
---|
568 | * NOTE: This is_fp parameter is TRUE if the thread is to be a floating |
---|
569 | * point thread. This is typically only used on CPUs where the |
---|
570 | * FPU may be easily disabled by software such as on the SPARC |
---|
571 | * where the PSR contains an enable FPU bit. |
---|
572 | * |
---|
573 | * MOXIE Specific Information: |
---|
574 | * |
---|
575 | * TODO: As of 7 October 2014, this method does not ensure that the context |
---|
576 | * is set up with interrupts disabled/enabled as requested. |
---|
577 | */ |
---|
578 | #define CPU_CCR_INTERRUPTS_ON 0x80 |
---|
579 | #define CPU_CCR_INTERRUPTS_OFF 0x00 |
---|
580 | |
---|
581 | #define _CPU_Context_Initialize( _the_context, _stack_base, _size, \ |
---|
582 | _isr, _entry_point, _is_fp, _tls_area ) \ |
---|
583 | /* Locate Me */ \ |
---|
584 | do { \ |
---|
585 | uintptr_t _stack; \ |
---|
586 | \ |
---|
587 | (void) _is_fp; /* avoid warning for being unused */ \ |
---|
588 | (void) _isr; /* avoid warning for being unused */ \ |
---|
589 | _stack = ((uintptr_t)(_stack_base)) + (_size) - 8; \ |
---|
590 | *((proc_ptr *)(_stack)) = (_entry_point); \ |
---|
591 | _stack -= 4; \ |
---|
592 | (_the_context)->fp = (void *)_stack; \ |
---|
593 | (_the_context)->sp = (void *)_stack; \ |
---|
594 | } while (0) |
---|
595 | |
---|
596 | |
---|
597 | /* |
---|
598 | * This routine is responsible for somehow restarting the currently |
---|
599 | * executing task. If you are lucky, then all that is necessary |
---|
600 | * is restoring the context. Otherwise, there will need to be |
---|
601 | * a special assembly routine which does something special in this |
---|
602 | * case. Context_Restore should work most of the time. It will |
---|
603 | * not work if restarting self conflicts with the stack frame |
---|
604 | * assumptions of restoring a context. |
---|
605 | * |
---|
606 | * MOXIE Specific Information: |
---|
607 | * |
---|
608 | * XXX |
---|
609 | */ |
---|
610 | #define _CPU_Context_Restart_self( _the_context ) \ |
---|
611 | _CPU_Context_restore( (_the_context) ); |
---|
612 | |
---|
613 | #define _CPU_Context_Initialize_fp( _destination ) \ |
---|
614 | memset( *( _destination ), 0, CPU_CONTEXT_FP_SIZE ); |
---|
615 | |
---|
616 | /* end of Context handler macros */ |
---|
617 | |
---|
618 | /* Fatal Error manager macros */ |
---|
619 | |
---|
620 | /* |
---|
621 | * This routine copies _error into a known place -- typically a stack |
---|
622 | * location or a register, optionally disables interrupts, and |
---|
623 | * halts/stops the CPU. |
---|
624 | * |
---|
625 | * MOXIE Specific Information: |
---|
626 | * |
---|
627 | * XXX |
---|
628 | */ |
---|
629 | #define _CPU_Fatal_halt( _source, _error ) \ |
---|
630 | printk("Fatal Error %d.%lu Halted\n",_source,_error); \ |
---|
631 | for(;;) |
---|
632 | |
---|
633 | /* end of Fatal Error manager macros */ |
---|
634 | |
---|
635 | #define CPU_USE_GENERIC_BITFIELD_CODE TRUE |
---|
636 | |
---|
637 | /* functions */ |
---|
638 | |
---|
639 | /* |
---|
640 | * _CPU_Initialize |
---|
641 | * |
---|
642 | * This routine performs CPU dependent initialization. |
---|
643 | * |
---|
644 | * MOXIE Specific Information: |
---|
645 | * |
---|
646 | * XXX |
---|
647 | */ |
---|
648 | void _CPU_Initialize(void); |
---|
649 | |
---|
650 | /* |
---|
651 | * _CPU_ISR_install_raw_handler |
---|
652 | * |
---|
653 | * This routine installs a "raw" interrupt handler directly into the |
---|
654 | * processor's vector table. |
---|
655 | * |
---|
656 | * MOXIE Specific Information: |
---|
657 | * |
---|
658 | * XXX |
---|
659 | */ |
---|
660 | void _CPU_ISR_install_raw_handler( |
---|
661 | uint32_t vector, |
---|
662 | proc_ptr new_handler, |
---|
663 | proc_ptr *old_handler |
---|
664 | ); |
---|
665 | |
---|
666 | /* |
---|
667 | * _CPU_ISR_install_vector |
---|
668 | * |
---|
669 | * This routine installs an interrupt vector. |
---|
670 | * |
---|
671 | * MOXIE Specific Information: |
---|
672 | * |
---|
673 | * XXX |
---|
674 | */ |
---|
675 | void _CPU_ISR_install_vector( |
---|
676 | uint32_t vector, |
---|
677 | proc_ptr new_handler, |
---|
678 | proc_ptr *old_handler |
---|
679 | ); |
---|
680 | |
---|
681 | /* |
---|
682 | * _CPU_Install_interrupt_stack |
---|
683 | * |
---|
684 | * This routine installs the hardware interrupt stack pointer. |
---|
685 | * |
---|
686 | * NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK |
---|
687 | * is TRUE. |
---|
688 | * |
---|
689 | * MOXIE Specific Information: |
---|
690 | * |
---|
691 | * XXX |
---|
692 | */ |
---|
693 | void _CPU_Install_interrupt_stack( void ); |
---|
694 | |
---|
695 | /* |
---|
696 | * _CPU_Internal_threads_Idle_thread_body |
---|
697 | * |
---|
698 | * This routine is the CPU dependent IDLE thread body. |
---|
699 | * |
---|
700 | * NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY |
---|
701 | * is TRUE. |
---|
702 | * |
---|
703 | * MOXIE Specific Information: |
---|
704 | * |
---|
705 | * XXX |
---|
706 | */ |
---|
707 | void *_CPU_Thread_Idle_body( uint32_t ); |
---|
708 | |
---|
709 | /* |
---|
710 | * _CPU_Context_switch |
---|
711 | * |
---|
712 | * This routine switches from the run context to the heir context. |
---|
713 | * |
---|
714 | * MOXIE Specific Information: |
---|
715 | * |
---|
716 | * XXX |
---|
717 | */ |
---|
718 | void _CPU_Context_switch( |
---|
719 | Context_Control *run, |
---|
720 | Context_Control *heir |
---|
721 | ); |
---|
722 | |
---|
723 | /* |
---|
724 | * _CPU_Context_restore |
---|
725 | * |
---|
726 | * This routine is generallu used only to restart self in an |
---|
727 | * efficient manner. It may simply be a label in _CPU_Context_switch. |
---|
728 | * |
---|
729 | * NOTE: May be unnecessary to reload some registers. |
---|
730 | * |
---|
731 | * MOXIE Specific Information: |
---|
732 | * |
---|
733 | * XXX |
---|
734 | */ |
---|
735 | void _CPU_Context_restore( |
---|
736 | Context_Control *new_context |
---|
737 | ) RTEMS_NO_RETURN; |
---|
738 | |
---|
739 | /* |
---|
740 | * _CPU_Context_save_fp |
---|
741 | * |
---|
742 | * This routine saves the floating point context passed to it. |
---|
743 | * |
---|
744 | * MOXIE Specific Information: |
---|
745 | * |
---|
746 | * XXX |
---|
747 | */ |
---|
748 | void _CPU_Context_save_fp( |
---|
749 | Context_Control_fp **fp_context_ptr |
---|
750 | ); |
---|
751 | |
---|
752 | /* |
---|
753 | * _CPU_Context_restore_fp |
---|
754 | * |
---|
755 | * This routine restores the floating point context passed to it. |
---|
756 | * |
---|
757 | * MOXIE Specific Information: |
---|
758 | * |
---|
759 | * XXX |
---|
760 | */ |
---|
761 | void _CPU_Context_restore_fp( |
---|
762 | Context_Control_fp **fp_context_ptr |
---|
763 | ); |
---|
764 | |
---|
765 | static inline void _CPU_Context_volatile_clobber( uintptr_t pattern ) |
---|
766 | { |
---|
767 | /* TODO */ |
---|
768 | } |
---|
769 | |
---|
770 | static inline void _CPU_Context_validate( uintptr_t pattern ) |
---|
771 | { |
---|
772 | while (1) { |
---|
773 | /* TODO */ |
---|
774 | } |
---|
775 | } |
---|
776 | |
---|
777 | /** |
---|
778 | * @brief The set of registers that specifies the complete processor state. |
---|
779 | * |
---|
780 | * The CPU exception frame may be available in fatal error conditions like for |
---|
781 | * example illegal opcodes, instruction fetch errors, or data access errors. |
---|
782 | * |
---|
783 | * @see rtems_fatal(), RTEMS_FATAL_SOURCE_EXCEPTION, and |
---|
784 | * rtems_exception_frame_print(). |
---|
785 | */ |
---|
786 | typedef struct { |
---|
787 | uint32_t integer_registers [16]; |
---|
788 | } CPU_Exception_frame; |
---|
789 | |
---|
790 | /** |
---|
791 | * @brief Prints the exception frame via printk(). |
---|
792 | * |
---|
793 | * @see rtems_fatal() and RTEMS_FATAL_SOURCE_EXCEPTION. |
---|
794 | */ |
---|
795 | void _CPU_Exception_frame_print( const CPU_Exception_frame *frame ); |
---|
796 | |
---|
797 | /* The following routine swaps the endian format of an unsigned int. |
---|
798 | * It must be static because it is referenced indirectly. |
---|
799 | * |
---|
800 | * This version will work on any processor, but if there is a better |
---|
801 | * way for your CPU PLEASE use it. The most common way to do this is to: |
---|
802 | * |
---|
803 | * swap least significant two bytes with 16-bit rotate |
---|
804 | * swap upper and lower 16-bits |
---|
805 | * swap most significant two bytes with 16-bit rotate |
---|
806 | * |
---|
807 | * Some CPUs have special instructions which swap a 32-bit quantity in |
---|
808 | * a single instruction (e.g. i486). It is probably best to avoid |
---|
809 | * an "endian swapping control bit" in the CPU. One good reason is |
---|
810 | * that interrupts would probably have to be disabled to ensure that |
---|
811 | * an interrupt does not try to access the same "chunk" with the wrong |
---|
812 | * endian. Another good reason is that on some CPUs, the endian bit |
---|
813 | * endianness for ALL fetches -- both code and data -- so the code |
---|
814 | * will be fetched incorrectly. |
---|
815 | * |
---|
816 | * MOXIE Specific Information: |
---|
817 | * |
---|
818 | * This is the generic implementation. |
---|
819 | */ |
---|
820 | static inline uint32_t CPU_swap_u32( |
---|
821 | uint32_t value |
---|
822 | ) |
---|
823 | { |
---|
824 | uint32_t byte1, byte2, byte3, byte4, swapped; |
---|
825 | |
---|
826 | byte4 = (value >> 24) & 0xff; |
---|
827 | byte3 = (value >> 16) & 0xff; |
---|
828 | byte2 = (value >> 8) & 0xff; |
---|
829 | byte1 = value & 0xff; |
---|
830 | |
---|
831 | swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4; |
---|
832 | return( swapped ); |
---|
833 | } |
---|
834 | |
---|
835 | #define CPU_swap_u16( value ) \ |
---|
836 | (((value&0xff) << 8) | ((value >> 8)&0xff)) |
---|
837 | |
---|
838 | typedef uint32_t CPU_Counter_ticks; |
---|
839 | |
---|
840 | uint32_t _CPU_Counter_frequency( void ); |
---|
841 | |
---|
842 | CPU_Counter_ticks _CPU_Counter_read( void ); |
---|
843 | |
---|
844 | static inline CPU_Counter_ticks _CPU_Counter_difference( |
---|
845 | CPU_Counter_ticks second, |
---|
846 | CPU_Counter_ticks first |
---|
847 | ) |
---|
848 | { |
---|
849 | return second - first; |
---|
850 | } |
---|
851 | |
---|
852 | /** Type that can store a 32-bit integer or a pointer. */ |
---|
853 | typedef uintptr_t CPU_Uint32ptr; |
---|
854 | |
---|
855 | #ifdef __cplusplus |
---|
856 | } |
---|
857 | #endif |
---|
858 | |
---|
859 | #endif |
---|