source: rtems/cpukit/score/cpu/moxie/include/rtems/score/cpu.h @ bf39a9e

5
Last change on this file since bf39a9e was bf39a9e, checked in by Sebastian Huber <sebastian.huber@…>, on 12/06/19 at 19:24:37

score: Remove superfluous FP types/defines

Update #3835.

  • Property mode set to 100644
File size: 15.9 KB
Line 
1/**
2 * @file
3 *
4 * @addtogroup RTEMSScoreCPUMoxie
5 */
6
7/*
8 *  This include file contains information pertaining to the Moxie
9 *  processor.
10 *
11 *  Copyright (c) 2013  Anthony Green
12 *
13 *  Based on code with the following copyright..
14 *  COPYRIGHT (c) 1989-2006, 2010.
15 *  On-Line Applications Research Corporation (OAR).
16 *
17 *  The license and distribution terms for this file may be
18 *  found in the file LICENSE in this distribution or at
19 *  http://www.rtems.org/license/LICENSE.
20 */
21
22#ifndef _RTEMS_SCORE_CPU_H
23#define _RTEMS_SCORE_CPU_H
24
25#ifdef __cplusplus
26extern "C" {
27#endif
28
29#include <rtems/score/basedefs.h>
30#include <rtems/score/moxie.h>  /* pick up machine definitions */
31
32#include <rtems/bspIo.h>        /* printk */
33
34/* conditional compilation parameters */
35
36/*
37 *  Should this target use 16 or 32 bit object Ids?
38 *
39 */
40#define RTEMS_USE_32_BIT_OBJECT
41
42/*
43 *  Does the CPU follow the simple vectored interrupt model?
44 *
45 *  If TRUE, then RTEMS allocates the vector table it internally manages.
46 *  If FALSE, then the BSP is assumed to allocate and manage the vector
47 *  table
48 *
49 *  MOXIE Specific Information:
50 *
51 *  XXX document implementation including references if appropriate
52 */
53#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
54
55#define CPU_HARDWARE_FP FALSE
56
57#define CPU_SOFTWARE_FP FALSE
58
59#define CPU_ALL_TASKS_ARE_FP FALSE
60
61#define CPU_IDLE_TASK_IS_FP FALSE
62
63#define CPU_USE_DEFERRED_FP_SWITCH FALSE
64
65#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
66
67/*
68 *  Does the stack grow up (toward higher addresses) or down
69 *  (toward lower addresses)?
70 *
71 *  If TRUE, then the grows upward.
72 *  If FALSE, then the grows toward smaller addresses.
73 *
74 *  MOXIE Specific Information:
75 *
76 *  XXX
77 */
78#define CPU_STACK_GROWS_UP               FALSE
79
80/* FIXME: Is this the right value? */
81#define CPU_CACHE_LINE_BYTES 32
82
83#define CPU_STRUCTURE_ALIGNMENT
84
85/*
86 *  The following defines the number of bits actually used in the
87 *  interrupt field of the task mode.  How those bits map to the
88 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
89 *
90 *  MOXIE Specific Information:
91 *
92 *  XXX
93 */
94#define CPU_MODES_INTERRUPT_MASK   0x00000001
95
96#define CPU_MAXIMUM_PROCESSORS 32
97
98/*
99 *  Processor defined structures required for cpukit/score.
100 *
101 *  MOXIE Specific Information:
102 *
103 *  XXX
104 */
105
106/* may need to put some structures here.  */
107
108/*
109 * Contexts
110 *
111 *  Generally there are 2 types of context to save.
112 *     1. Interrupt registers to save
113 *     2. Task level registers to save
114 *
115 *  This means we have the following 3 context items:
116 *     1. task level context stuff::  Context_Control
117 *     2. floating point task stuff:: Context_Control_fp
118 *     3. special interrupt level context :: Context_Control_interrupt
119 *
120 *  On some processors, it is cost-effective to save only the callee
121 *  preserved registers during a task context switch.  This means
122 *  that the ISR code needs to save those registers which do not
123 *  persist across function calls.  It is not mandatory to make this
124 *  distinctions between the caller/callee saves registers for the
125 *  purpose of minimizing context saved during task switch and on interrupts.
126 *  If the cost of saving extra registers is minimal, simplicity is the
127 *  choice.  Save the same context on interrupt entry as for tasks in
128 *  this case.
129 *
130 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
131 *  care should be used in designing the context area.
132 *
133 *  On some CPUs with hardware floating point support, the Context_Control_fp
134 *  structure will not be used or it simply consist of an array of a
135 *  fixed number of bytes.   This is done when the floating point context
136 *  is dumped by a "FP save context" type instruction and the format
137 *  is not really defined by the CPU.  In this case, there is no need
138 *  to figure out the exact format -- only the size.  Of course, although
139 *  this is enough information for RTEMS, it is probably not enough for
140 *  a debugger such as gdb.  But that is another problem.
141 *
142 *  MOXIE Specific Information:
143 *
144 *  XXX
145 */
146
147#define nogap __attribute__ ((packed))
148
149typedef struct {
150    void        *fp nogap;
151    void        *sp nogap;
152    uint32_t    r0 nogap;
153    uint32_t    r1 nogap;
154    uint32_t    r2 nogap;
155    uint32_t    r3 nogap;
156    uint32_t    r4 nogap;
157    uint32_t    r5 nogap;
158    uint32_t    r6 nogap;
159    uint32_t    r7 nogap;
160    uint32_t    r8 nogap;
161    uint32_t    r9 nogap;
162    uint32_t    r10 nogap;
163    uint32_t    r11 nogap;
164    uint32_t    r12 nogap;
165    uint32_t    r13 nogap;
166} Context_Control;
167
168#define _CPU_Context_Get_SP( _context ) \
169  (_context)->sp
170
171typedef struct {
172    uint32_t   special_interrupt_register;
173} CPU_Interrupt_frame;
174
175/*
176 *  Amount of extra stack (above minimum stack size) required by
177 *  system initialization thread.  Remember that in a multiprocessor
178 *  system the system intialization thread becomes the MP server thread.
179 *
180 *  MOXIE Specific Information:
181 *
182 *  It is highly unlikely the MOXIE will get used in a multiprocessor system.
183 */
184#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
185
186/*
187 *  This defines the number of entries in the ISR_Vector_table managed
188 *  by RTEMS.
189 *
190 *  MOXIE Specific Information:
191 *
192 *  XXX
193 */
194#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
195#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER \
196    (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
197
198/*
199 *  This is defined if the port has a special way to report the ISR nesting
200 *  level.  Most ports maintain the variable _ISR_Nest_level.
201 */
202#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
203
204/*
205 *  Should be large enough to run all RTEMS tests.  This ensures
206 *  that a "reasonable" small application should not have any problems.
207 *
208 *  MOXIE Specific Information:
209 *
210 *  XXX
211 */
212#define CPU_STACK_MINIMUM_SIZE          (1536)
213
214/**
215 * Size of a pointer.
216 *
217 * This must be an integer literal that can be used by the assembler.  This
218 * value will be used to calculate offsets of structure members.  These
219 * offsets will be used in assembler code.
220 */
221#define CPU_SIZEOF_POINTER         4
222
223/*
224 *  CPU's worst alignment requirement for data types on a byte boundary.  This
225 *  alignment does not take into account the requirements for the stack.
226 *
227 *  MOXIE Specific Information:
228 *
229 *  XXX
230 */
231#define CPU_ALIGNMENT              8
232
233/*
234 *  This number corresponds to the byte alignment requirement for the
235 *  heap handler.  This alignment requirement may be stricter than that
236 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
237 *  common for the heap to follow the same alignment requirement as
238 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
239 *  then this should be set to CPU_ALIGNMENT.
240 *
241 *  NOTE:  This does not have to be a power of 2.  It does have to
242 *         be greater or equal to than CPU_ALIGNMENT.
243 *
244 *  MOXIE Specific Information:
245 *
246 *  XXX
247 */
248#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
249
250/*
251 *  This number corresponds to the byte alignment requirement for the
252 *  stack.  This alignment requirement may be stricter than that for the
253 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
254 *  is strict enough for the stack, then this should be set to 0.
255 *
256 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
257 *
258 *  MOXIE Specific Information:
259 *
260 *  XXX
261 */
262#define CPU_STACK_ALIGNMENT        0
263
264#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
265
266/*
267 *  ISR handler macros
268 */
269
270/*
271 *  Support routine to initialize the RTEMS vector table after it is allocated.
272 */
273#define _CPU_Initialize_vectors()
274
275/*
276 *  Disable all interrupts for an RTEMS critical section.  The previous
277 *  level is returned in _level.
278 *
279 *  MOXIE Specific Information:
280 *
281 *  TODO: As of 7 October 2014, this method is not implemented.
282 */
283#define _CPU_ISR_Disable( _isr_cookie ) \
284  do { \
285    (_isr_cookie) = 0; \
286  } while (0)
287
288/*
289 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
290 *  This indicates the end of an RTEMS critical section.  The parameter
291 *  _level is not modified.
292 *
293 *  MOXIE Specific Information:
294 *
295 *  TODO: As of 7 October 2014, this method is not implemented.
296 */
297#define _CPU_ISR_Enable( _isr_cookie ) \
298  do { \
299    (_isr_cookie) = (_isr_cookie); \
300  } while (0)
301
302/*
303 *  This temporarily restores the interrupt to _level before immediately
304 *  disabling them again.  This is used to divide long RTEMS critical
305 *  sections into two or more parts.  The parameter _level is not
306 *  modified.
307 *
308 *  MOXIE Specific Information:
309 *
310 *  TODO: As of 7 October 2014, this method is not implemented.
311 */
312#define _CPU_ISR_Flash( _isr_cookie ) \
313  do { \
314    _CPU_ISR_Enable( _isr_cookie ); \
315    _CPU_ISR_Disable( _isr_cookie ); \
316  } while (0)
317
318RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
319{
320  return true;
321}
322
323/*
324 *  Map interrupt level in task mode onto the hardware that the CPU
325 *  actually provides.  Currently, interrupt levels which do not
326 *  map onto the CPU in a generic fashion are undefined.  Someday,
327 *  it would be nice if these were "mapped" by the application
328 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
329 *  8 - 255 would be available for bsp/application specific meaning.
330 *  This could be used to manage a programmable interrupt controller
331 *  via the rtems_task_mode directive.
332 *
333 *  MOXIE Specific Information:
334 *
335 *  TODO: As of 7 October 2014, this method is not implemented.
336 */
337#define _CPU_ISR_Set_level( _new_level )        \
338  {                                                     \
339    if (_new_level)   asm volatile ( "nop\n" );         \
340    else              asm volatile ( "nop\n" );         \
341  }
342
343uint32_t   _CPU_ISR_Get_level( void );
344
345/* end of ISR handler macros */
346
347/* Context handler macros */
348
349/*
350 *  Initialize the context to a state suitable for starting a
351 *  task after a context restore operation.  Generally, this
352 *  involves:
353 *
354 *     - setting a starting address
355 *     - preparing the stack
356 *     - preparing the stack and frame pointers
357 *     - setting the proper interrupt level in the context
358 *     - initializing the floating point context
359 *
360 *  This routine generally does not set any unnecessary register
361 *  in the context.  The state of the "general data" registers is
362 *  undefined at task start time.
363 *
364 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
365 *        point thread.  This is typically only used on CPUs where the
366 *        FPU may be easily disabled by software such as on the SPARC
367 *        where the PSR contains an enable FPU bit.
368 *
369 *  MOXIE Specific Information:
370 *
371 *  TODO: As of 7 October 2014, this method does not ensure that the context
372 *  is set up with interrupts disabled/enabled as requested.
373 */
374#define CPU_CCR_INTERRUPTS_ON  0x80
375#define CPU_CCR_INTERRUPTS_OFF 0x00
376
377#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
378                                 _isr, _entry_point, _is_fp, _tls_area ) \
379  /* Locate Me */                                                  \
380  do {                                                             \
381    uintptr_t   _stack;                                            \
382                                                                   \
383    (void) _is_fp; /* avoid warning for being unused */            \
384    (void) _isr;   /* avoid warning for being unused */            \
385    _stack = ((uintptr_t)(_stack_base)) + (_size) - 8;             \
386    *((void (**)(void))(_stack)) = (_entry_point);                 \
387    _stack -= 4;                                                   \
388    (_the_context)->fp = (void *)_stack;                           \
389    (_the_context)->sp = (void *)_stack;                           \
390  } while (0)
391
392
393/*
394 *  This routine is responsible for somehow restarting the currently
395 *  executing task.  If you are lucky, then all that is necessary
396 *  is restoring the context.  Otherwise, there will need to be
397 *  a special assembly routine which does something special in this
398 *  case.  Context_Restore should work most of the time.  It will
399 *  not work if restarting self conflicts with the stack frame
400 *  assumptions of restoring a context.
401 *
402 *  MOXIE Specific Information:
403 *
404 *  XXX
405 */
406#define _CPU_Context_Restart_self( _the_context ) \
407   _CPU_Context_restore( (_the_context) );
408
409/* end of Context handler macros */
410
411/* Fatal Error manager macros */
412
413/*
414 *  This routine copies _error into a known place -- typically a stack
415 *  location or a register, optionally disables interrupts, and
416 *  halts/stops the CPU.
417 *
418 *  MOXIE Specific Information:
419 *
420 *  XXX
421 */
422#define _CPU_Fatal_halt( _source, _error ) \
423        printk("Fatal Error %d.%lu Halted\n",_source,_error); \
424        for(;;)
425
426/* end of Fatal Error manager macros */
427
428#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
429
430/* functions */
431
432/*
433 *  _CPU_Initialize
434 *
435 *  This routine performs CPU dependent initialization.
436 *
437 *  MOXIE Specific Information:
438 *
439 *  XXX
440 */
441void _CPU_Initialize(void);
442
443typedef void ( *CPU_ISR_handler )( uint32_t );
444
445void _CPU_ISR_install_vector(
446  uint32_t         vector,
447  CPU_ISR_handler  new_handler,
448  CPU_ISR_handler *old_handler
449);
450
451void *_CPU_Thread_Idle_body( uintptr_t );
452
453/*
454 *  _CPU_Context_switch
455 *
456 *  This routine switches from the run context to the heir context.
457 *
458 *  MOXIE Specific Information:
459 *
460 *  XXX
461 */
462void _CPU_Context_switch(
463  Context_Control  *run,
464  Context_Control  *heir
465);
466
467/*
468 *  _CPU_Context_restore
469 *
470 *  This routine is generallu used only to restart self in an
471 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
472 *
473 *  NOTE: May be unnecessary to reload some registers.
474 *
475 *  MOXIE Specific Information:
476 *
477 *  XXX
478 */
479void _CPU_Context_restore(
480  Context_Control *new_context
481) RTEMS_NO_RETURN;
482
483/**
484 * @brief The set of registers that specifies the complete processor state.
485 *
486 * The CPU exception frame may be available in fatal error conditions like for
487 * example illegal opcodes, instruction fetch errors, or data access errors.
488 *
489 * @see rtems_fatal(), RTEMS_FATAL_SOURCE_EXCEPTION, and
490 * rtems_exception_frame_print().
491 */
492typedef struct {
493  uint32_t integer_registers [16];
494} CPU_Exception_frame;
495
496/**
497 * @brief Prints the exception frame via printk().
498 *
499 * @see rtems_fatal() and RTEMS_FATAL_SOURCE_EXCEPTION.
500 */
501void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
502
503/*  The following routine swaps the endian format of an unsigned int.
504 *  It must be static because it is referenced indirectly.
505 *
506 *  This version will work on any processor, but if there is a better
507 *  way for your CPU PLEASE use it.  The most common way to do this is to:
508 *
509 *     swap least significant two bytes with 16-bit rotate
510 *     swap upper and lower 16-bits
511 *     swap most significant two bytes with 16-bit rotate
512 *
513 *  Some CPUs have special instructions which swap a 32-bit quantity in
514 *  a single instruction (e.g. i486).  It is probably best to avoid
515 *  an "endian swapping control bit" in the CPU.  One good reason is
516 *  that interrupts would probably have to be disabled to ensure that
517 *  an interrupt does not try to access the same "chunk" with the wrong
518 *  endian.  Another good reason is that on some CPUs, the endian bit
519 *  endianness for ALL fetches -- both code and data -- so the code
520 *  will be fetched incorrectly.
521 *
522 *  MOXIE Specific Information:
523 *
524 *  This is the generic implementation.
525 */
526static inline uint32_t   CPU_swap_u32(
527  uint32_t   value
528)
529{
530  uint32_t   byte1, byte2, byte3, byte4, swapped;
531
532  byte4 = (value >> 24) & 0xff;
533  byte3 = (value >> 16) & 0xff;
534  byte2 = (value >> 8)  & 0xff;
535  byte1 =  value        & 0xff;
536
537  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
538  return( swapped );
539}
540
541#define CPU_swap_u16( value ) \
542  (((value&0xff) << 8) | ((value >> 8)&0xff))
543
544typedef uint32_t CPU_Counter_ticks;
545
546uint32_t _CPU_Counter_frequency( void );
547
548CPU_Counter_ticks _CPU_Counter_read( void );
549
550static inline CPU_Counter_ticks _CPU_Counter_difference(
551  CPU_Counter_ticks second,
552  CPU_Counter_ticks first
553)
554{
555  return second - first;
556}
557
558/** Type that can store a 32-bit integer or a pointer. */
559typedef uintptr_t CPU_Uint32ptr;
560
561#ifdef __cplusplus
562}
563#endif
564
565#endif
Note: See TracBrowser for help on using the repository browser.