source: rtems/cpukit/score/cpu/mips/rtems/score/cpu.h @ c346f33d

4.104.114.84.95
Last change on this file since c346f33d was c346f33d, checked in by Ralf Corsepius <ralf.corsepius@…>, on 03/30/04 at 11:49:14

2004-03-30 Ralf Corsepius <ralf_corsepius@…>

  • cpu.c, rtems/score/cpu.h: Convert to using c99 fixed size types.
  • Property mode set to 100644
File size: 42.4 KB
Line 
1/*
2 *  Mips CPU Dependent Header File
3 *
4 *  Conversion to MIPS port by Alan Cudmore <alanc@linuxstart.com> and
5 *           Joel Sherrill <joel@OARcorp.com>.
6 *
7 *    These changes made the code conditional on standard cpp predefines,
8 *    merged the mips1 and mips3 code sequences as much as possible,
9 *    and moved some of the assembly code to C.  Alan did much of the
10 *    initial analysis and rework.  Joel took over from there and
11 *    wrote the JMR3904 BSP so this could be tested.  Joel also
12 *    added the new interrupt vectoring support in libcpu and
13 *    tried to better support the various interrupt controllers.
14 *
15 *  Original MIP64ORION port by Craig Lebakken <craigl@transition.com>
16 *           COPYRIGHT (c) 1996 by Transition Networks Inc.
17 *
18 *    To anyone who acknowledges that this file is provided "AS IS"
19 *    without any express or implied warranty:
20 *      permission to use, copy, modify, and distribute this file
21 *      for any purpose is hereby granted without fee, provided that
22 *      the above copyright notice and this notice appears in all
23 *      copies, and that the name of Transition Networks not be used in
24 *      advertising or publicity pertaining to distribution of the
25 *      software without specific, written prior permission.
26 *      Transition Networks makes no representations about the suitability
27 *      of this software for any purpose.
28 *
29 *  COPYRIGHT (c) 1989-2001.
30 *  On-Line Applications Research Corporation (OAR).
31 *
32 *  The license and distribution terms for this file may be
33 *  found in the file LICENSE in this distribution or at
34 *  http://www.rtems.com/license/LICENSE.
35 *
36 *  $Id$
37 */
38
39#ifndef __CPU_h
40#define __CPU_h
41
42#ifdef __cplusplus
43extern "C" {
44#endif
45
46#include <rtems/score/mips.h>       /* pick up machine definitions */
47#ifndef ASM
48#include <rtems/score/types.h>
49#endif
50
51/* conditional compilation parameters */
52
53/*
54 *  Should the calls to _Thread_Enable_dispatch be inlined?
55 *
56 *  If TRUE, then they are inlined.
57 *  If FALSE, then a subroutine call is made.
58 *
59 *  Basically this is an example of the classic trade-off of size
60 *  versus speed.  Inlining the call (TRUE) typically increases the
61 *  size of RTEMS while speeding up the enabling of dispatching.
62 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
63 *  only be 0 or 1 unless you are in an interrupt handler and that
64 *  interrupt handler invokes the executive.]  When not inlined
65 *  something calls _Thread_Enable_dispatch which in turns calls
66 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
67 *  one subroutine call is avoided entirely.]
68 */
69
70#define CPU_INLINE_ENABLE_DISPATCH       FALSE
71
72/*
73 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
74 *  be unrolled one time?  In unrolled each iteration of the loop examines
75 *  two "nodes" on the chain being searched.  Otherwise, only one node
76 *  is examined per iteration.
77 *
78 *  If TRUE, then the loops are unrolled.
79 *  If FALSE, then the loops are not unrolled.
80 *
81 *  The primary factor in making this decision is the cost of disabling
82 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
83 *  body of the loop.  On some CPUs, the flash is more expensive than
84 *  one iteration of the loop body.  In this case, it might be desirable
85 *  to unroll the loop.  It is important to note that on some CPUs, this
86 *  code is the longest interrupt disable period in RTEMS.  So it is
87 *  necessary to strike a balance when setting this parameter.
88 */
89
90#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
91
92/*
93 *  Does RTEMS manage a dedicated interrupt stack in software?
94 *
95 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
96 *  If FALSE, nothing is done.
97 *
98 *  If the CPU supports a dedicated interrupt stack in hardware,
99 *  then it is generally the responsibility of the BSP to allocate it
100 *  and set it up.
101 *
102 *  If the CPU does not support a dedicated interrupt stack, then
103 *  the porter has two options: (1) execute interrupts on the
104 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
105 *  interrupt stack.
106 *
107 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
108 *
109 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
110 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
111 *  possible that both are FALSE for a particular CPU.  Although it
112 *  is unclear what that would imply about the interrupt processing
113 *  procedure on that CPU.
114 */
115
116#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
117
118/*
119 *  Does this CPU have hardware support for a dedicated interrupt stack?
120 *
121 *  If TRUE, then it must be installed during initialization.
122 *  If FALSE, then no installation is performed.
123 *
124 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
125 *
126 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
127 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
128 *  possible that both are FALSE for a particular CPU.  Although it
129 *  is unclear what that would imply about the interrupt processing
130 *  procedure on that CPU.
131 */
132
133#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
134
135/*
136 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
137 *
138 *  If TRUE, then the memory is allocated during initialization.
139 *  If FALSE, then the memory is allocated during initialization.
140 *
141 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
142 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
143 */
144
145#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
146
147/*
148 *  Does the RTEMS invoke the user's ISR with the vector number and
149 *  a pointer to the saved interrupt frame (1) or just the vector
150 *  number (0)?
151 *
152 */
153
154#define CPU_ISR_PASSES_FRAME_POINTER 1
155
156
157
158/*
159 *  Does the CPU have hardware floating point?
160 *
161 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
162 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
163 *
164 *  If there is a FP coprocessor such as the i387 or mc68881, then
165 *  the answer is TRUE.
166 *
167 *  The macro name "MIPS_HAS_FPU" should be made CPU specific.
168 *  It indicates whether or not this CPU model has FP support.  For
169 *  example, it would be possible to have an i386_nofp CPU model
170 *  which set this to false to indicate that you have an i386 without
171 *  an i387 and wish to leave floating point support out of RTEMS.
172 */
173
174#if ( MIPS_HAS_FPU == 1 )
175#define CPU_HARDWARE_FP     TRUE
176#else
177#define CPU_HARDWARE_FP     FALSE
178#endif
179
180/*
181 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
182 *
183 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
184 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
185 *
186 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
187 */
188
189#define CPU_ALL_TASKS_ARE_FP    FALSE
190
191/*
192 *  Should the IDLE task have a floating point context?
193 *
194 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
195 *  and it has a floating point context which is switched in and out.
196 *  If FALSE, then the IDLE task does not have a floating point context.
197 *
198 *  Setting this to TRUE negatively impacts the time required to preempt
199 *  the IDLE task from an interrupt because the floating point context
200 *  must be saved as part of the preemption.
201 */
202
203#define CPU_IDLE_TASK_IS_FP      FALSE
204
205/*
206 *  Should the saving of the floating point registers be deferred
207 *  until a context switch is made to another different floating point
208 *  task?
209 *
210 *  If TRUE, then the floating point context will not be stored until
211 *  necessary.  It will remain in the floating point registers and not
212 *  disturned until another floating point task is switched to.
213 *
214 *  If FALSE, then the floating point context is saved when a floating
215 *  point task is switched out and restored when the next floating point
216 *  task is restored.  The state of the floating point registers between
217 *  those two operations is not specified.
218 *
219 *  If the floating point context does NOT have to be saved as part of
220 *  interrupt dispatching, then it should be safe to set this to TRUE.
221 *
222 *  Setting this flag to TRUE results in using a different algorithm
223 *  for deciding when to save and restore the floating point context.
224 *  The deferred FP switch algorithm minimizes the number of times
225 *  the FP context is saved and restored.  The FP context is not saved
226 *  until a context switch is made to another, different FP task.
227 *  Thus in a system with only one FP task, the FP context will never
228 *  be saved or restored.
229 */
230
231#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
232
233/*
234 *  Does this port provide a CPU dependent IDLE task implementation?
235 *
236 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
237 *  must be provided and is the default IDLE thread body instead of
238 *  _Internal_threads_Idle_thread_body.
239 *
240 *  If FALSE, then use the generic IDLE thread body if the BSP does
241 *  not provide one.
242 *
243 *  This is intended to allow for supporting processors which have
244 *  a low power or idle mode.  When the IDLE thread is executed, then
245 *  the CPU can be powered down.
246 *
247 *  The order of precedence for selecting the IDLE thread body is:
248 *
249 *    1.  BSP provided
250 *    2.  CPU dependent (if provided)
251 *    3.  generic (if no BSP and no CPU dependent)
252 */
253
254/* we can use the low power wait instruction for the IDLE thread */
255#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
256
257/*
258 *  Does the stack grow up (toward higher addresses) or down
259 *  (toward lower addresses)?
260 *
261 *  If TRUE, then the grows upward.
262 *  If FALSE, then the grows toward smaller addresses.
263 */
264
265/* our stack grows down */
266#define CPU_STACK_GROWS_UP               FALSE
267
268/*
269 *  The following is the variable attribute used to force alignment
270 *  of critical RTEMS structures.  On some processors it may make
271 *  sense to have these aligned on tighter boundaries than
272 *  the minimum requirements of the compiler in order to have as
273 *  much of the critical data area as possible in a cache line.
274 *
275 *  The placement of this macro in the declaration of the variables
276 *  is based on the syntactically requirements of the GNU C
277 *  "__attribute__" extension.  For example with GNU C, use
278 *  the following to force a structures to a 32 byte boundary.
279 *
280 *      __attribute__ ((aligned (32)))
281 *
282 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
283 *         To benefit from using this, the data must be heavily
284 *         used so it will stay in the cache and used frequently enough
285 *         in the executive to justify turning this on.
286 */
287
288/* our cache line size is 16 bytes */
289#if __GNUC__
290#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
291#else
292#define CPU_STRUCTURE_ALIGNMENT
293#endif
294
295/*
296 *  Define what is required to specify how the network to host conversion
297 *  routines are handled.
298 */
299
300#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
301#define CPU_BIG_ENDIAN                           TRUE
302#define CPU_LITTLE_ENDIAN                        FALSE
303
304/*
305 *  The following defines the number of bits actually used in the
306 *  interrupt field of the task mode.  How those bits map to the
307 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
308 */
309
310#define CPU_MODES_INTERRUPT_MASK   0x000000ff
311
312/*
313 *  Processor defined structures
314 *
315 *  Examples structures include the descriptor tables from the i386
316 *  and the processor control structure on the i960ca.
317 */
318
319/* may need to put some structures here.  */
320
321/*
322 * Contexts
323 *
324 *  Generally there are 2 types of context to save.
325 *     1. Interrupt registers to save
326 *     2. Task level registers to save
327 *
328 *  This means we have the following 3 context items:
329 *     1. task level context stuff::  Context_Control
330 *     2. floating point task stuff:: Context_Control_fp
331 *     3. special interrupt level context :: Context_Control_interrupt
332 *
333 *  On some processors, it is cost-effective to save only the callee
334 *  preserved registers during a task context switch.  This means
335 *  that the ISR code needs to save those registers which do not
336 *  persist across function calls.  It is not mandatory to make this
337 *  distinctions between the caller/callee saves registers for the
338 *  purpose of minimizing context saved during task switch and on interrupts.
339 *  If the cost of saving extra registers is minimal, simplicity is the
340 *  choice.  Save the same context on interrupt entry as for tasks in
341 *  this case.
342 *
343 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
344 *  care should be used in designing the context area.
345 *
346 *  On some CPUs with hardware floating point support, the Context_Control_fp
347 *  structure will not be used or it simply consist of an array of a
348 *  fixed number of bytes.   This is done when the floating point context
349 *  is dumped by a "FP save context" type instruction and the format
350 *  is not really defined by the CPU.  In this case, there is no need
351 *  to figure out the exact format -- only the size.  Of course, although
352 *  this is enough information for RTEMS, it is probably not enough for
353 *  a debugger such as gdb.  But that is another problem.
354 */
355
356#ifndef ASSEMBLY_ONLY
357
358/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
359#if __mips == 1
360#define __MIPS_REGISTER_TYPE     uint32_t 
361#define __MIPS_FPU_REGISTER_TYPE uint32_t 
362#elif __mips == 3
363#define __MIPS_REGISTER_TYPE     uint64_t 
364#define __MIPS_FPU_REGISTER_TYPE uint64_t 
365#else
366#error "mips register size: unknown architecture level!!"
367#endif
368typedef struct {
369    __MIPS_REGISTER_TYPE s0;
370    __MIPS_REGISTER_TYPE s1;
371    __MIPS_REGISTER_TYPE s2;
372    __MIPS_REGISTER_TYPE s3;
373    __MIPS_REGISTER_TYPE s4;
374    __MIPS_REGISTER_TYPE s5;
375    __MIPS_REGISTER_TYPE s6;
376    __MIPS_REGISTER_TYPE s7;
377    __MIPS_REGISTER_TYPE sp;
378    __MIPS_REGISTER_TYPE fp;
379    __MIPS_REGISTER_TYPE ra;
380    __MIPS_REGISTER_TYPE c0_sr;
381    __MIPS_REGISTER_TYPE c0_epc;
382} Context_Control;
383
384/* WARNING: If this structure is modified, the constants in cpu.h
385 *          must also be updated.
386 */
387
388typedef struct {
389#if ( CPU_HARDWARE_FP == TRUE )
390    __MIPS_FPU_REGISTER_TYPE fp0;
391    __MIPS_FPU_REGISTER_TYPE fp1;
392    __MIPS_FPU_REGISTER_TYPE fp2;
393    __MIPS_FPU_REGISTER_TYPE fp3;
394    __MIPS_FPU_REGISTER_TYPE fp4;
395    __MIPS_FPU_REGISTER_TYPE fp5;
396    __MIPS_FPU_REGISTER_TYPE fp6;
397    __MIPS_FPU_REGISTER_TYPE fp7;
398    __MIPS_FPU_REGISTER_TYPE fp8;
399    __MIPS_FPU_REGISTER_TYPE fp9;
400    __MIPS_FPU_REGISTER_TYPE fp10;
401    __MIPS_FPU_REGISTER_TYPE fp11;
402    __MIPS_FPU_REGISTER_TYPE fp12;
403    __MIPS_FPU_REGISTER_TYPE fp13;
404    __MIPS_FPU_REGISTER_TYPE fp14;
405    __MIPS_FPU_REGISTER_TYPE fp15;
406    __MIPS_FPU_REGISTER_TYPE fp16;
407    __MIPS_FPU_REGISTER_TYPE fp17;
408    __MIPS_FPU_REGISTER_TYPE fp18;
409    __MIPS_FPU_REGISTER_TYPE fp19;
410    __MIPS_FPU_REGISTER_TYPE fp20;
411    __MIPS_FPU_REGISTER_TYPE fp21;
412    __MIPS_FPU_REGISTER_TYPE fp22;
413    __MIPS_FPU_REGISTER_TYPE fp23;
414    __MIPS_FPU_REGISTER_TYPE fp24;
415    __MIPS_FPU_REGISTER_TYPE fp25;
416    __MIPS_FPU_REGISTER_TYPE fp26;
417    __MIPS_FPU_REGISTER_TYPE fp27;
418    __MIPS_FPU_REGISTER_TYPE fp28;
419    __MIPS_FPU_REGISTER_TYPE fp29;
420    __MIPS_FPU_REGISTER_TYPE fp30;
421    __MIPS_FPU_REGISTER_TYPE fp31;
422#endif
423} Context_Control_fp;
424
425/*
426 *  This struct reflects the stack frame employed in ISR_Handler.  Note
427 *  that the ISR routine save some of the registers to this frame for
428 *  all interrupts and exceptions.  Other registers are saved only on
429 *  exceptions, while others are not touched at all.  The untouched
430 *  registers are not normally disturbed by high-level language
431 *  programs so they can be accessed when required.
432 *
433 *  The registers and their ordering in this struct must directly
434 *  correspond to the layout and ordering of * shown in iregdef.h,
435 *  as cpu_asm.S uses those definitions to fill the stack frame. 
436 *  This struct provides access to the stack frame for C code.
437 *
438 *  Similarly, this structure is used by debugger stubs and exception
439 *  processing routines so be careful when changing the format.
440 *
441 *  NOTE: The comments with this structure and cpu_asm.S should be kept
442 *        in sync.  When in doubt, look in the  code to see if the
443 *        registers you're interested in are actually treated as expected.
444 *        The order of the first portion of this structure follows the
445 *        order of registers expected by gdb.
446 */
447
448typedef struct
449{
450  __MIPS_REGISTER_TYPE  r0;       /*  0 -- NOT FILLED IN */
451  __MIPS_REGISTER_TYPE  at;       /*  1 -- saved always */
452  __MIPS_REGISTER_TYPE  v0;       /*  2 -- saved always */
453  __MIPS_REGISTER_TYPE  v1;       /*  3 -- saved always */
454  __MIPS_REGISTER_TYPE  a0;       /*  4 -- saved always */
455  __MIPS_REGISTER_TYPE  a1;       /*  5 -- saved always */
456  __MIPS_REGISTER_TYPE  a2;       /*  6 -- saved always */
457  __MIPS_REGISTER_TYPE  a3;       /*  7 -- saved always */
458  __MIPS_REGISTER_TYPE  t0;       /*  8 -- saved always */
459  __MIPS_REGISTER_TYPE  t1;       /*  9 -- saved always */
460  __MIPS_REGISTER_TYPE  t2;       /* 10 -- saved always */
461  __MIPS_REGISTER_TYPE  t3;       /* 11 -- saved always */
462  __MIPS_REGISTER_TYPE  t4;       /* 12 -- saved always */
463  __MIPS_REGISTER_TYPE  t5;       /* 13 -- saved always */
464  __MIPS_REGISTER_TYPE  t6;       /* 14 -- saved always */
465  __MIPS_REGISTER_TYPE  t7;       /* 15 -- saved always */
466  __MIPS_REGISTER_TYPE  s0;       /* 16 -- saved on exceptions */
467  __MIPS_REGISTER_TYPE  s1;       /* 17 -- saved on exceptions */
468  __MIPS_REGISTER_TYPE  s2;       /* 18 -- saved on exceptions */
469  __MIPS_REGISTER_TYPE  s3;       /* 19 -- saved on exceptions */
470  __MIPS_REGISTER_TYPE  s4;       /* 20 -- saved on exceptions */
471  __MIPS_REGISTER_TYPE  s5;       /* 21 -- saved on exceptions */
472  __MIPS_REGISTER_TYPE  s6;       /* 22 -- saved on exceptions */
473  __MIPS_REGISTER_TYPE  s7;       /* 23 -- saved on exceptions */
474  __MIPS_REGISTER_TYPE  t8;       /* 24 -- saved always */
475  __MIPS_REGISTER_TYPE  t9;       /* 25 -- saved always */
476  __MIPS_REGISTER_TYPE  k0;       /* 26 -- NOT FILLED IN, kernel tmp reg */
477  __MIPS_REGISTER_TYPE  k1;       /* 27 -- NOT FILLED IN, kernel tmp reg */
478  __MIPS_REGISTER_TYPE  gp;       /* 28 -- saved always */
479  __MIPS_REGISTER_TYPE  sp;       /* 29 -- saved on exceptions NOT RESTORED */
480  __MIPS_REGISTER_TYPE  fp;       /* 30 -- saved always */
481  __MIPS_REGISTER_TYPE  ra;       /* 31 -- saved always */
482  __MIPS_REGISTER_TYPE  c0_sr;    /* 32 -- saved always, some bits are */
483                                  /*    manipulated per-thread          */
484  __MIPS_REGISTER_TYPE  mdlo;     /* 33 -- saved always */
485  __MIPS_REGISTER_TYPE  mdhi;     /* 34 -- saved always */
486  __MIPS_REGISTER_TYPE  badvaddr; /* 35 -- saved on exceptions, read-only */
487  __MIPS_REGISTER_TYPE  cause;    /* 36 -- saved on exceptions NOT restored */
488  __MIPS_REGISTER_TYPE  epc;      /* 37 -- saved always, read-only register */
489                                  /*        but logically restored */
490  __MIPS_FPU_REGISTER_TYPE f0;    /* 38 -- saved if FP enabled */
491  __MIPS_FPU_REGISTER_TYPE f1;    /* 39 -- saved if FP enabled */
492  __MIPS_FPU_REGISTER_TYPE f2;    /* 40 -- saved if FP enabled */
493  __MIPS_FPU_REGISTER_TYPE f3;    /* 41 -- saved if FP enabled */
494  __MIPS_FPU_REGISTER_TYPE f4;    /* 42 -- saved if FP enabled */
495  __MIPS_FPU_REGISTER_TYPE f5;    /* 43 -- saved if FP enabled */
496  __MIPS_FPU_REGISTER_TYPE f6;    /* 44 -- saved if FP enabled */
497  __MIPS_FPU_REGISTER_TYPE f7;    /* 45 -- saved if FP enabled */
498  __MIPS_FPU_REGISTER_TYPE f8;    /* 46 -- saved if FP enabled */
499  __MIPS_FPU_REGISTER_TYPE f9;    /* 47 -- saved if FP enabled */
500  __MIPS_FPU_REGISTER_TYPE f10;   /* 48 -- saved if FP enabled */
501  __MIPS_FPU_REGISTER_TYPE f11;   /* 49 -- saved if FP enabled */
502  __MIPS_FPU_REGISTER_TYPE f12;   /* 50 -- saved if FP enabled */
503  __MIPS_FPU_REGISTER_TYPE f13;   /* 51 -- saved if FP enabled */
504  __MIPS_FPU_REGISTER_TYPE f14;   /* 52 -- saved if FP enabled */
505  __MIPS_FPU_REGISTER_TYPE f15;   /* 53 -- saved if FP enabled */
506  __MIPS_FPU_REGISTER_TYPE f16;   /* 54 -- saved if FP enabled */
507  __MIPS_FPU_REGISTER_TYPE f17;   /* 55 -- saved if FP enabled */
508  __MIPS_FPU_REGISTER_TYPE f18;   /* 56 -- saved if FP enabled */
509  __MIPS_FPU_REGISTER_TYPE f19;   /* 57 -- saved if FP enabled */
510  __MIPS_FPU_REGISTER_TYPE f20;   /* 58 -- saved if FP enabled */
511  __MIPS_FPU_REGISTER_TYPE f21;   /* 59 -- saved if FP enabled */
512  __MIPS_FPU_REGISTER_TYPE f22;   /* 60 -- saved if FP enabled */
513  __MIPS_FPU_REGISTER_TYPE f23;   /* 61 -- saved if FP enabled */
514  __MIPS_FPU_REGISTER_TYPE f24;   /* 62 -- saved if FP enabled */
515  __MIPS_FPU_REGISTER_TYPE f25;   /* 63 -- saved if FP enabled */
516  __MIPS_FPU_REGISTER_TYPE f26;   /* 64 -- saved if FP enabled */
517  __MIPS_FPU_REGISTER_TYPE f27;   /* 65 -- saved if FP enabled */
518  __MIPS_FPU_REGISTER_TYPE f28;   /* 66 -- saved if FP enabled */
519  __MIPS_FPU_REGISTER_TYPE f29;   /* 67 -- saved if FP enabled */
520  __MIPS_FPU_REGISTER_TYPE f30;   /* 68 -- saved if FP enabled */
521  __MIPS_FPU_REGISTER_TYPE f31;   /* 69 -- saved if FP enabled */
522  __MIPS_REGISTER_TYPE     fcsr;  /* 70 -- saved on exceptions */
523                                  /*    (oddly not documented on MGV) */
524  __MIPS_REGISTER_TYPE     feir;  /* 71 -- saved on exceptions */
525                                  /*    (oddly not documented on MGV) */
526
527  /* GDB does not seem to care about anything past this point */
528
529  __MIPS_REGISTER_TYPE  tlbhi;    /* 72 - NOT FILLED IN, doesn't exist on */
530                                  /*         all MIPS CPUs (at least MGV) */
531#if __mips == 1
532  __MIPS_REGISTER_TYPE  tlblo;    /* 73 - NOT FILLED IN, doesn't exist on */
533                                  /*         all MIPS CPUs (at least MGV) */
534#endif
535#if  __mips == 3
536  __MIPS_REGISTER_TYPE  tlblo0;   /* 73 - NOT FILLED IN, doesn't exist on */
537                                  /*         all MIPS CPUs (at least MGV) */
538#endif
539
540  __MIPS_REGISTER_TYPE  inx;      /* 74 -- NOT FILLED IN, doesn't exist on */
541                                  /*         all MIPS CPUs (at least MGV) */
542  __MIPS_REGISTER_TYPE  rand;     /* 75 -- NOT FILLED IN, doesn't exist on */
543                                  /*         all MIPS CPUs (at least MGV) */
544  __MIPS_REGISTER_TYPE  ctxt;     /* 76 -- NOT FILLED IN, doesn't exist on */
545                                  /*         all MIPS CPUs (at least MGV) */
546  __MIPS_REGISTER_TYPE  exctype;  /* 77 -- NOT FILLED IN (not enough info) */
547  __MIPS_REGISTER_TYPE  mode;     /* 78 -- NOT FILLED IN (not enough info) */
548  __MIPS_REGISTER_TYPE  prid;     /* 79 -- NOT FILLED IN (not need to do so) */
549  __MIPS_REGISTER_TYPE  tar ;     /* 80 -- target address register, filled on exceptions */
550  /* end of __mips == 1 so NREGS == 81 */
551#if  __mips == 3
552  __MIPS_REGISTER_TYPE  tlblo1;   /* 81 -- NOT FILLED IN */
553  __MIPS_REGISTER_TYPE  pagemask; /* 82 -- NOT FILLED IN */
554  __MIPS_REGISTER_TYPE  wired;    /* 83 -- NOT FILLED IN */
555  __MIPS_REGISTER_TYPE  count;    /* 84 -- NOT FILLED IN */
556  __MIPS_REGISTER_TYPE  compare;  /* 85 -- NOT FILLED IN */
557  __MIPS_REGISTER_TYPE  config;   /* 86 -- NOT FILLED IN */
558  __MIPS_REGISTER_TYPE  lladdr;   /* 87 -- NOT FILLED IN */
559  __MIPS_REGISTER_TYPE  watchlo;  /* 88 -- NOT FILLED IN */
560  __MIPS_REGISTER_TYPE  watchhi;  /* 89 -- NOT FILLED IN */
561  __MIPS_REGISTER_TYPE  ecc;      /* 90 -- NOT FILLED IN */
562  __MIPS_REGISTER_TYPE  cacheerr; /* 91 -- NOT FILLED IN */
563  __MIPS_REGISTER_TYPE  taglo;    /* 92 -- NOT FILLED IN */
564  __MIPS_REGISTER_TYPE  taghi;    /* 93 -- NOT FILLED IN */
565  __MIPS_REGISTER_TYPE  errpc;    /* 94 -- NOT FILLED IN */
566  __MIPS_REGISTER_TYPE  xctxt;    /* 95 -- NOT FILLED IN */
567 /* end of __mips == 3 so NREGS == 96 */
568#endif
569
570} CPU_Interrupt_frame;
571
572
573/*
574 *  The following table contains the information required to configure
575 *  the mips processor specific parameters.
576 */
577
578typedef struct {
579  void       (*pretasking_hook)( void );
580  void       (*predriver_hook)( void );
581  void       (*postdriver_hook)( void );
582  void       (*idle_task)( void );
583  boolean      do_zero_of_workspace;
584  uint32_t     idle_task_stack_size;
585  uint32_t     interrupt_stack_size;
586  uint32_t     extra_mpci_receive_server_stack;
587  void *     (*stack_allocate_hook)( uint32_t   );
588  void       (*stack_free_hook)( void* );
589  /* end of fields required on all CPUs */
590
591  uint32_t     clicks_per_microsecond;
592}   rtems_cpu_table;
593
594
595/*
596 *  Macros to access required entires in the CPU Table are in
597 *  the file rtems/system.h.
598 */
599
600/*
601 *  Macros to access MIPS specific additions to the CPU Table
602 */
603
604#define rtems_cpu_configuration_get_clicks_per_microsecond() \
605   (_CPU_Table.clicks_per_microsecond)
606
607/*
608 *  This variable is optional.  It is used on CPUs on which it is difficult
609 *  to generate an "uninitialized" FP context.  It is filled in by
610 *  _CPU_Initialize and copied into the task's FP context area during
611 *  _CPU_Context_Initialize.
612 */
613
614SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
615
616/*
617 *  On some CPUs, RTEMS supports a software managed interrupt stack.
618 *  This stack is allocated by the Interrupt Manager and the switch
619 *  is performed in _ISR_Handler.  These variables contain pointers
620 *  to the lowest and highest addresses in the chunk of memory allocated
621 *  for the interrupt stack.  Since it is unknown whether the stack
622 *  grows up or down (in general), this give the CPU dependent
623 *  code the option of picking the version it wants to use.
624 *
625 *  NOTE: These two variables are required if the macro
626 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
627 */
628
629SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
630SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
631
632/*
633 *  With some compilation systems, it is difficult if not impossible to
634 *  call a high-level language routine from assembly language.  This
635 *  is especially true of commercial Ada compilers and name mangling
636 *  C++ ones.  This variable can be optionally defined by the CPU porter
637 *  and contains the address of the routine _Thread_Dispatch.  This
638 *  can make it easier to invoke that routine at the end of the interrupt
639 *  sequence (if a dispatch is necessary).
640 *
641
642SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
643 *
644 *  NOTE: Not needed on this port.
645 */
646
647
648
649/*
650 *  Nothing prevents the porter from declaring more CPU specific variables.
651 */
652
653/* XXX: if needed, put more variables here */
654
655/*
656 *  The size of the floating point context area.  On some CPUs this
657 *  will not be a "sizeof" because the format of the floating point
658 *  area is not defined -- only the size is.  This is usually on
659 *  CPUs with a "floating point save context" instruction.
660 */
661
662#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
663
664/*
665 *  Amount of extra stack (above minimum stack size) required by
666 *  system initialization thread.  Remember that in a multiprocessor
667 *  system the system intialization thread becomes the MP server thread.
668 */
669
670#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
671
672/*
673 *  This defines the number of entries in the ISR_Vector_table managed
674 *  by RTEMS.
675 */
676
677extern unsigned int mips_interrupt_number_of_vectors;
678#define CPU_INTERRUPT_NUMBER_OF_VECTORS      (mips_interrupt_number_of_vectors)
679#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
680
681/*
682 *  Should be large enough to run all RTEMS tests.  This insures
683 *  that a "reasonable" small application should not have any problems.
684 */
685
686#define CPU_STACK_MINIMUM_SIZE          (2048*sizeof(uint32_t  ))
687
688
689/*
690 *  CPU's worst alignment requirement for data types on a byte boundary.  This
691 *  alignment does not take into account the requirements for the stack.
692 */
693
694#define CPU_ALIGNMENT              8
695
696/*
697 *  This number corresponds to the byte alignment requirement for the
698 *  heap handler.  This alignment requirement may be stricter than that
699 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
700 *  common for the heap to follow the same alignment requirement as
701 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
702 *  then this should be set to CPU_ALIGNMENT.
703 *
704 *  NOTE:  This does not have to be a power of 2.  It does have to
705 *         be greater or equal to than CPU_ALIGNMENT.
706 */
707
708#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
709
710/*
711 *  This number corresponds to the byte alignment requirement for memory
712 *  buffers allocated by the partition manager.  This alignment requirement
713 *  may be stricter than that for the data types alignment specified by
714 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
715 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
716 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
717 *
718 *  NOTE:  This does not have to be a power of 2.  It does have to
719 *         be greater or equal to than CPU_ALIGNMENT.
720 */
721
722#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
723
724/*
725 *  This number corresponds to the byte alignment requirement for the
726 *  stack.  This alignment requirement may be stricter than that for the
727 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
728 *  is strict enough for the stack, then this should be set to 0.
729 *
730 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
731 */
732
733#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
734
735/*
736 *  ISR handler macros
737 */
738
739/*
740 *  Support routine to initialize the RTEMS vector table after it is allocated.
741 */
742
743#define _CPU_Initialize_vectors()
744
745/*
746 *  Disable all interrupts for an RTEMS critical section.  The previous
747 *  level is returned in _level.
748 */
749
750#define _CPU_ISR_Disable( _level ) \
751  do { \
752    unsigned int _scratch; \
753    mips_get_sr( _scratch ); \
754    mips_set_sr( _scratch & ~SR_INTERRUPT_ENABLE_BITS ); \
755    _level = _scratch & SR_INTERRUPT_ENABLE_BITS; \
756  } while(0)
757
758/*
759 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
760 *  This indicates the end of an RTEMS critical section.  The parameter
761 *  _level is not modified.
762 */
763
764#define _CPU_ISR_Enable( _level )  \
765  do { \
766    unsigned int _scratch; \
767    mips_get_sr( _scratch ); \
768    mips_set_sr( (_scratch & ~SR_INTERRUPT_ENABLE_BITS) | (_level & SR_INTERRUPT_ENABLE_BITS) ); \
769  } while(0)
770
771/*
772 *  This temporarily restores the interrupt to _level before immediately
773 *  disabling them again.  This is used to divide long RTEMS critical
774 *  sections into two or more parts.  The parameter _level is not
775 *  modified.
776 */
777
778#define _CPU_ISR_Flash( _xlevel ) \
779  do { \
780    unsigned int _scratch2 = _xlevel; \
781    _CPU_ISR_Enable( _scratch2 ); \
782    _CPU_ISR_Disable( _scratch2 ); \
783    _xlevel = _scratch2; \
784  } while(0)
785
786/*
787 *  Map interrupt level in task mode onto the hardware that the CPU
788 *  actually provides.  Currently, interrupt levels which do not
789 *  map onto the CPU in a generic fashion are undefined.  Someday,
790 *  it would be nice if these were "mapped" by the application
791 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
792 *  8 - 255 would be available for bsp/application specific meaning.
793 *  This could be used to manage a programmable interrupt controller
794 *  via the rtems_task_mode directive.
795 *
796 *  On the MIPS, 0 is all on.  Non-zero is all off.  This only
797 *  manipulates the IEC.
798 */
799
800uint32_t   _CPU_ISR_Get_level( void );  /* in cpu.c */
801
802void _CPU_ISR_Set_level( uint32_t   );  /* in cpu.c */
803
804/* end of ISR handler macros */
805
806/* Context handler macros */
807
808/*
809 *  Initialize the context to a state suitable for starting a
810 *  task after a context restore operation.  Generally, this
811 *  involves:
812 *
813 *     - setting a starting address
814 *     - preparing the stack
815 *     - preparing the stack and frame pointers
816 *     - setting the proper interrupt level in the context
817 *     - initializing the floating point context
818 *
819 *  This routine generally does not set any unnecessary register
820 *  in the context.  The state of the "general data" registers is
821 *  undefined at task start time.
822 *
823 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
824 *        point thread.  This is typically only used on CPUs where the
825 *        FPU may be easily disabled by software such as on the SPARC
826 *        where the PSR contains an enable FPU bit.
827 *
828 *  The per-thread status register holds the interrupt enable, FP enable
829 *  and global interrupt enable for that thread.  It means each thread can
830 *  enable its own set of interrupts.  If interrupts are disabled, RTEMS
831 *  can still dispatch via blocking calls.  This is the function of the
832 *  "Interrupt Level", and on the MIPS, it controls the IEC bit and all
833 *  the hardware interrupts as defined in the SR.  Software ints
834 *  are automatically enabled for all threads, as they will only occur under
835 *  program control anyhow.  Besides, the interrupt level parm is only 8 bits,
836 *  and controlling the software ints plus the others would require 9.
837 *
838 *  If the Interrupt Level is 0, all ints are on.  Otherwise, the
839 *  Interrupt Level should supply a bit pattern to impose on the SR
840 *  interrupt bits; bit 0 applies to the mips1 IEC bit/mips3 EXL&IE, bits 1 thru 6
841 *  apply to the SR register Intr bits from bit 10 thru bit 15.  Bit 7 of
842 *  the Interrupt Level parameter is unused at this time.
843 *
844 *  These are the only per-thread SR bits, the others are maintained
845 *  globally & explicitly preserved by the Context Switch code in cpu_asm.s
846 */
847
848
849#if __mips == 3
850#define _INTON  (SR_EXL | SR_IE)
851#define _EXTRABITS      0
852#endif
853#if __mips == 1
854#define _INTON          SR_IEC
855#define _EXTRABITS      0  /* make sure we're in user mode on MIPS1 processors */
856#endif
857
858#define _CPU_Context_Initialize( _the_context, _stack_base, _size, _isr, _entry_point, _is_fp ) \
859  { \
860        uint32_t   _stack_tmp = \
861           (uint32_t  )(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \
862        uint32_t   _intlvl = _isr & 0xff; \
863        _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \
864        (_the_context)->sp = _stack_tmp; \
865        (_the_context)->fp = _stack_tmp; \
866        (_the_context)->ra = (uint64_t  )_entry_point; \
867        (_the_context)->c0_sr = ((_intlvl==0)?(0xFF00 | _INTON):( ((_intlvl<<9) & 0xfc00) | \
868                                                       0x300 | \
869                                                       ((_intlvl & 1)?_INTON:0)) ) | \
870                                SR_CU0 | ((_is_fp)?SR_CU1:0) | _EXTRABITS; \
871  }
872
873
874
875/*
876 *  This routine is responsible for somehow restarting the currently
877 *  executing task.  If you are lucky, then all that is necessary
878 *  is restoring the context.  Otherwise, there will need to be
879 *  a special assembly routine which does something special in this
880 *  case.  Context_Restore should work most of the time.  It will
881 *  not work if restarting self conflicts with the stack frame
882 *  assumptions of restoring a context.
883 */
884
885#define _CPU_Context_Restart_self( _the_context ) \
886   _CPU_Context_restore( (_the_context) );
887
888/*
889 *  The purpose of this macro is to allow the initial pointer into
890 *  A floating point context area (used to save the floating point
891 *  context) to be at an arbitrary place in the floating point
892 *  context area.
893 *
894 *  This is necessary because some FP units are designed to have
895 *  their context saved as a stack which grows into lower addresses.
896 *  Other FP units can be saved by simply moving registers into offsets
897 *  from the base of the context area.  Finally some FP units provide
898 *  a "dump context" instruction which could fill in from high to low
899 *  or low to high based on the whim of the CPU designers.
900 */
901
902#define _CPU_Context_Fp_start( _base, _offset ) \
903   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
904
905/*
906 *  This routine initializes the FP context area passed to it to.
907 *  There are a few standard ways in which to initialize the
908 *  floating point context.  The code included for this macro assumes
909 *  that this is a CPU in which a "initial" FP context was saved into
910 *  _CPU_Null_fp_context and it simply copies it to the destination
911 *  context passed to it.
912 *
913 *  Other models include (1) not doing anything, and (2) putting
914 *  a "null FP status word" in the correct place in the FP context.
915 */
916
917#if ( CPU_HARDWARE_FP == TRUE )
918#define _CPU_Context_Initialize_fp( _destination ) \
919  { \
920   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
921  }
922#endif
923
924/* end of Context handler macros */
925
926/* Fatal Error manager macros */
927
928/*
929 *  This routine copies _error into a known place -- typically a stack
930 *  location or a register, optionally disables interrupts, and
931 *  halts/stops the CPU.
932 */
933
934#define _CPU_Fatal_halt( _error ) \
935  do { \
936    unsigned int _level; \
937    _CPU_ISR_Disable(_level); \
938    loop: goto loop; \
939  } while (0)
940
941
942extern void mips_break( int error );
943
944/* Bitfield handler macros */
945
946/*
947 *  This routine sets _output to the bit number of the first bit
948 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
949 *  This type may be either 16 or 32 bits wide although only the 16
950 *  least significant bits will be used.
951 *
952 *  There are a number of variables in using a "find first bit" type
953 *  instruction.
954 *
955 *    (1) What happens when run on a value of zero?
956 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
957 *    (3) The numbering may be zero or one based.
958 *    (4) The "find first bit" instruction may search from MSB or LSB.
959 *
960 *  RTEMS guarantees that (1) will never happen so it is not a concern.
961 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
962 *  _CPU_Priority_bits_index().  These three form a set of routines
963 *  which must logically operate together.  Bits in the _value are
964 *  set and cleared based on masks built by _CPU_Priority_mask().
965 *  The basic major and minor values calculated by _Priority_Major()
966 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
967 *  to properly range between the values returned by the "find first bit"
968 *  instruction.  This makes it possible for _Priority_Get_highest() to
969 *  calculate the major and directly index into the minor table.
970 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
971 *  is the first bit found.
972 *
973 *  This entire "find first bit" and mapping process depends heavily
974 *  on the manner in which a priority is broken into a major and minor
975 *  components with the major being the 4 MSB of a priority and minor
976 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
977 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
978 *  to the lowest priority.
979 *
980 *  If your CPU does not have a "find first bit" instruction, then
981 *  there are ways to make do without it.  Here are a handful of ways
982 *  to implement this in software:
983 *
984 *    - a series of 16 bit test instructions
985 *    - a "binary search using if's"
986 *    - _number = 0
987 *      if _value > 0x00ff
988 *        _value >>=8
989 *        _number = 8;
990 *
991 *      if _value > 0x0000f
992 *        _value >=8
993 *        _number += 4
994 *
995 *      _number += bit_set_table[ _value ]
996 *
997 *    where bit_set_table[ 16 ] has values which indicate the first
998 *      bit set
999 */
1000
1001#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1002#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1003
1004#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1005
1006#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1007  { \
1008    (_output) = 0;   /* do something to prevent warnings */ \
1009  }
1010
1011#endif
1012
1013/* end of Bitfield handler macros */
1014
1015/*
1016 *  This routine builds the mask which corresponds to the bit fields
1017 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
1018 *  for that routine.
1019 */
1020
1021#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1022
1023#define _CPU_Priority_Mask( _bit_number ) \
1024  ( 1 << (_bit_number) )
1025
1026#endif
1027
1028/*
1029 *  This routine translates the bit numbers returned by
1030 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
1031 *  a major or minor component of a priority.  See the discussion
1032 *  for that routine.
1033 */
1034
1035#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1036
1037#define _CPU_Priority_bits_index( _priority ) \
1038  (_priority)
1039
1040#endif
1041
1042/* end of Priority handler macros */
1043
1044/* functions */
1045
1046/*
1047 *  _CPU_Initialize
1048 *
1049 *  This routine performs CPU dependent initialization.
1050 */
1051
1052void _CPU_Initialize(
1053  rtems_cpu_table  *cpu_table,
1054  void      (*thread_dispatch)
1055);
1056
1057/*
1058 *  _CPU_ISR_install_raw_handler
1059 *
1060 *  This routine installs a "raw" interrupt handler directly into the
1061 *  processor's vector table.
1062 */
1063
1064void _CPU_ISR_install_raw_handler(
1065  uint32_t    vector,
1066  proc_ptr    new_handler,
1067  proc_ptr   *old_handler
1068);
1069
1070/*
1071 *  _CPU_ISR_install_vector
1072 *
1073 *  This routine installs an interrupt vector.
1074 */
1075
1076void _CPU_ISR_install_vector(
1077  uint32_t    vector,
1078  proc_ptr    new_handler,
1079  proc_ptr   *old_handler
1080);
1081
1082/*
1083 *  _CPU_Install_interrupt_stack
1084 *
1085 *  This routine installs the hardware interrupt stack pointer.
1086 *
1087 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
1088 *         is TRUE.
1089 */
1090
1091void _CPU_Install_interrupt_stack( void );
1092
1093/*
1094 *  _CPU_Internal_threads_Idle_thread_body
1095 *
1096 *  This routine is the CPU dependent IDLE thread body.
1097 *
1098 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
1099 *         is TRUE.
1100 */
1101
1102void _CPU_Thread_Idle_body( void );
1103
1104/*
1105 *  _CPU_Context_switch
1106 *
1107 *  This routine switches from the run context to the heir context.
1108 */
1109
1110void _CPU_Context_switch(
1111  Context_Control  *run,
1112  Context_Control  *heir
1113);
1114
1115/*
1116 *  _CPU_Context_restore
1117 *
1118 *  This routine is generally used only to restart self in an
1119 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1120 *
1121 *  NOTE: May be unnecessary to reload some registers.
1122 */
1123
1124void _CPU_Context_restore(
1125  Context_Control *new_context
1126);
1127
1128/*
1129 *  _CPU_Context_save_fp
1130 *
1131 *  This routine saves the floating point context passed to it.
1132 */
1133
1134void _CPU_Context_save_fp(
1135  void **fp_context_ptr
1136);
1137
1138/*
1139 *  _CPU_Context_restore_fp
1140 *
1141 *  This routine restores the floating point context passed to it.
1142 */
1143
1144void _CPU_Context_restore_fp(
1145  void **fp_context_ptr
1146);
1147
1148/*  The following routine swaps the endian format of an unsigned int.
1149 *  It must be static because it is referenced indirectly.
1150 *
1151 *  This version will work on any processor, but if there is a better
1152 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1153 *
1154 *     swap least significant two bytes with 16-bit rotate
1155 *     swap upper and lower 16-bits
1156 *     swap most significant two bytes with 16-bit rotate
1157 *
1158 *  Some CPUs have special instructions which swap a 32-bit quantity in
1159 *  a single instruction (e.g. i486).  It is probably best to avoid
1160 *  an "endian swapping control bit" in the CPU.  One good reason is
1161 *  that interrupts would probably have to be disabled to insure that
1162 *  an interrupt does not try to access the same "chunk" with the wrong
1163 *  endian.  Another good reason is that on some CPUs, the endian bit
1164 *  endianness for ALL fetches -- both code and data -- so the code
1165 *  will be fetched incorrectly.
1166 */
1167
1168static inline unsigned int CPU_swap_u32(
1169  unsigned int value
1170)
1171{
1172  uint32_t   byte1, byte2, byte3, byte4, swapped;
1173
1174  byte4 = (value >> 24) & 0xff;
1175  byte3 = (value >> 16) & 0xff;
1176  byte2 = (value >> 8)  & 0xff;
1177  byte1 =  value        & 0xff;
1178
1179  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1180  return( swapped );
1181}
1182
1183#define CPU_swap_u16( value ) \
1184  (((value&0xff) << 8) | ((value >> 8)&0xff))
1185
1186
1187#endif
1188
1189
1190
1191#ifdef __cplusplus
1192}
1193#endif
1194
1195#endif
Note: See TracBrowser for help on using the repository browser.