source: rtems/cpukit/score/cpu/mips/rtems/score/cpu.h @ 5d7bfce3

4.104.114.84.95
Last change on this file since 5d7bfce3 was 5d7bfce3, checked in by Joel Sherrill <joel.sherrill@…>, on 12/06/00 at 15:32:40

2000-12-06 Joel Sherrill <joel@…>

  • rtems/score/cpu.h: When mips ISA level is 1, registers in the context should be 32 not 64 bits.
  • Property mode set to 100644
File size: 31.7 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the IDT 4650
4 *  processor.
5 *
6 *  Author:     Craig Lebakken <craigl@transition.com>
7 *
8 *  COPYRIGHT (c) 1996 by Transition Networks Inc.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of Transition Networks not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      Transition Networks makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from c/src/exec/score/cpu/no_cpu/cpu.h:
22 *
23 *  COPYRIGHT (c) 1989-1999.
24 *  On-Line Applications Research Corporation (OAR).
25 *
26 *  The license and distribution terms for this file may be
27 *  found in the file LICENSE in this distribution or at
28 *  http://www.OARcorp.com/rtems/license.html.
29 *
30 *  $Id$
31 */
32/* @(#)cpu.h       08/29/96     1.7 */
33
34#ifndef __CPU_h
35#define __CPU_h
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41#include <rtems/score/mips64orion.h>       /* pick up machine definitions */
42#ifndef ASM
43#include <rtems/score/mipstypes.h>
44#endif
45
46extern int mips_disable_interrupts( void );
47extern void mips_enable_interrupts( int _level );
48extern int mips_disable_global_interrupts( void );
49extern void mips_enable_global_interrupts( void );
50extern void mips_fatal_error ( int error );
51
52/* conditional compilation parameters */
53
54/*
55 *  Should the calls to _Thread_Enable_dispatch be inlined?
56 *
57 *  If TRUE, then they are inlined.
58 *  If FALSE, then a subroutine call is made.
59 *
60 *  Basically this is an example of the classic trade-off of size
61 *  versus speed.  Inlining the call (TRUE) typically increases the
62 *  size of RTEMS while speeding up the enabling of dispatching.
63 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
64 *  only be 0 or 1 unless you are in an interrupt handler and that
65 *  interrupt handler invokes the executive.]  When not inlined
66 *  something calls _Thread_Enable_dispatch which in turns calls
67 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
68 *  one subroutine call is avoided entirely.]
69 */
70
71#define CPU_INLINE_ENABLE_DISPATCH       TRUE
72
73/*
74 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
75 *  be unrolled one time?  In unrolled each iteration of the loop examines
76 *  two "nodes" on the chain being searched.  Otherwise, only one node
77 *  is examined per iteration.
78 *
79 *  If TRUE, then the loops are unrolled.
80 *  If FALSE, then the loops are not unrolled.
81 *
82 *  The primary factor in making this decision is the cost of disabling
83 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
84 *  body of the loop.  On some CPUs, the flash is more expensive than
85 *  one iteration of the loop body.  In this case, it might be desirable
86 *  to unroll the loop.  It is important to note that on some CPUs, this
87 *  code is the longest interrupt disable period in RTEMS.  So it is
88 *  necessary to strike a balance when setting this parameter.
89 */
90
91#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
92
93/*
94 *  Does RTEMS manage a dedicated interrupt stack in software?
95 *
96 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
97 *  If FALSE, nothing is done.
98 *
99 *  If the CPU supports a dedicated interrupt stack in hardware,
100 *  then it is generally the responsibility of the BSP to allocate it
101 *  and set it up.
102 *
103 *  If the CPU does not support a dedicated interrupt stack, then
104 *  the porter has two options: (1) execute interrupts on the
105 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
106 *  interrupt stack.
107 *
108 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
109 *
110 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
111 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
112 *  possible that both are FALSE for a particular CPU.  Although it
113 *  is unclear what that would imply about the interrupt processing
114 *  procedure on that CPU.
115 */
116
117#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
118
119/*
120 *  Does this CPU have hardware support for a dedicated interrupt stack?
121 *
122 *  If TRUE, then it must be installed during initialization.
123 *  If FALSE, then no installation is performed.
124 *
125 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
126 *
127 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
128 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
129 *  possible that both are FALSE for a particular CPU.  Although it
130 *  is unclear what that would imply about the interrupt processing
131 *  procedure on that CPU.
132 */
133
134#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
135
136/*
137 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
138 *
139 *  If TRUE, then the memory is allocated during initialization.
140 *  If FALSE, then the memory is allocated during initialization.
141 *
142 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
143 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
144 */
145
146#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
147
148/*
149 *  Does the RTEMS invoke the user's ISR with the vector number and
150 *  a pointer to the saved interrupt frame (1) or just the vector
151 *  number (0)?
152 */
153
154#define CPU_ISR_PASSES_FRAME_POINTER 0
155
156/*
157 *  Does the CPU have hardware floating point?
158 *
159 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
160 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
161 *
162 *  If there is a FP coprocessor such as the i387 or mc68881, then
163 *  the answer is TRUE.
164 *
165 *  The macro name "MIPS_HAS_FPU" should be made CPU specific.
166 *  It indicates whether or not this CPU model has FP support.  For
167 *  example, it would be possible to have an i386_nofp CPU model
168 *  which set this to false to indicate that you have an i386 without
169 *  an i387 and wish to leave floating point support out of RTEMS.
170 */
171
172#if ( MIPS_HAS_FPU == 1 )
173#define CPU_HARDWARE_FP     TRUE
174#else
175#define CPU_HARDWARE_FP     FALSE
176#endif
177
178/*
179 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
180 *
181 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
182 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
183 *
184 *  So far, the only CPU in which this option has been used is the
185 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
186 *  floating point registers to perform integer multiplies.  If
187 *  a function which you would not think utilize the FP unit DOES,
188 *  then one can not easily predict which tasks will use the FP hardware.
189 *  In this case, this option should be TRUE.
190 *
191 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
192 */
193
194#define CPU_ALL_TASKS_ARE_FP    FALSE
195
196/*
197 *  Should the IDLE task have a floating point context?
198 *
199 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
200 *  and it has a floating point context which is switched in and out.
201 *  If FALSE, then the IDLE task does not have a floating point context.
202 *
203 *  Setting this to TRUE negatively impacts the time required to preempt
204 *  the IDLE task from an interrupt because the floating point context
205 *  must be saved as part of the preemption.
206 */
207
208#define CPU_IDLE_TASK_IS_FP      FALSE
209
210/*
211 *  Should the saving of the floating point registers be deferred
212 *  until a context switch is made to another different floating point
213 *  task?
214 *
215 *  If TRUE, then the floating point context will not be stored until
216 *  necessary.  It will remain in the floating point registers and not
217 *  disturned until another floating point task is switched to.
218 *
219 *  If FALSE, then the floating point context is saved when a floating
220 *  point task is switched out and restored when the next floating point
221 *  task is restored.  The state of the floating point registers between
222 *  those two operations is not specified.
223 *
224 *  If the floating point context does NOT have to be saved as part of
225 *  interrupt dispatching, then it should be safe to set this to TRUE.
226 *
227 *  Setting this flag to TRUE results in using a different algorithm
228 *  for deciding when to save and restore the floating point context.
229 *  The deferred FP switch algorithm minimizes the number of times
230 *  the FP context is saved and restored.  The FP context is not saved
231 *  until a context switch is made to another, different FP task.
232 *  Thus in a system with only one FP task, the FP context will never
233 *  be saved or restored.
234 */
235
236#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
237
238/*
239 *  Does this port provide a CPU dependent IDLE task implementation?
240 *
241 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
242 *  must be provided and is the default IDLE thread body instead of
243 *  _Internal_threads_Idle_thread_body.
244 *
245 *  If FALSE, then use the generic IDLE thread body if the BSP does
246 *  not provide one.
247 *
248 *  This is intended to allow for supporting processors which have
249 *  a low power or idle mode.  When the IDLE thread is executed, then
250 *  the CPU can be powered down.
251 *
252 *  The order of precedence for selecting the IDLE thread body is:
253 *
254 *    1.  BSP provided
255 *    2.  CPU dependent (if provided)
256 *    3.  generic (if no BSP and no CPU dependent)
257 */
258
259/* we can use the low power wait instruction for the IDLE thread */
260#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
261
262/*
263 *  Does the stack grow up (toward higher addresses) or down
264 *  (toward lower addresses)?
265 *
266 *  If TRUE, then the grows upward.
267 *  If FALSE, then the grows toward smaller addresses.
268 */
269
270/* our stack grows down */
271#define CPU_STACK_GROWS_UP               FALSE
272
273/*
274 *  The following is the variable attribute used to force alignment
275 *  of critical RTEMS structures.  On some processors it may make
276 *  sense to have these aligned on tighter boundaries than
277 *  the minimum requirements of the compiler in order to have as
278 *  much of the critical data area as possible in a cache line.
279 *
280 *  The placement of this macro in the declaration of the variables
281 *  is based on the syntactically requirements of the GNU C
282 *  "__attribute__" extension.  For example with GNU C, use
283 *  the following to force a structures to a 32 byte boundary.
284 *
285 *      __attribute__ ((aligned (32)))
286 *
287 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
288 *         To benefit from using this, the data must be heavily
289 *         used so it will stay in the cache and used frequently enough
290 *         in the executive to justify turning this on.
291 */
292
293/* our cache line size is 16 bytes */
294#if __GNUC__
295#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
296#else
297#define CPU_STRUCTURE_ALIGNMENT
298#endif
299
300/*
301 *  Define what is required to specify how the network to host conversion
302 *  routines are handled.
303 */
304
305#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
306#define CPU_BIG_ENDIAN                           TRUE
307#define CPU_LITTLE_ENDIAN                        FALSE
308
309/*
310 *  The following defines the number of bits actually used in the
311 *  interrupt field of the task mode.  How those bits map to the
312 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
313 */
314
315#define CPU_MODES_INTERRUPT_MASK   0x00000001
316
317/*
318 *  Processor defined structures
319 *
320 *  Examples structures include the descriptor tables from the i386
321 *  and the processor control structure on the i960ca.
322 */
323
324/* may need to put some structures here.  */
325
326/*
327 * Contexts
328 *
329 *  Generally there are 2 types of context to save.
330 *     1. Interrupt registers to save
331 *     2. Task level registers to save
332 *
333 *  This means we have the following 3 context items:
334 *     1. task level context stuff::  Context_Control
335 *     2. floating point task stuff:: Context_Control_fp
336 *     3. special interrupt level context :: Context_Control_interrupt
337 *
338 *  On some processors, it is cost-effective to save only the callee
339 *  preserved registers during a task context switch.  This means
340 *  that the ISR code needs to save those registers which do not
341 *  persist across function calls.  It is not mandatory to make this
342 *  distinctions between the caller/callee saves registers for the
343 *  purpose of minimizing context saved during task switch and on interrupts.
344 *  If the cost of saving extra registers is minimal, simplicity is the
345 *  choice.  Save the same context on interrupt entry as for tasks in
346 *  this case.
347 *
348 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
349 *  care should be used in designing the context area.
350 *
351 *  On some CPUs with hardware floating point support, the Context_Control_fp
352 *  structure will not be used or it simply consist of an array of a
353 *  fixed number of bytes.   This is done when the floating point context
354 *  is dumped by a "FP save context" type instruction and the format
355 *  is not really defined by the CPU.  In this case, there is no need
356 *  to figure out the exact format -- only the size.  Of course, although
357 *  this is enough information for RTEMS, it is probably not enough for
358 *  a debugger such as gdb.  But that is another problem.
359 */
360
361/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
362typedef struct {
363#if __mips == 1
364    unsigned32 s0;
365    unsigned32 s1;
366    unsigned32 s2;
367    unsigned32 s3;
368    unsigned32 s4;
369    unsigned32 s5;
370    unsigned32 s6;
371    unsigned32 s7;
372    unsigned32 sp;
373    unsigned32 fp;
374    unsigned32 ra;
375    unsigned32 c0_sr;
376    unsigned32 c0_epc;
377#else
378    unsigned64 s0;
379    unsigned64 s1;
380    unsigned64 s2;
381    unsigned64 s3;
382    unsigned64 s4;
383    unsigned64 s5;
384    unsigned64 s6;
385    unsigned64 s7;
386    unsigned64 sp;
387    unsigned64 fp;
388    unsigned64 ra;
389    unsigned64 c0_sr;
390    unsigned64 c0_epc;
391#endif
392} Context_Control;
393
394/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
395typedef struct {
396    unsigned32      fp0;
397    unsigned32      fp1;
398    unsigned32      fp2;
399    unsigned32      fp3;
400    unsigned32      fp4;
401    unsigned32      fp5;
402    unsigned32      fp6;
403    unsigned32      fp7;
404    unsigned32      fp8;
405    unsigned32      fp9;
406    unsigned32      fp10;
407    unsigned32      fp11;
408    unsigned32      fp12;
409    unsigned32      fp13;
410    unsigned32      fp14;
411    unsigned32      fp15;
412    unsigned32      fp16;
413    unsigned32      fp17;
414    unsigned32      fp18;
415    unsigned32      fp19;
416    unsigned32      fp20;
417    unsigned32      fp21;
418    unsigned32      fp22;
419    unsigned32      fp23;
420    unsigned32      fp24;
421    unsigned32      fp25;
422    unsigned32      fp26;
423    unsigned32      fp27;
424    unsigned32      fp28;
425    unsigned32      fp29;
426    unsigned32      fp30;
427    unsigned32      fp31;
428} Context_Control_fp;
429
430typedef struct {
431    unsigned32 special_interrupt_register;
432} CPU_Interrupt_frame;
433
434
435/*
436 *  The following table contains the information required to configure
437 *  the mips processor specific parameters.
438 */
439
440typedef struct {
441  void       (*pretasking_hook)( void );
442  void       (*predriver_hook)( void );
443  void       (*postdriver_hook)( void );
444  void       (*idle_task)( void );
445  boolean      do_zero_of_workspace;
446  unsigned32   idle_task_stack_size;
447  unsigned32   interrupt_stack_size;
448  unsigned32   extra_mpci_receive_server_stack;
449  void *     (*stack_allocate_hook)( unsigned32 );
450  void       (*stack_free_hook)( void* );
451  /* end of fields required on all CPUs */
452
453  unsigned32   clicks_per_microsecond;
454}   rtems_cpu_table;
455
456/*
457 *  Macros to access required entires in the CPU Table are in
458 *  the file rtems/system.h.
459 */
460
461/*
462 *  Macros to access MIPS specific additions to the CPU Table
463 */
464
465#define rtems_cpu_configuration_get_clicks_per_microsecond() \
466   (_CPU_Table.clicks_per_microsecond)
467
468/*
469 *  This variable is optional.  It is used on CPUs on which it is difficult
470 *  to generate an "uninitialized" FP context.  It is filled in by
471 *  _CPU_Initialize and copied into the task's FP context area during
472 *  _CPU_Context_Initialize.
473 */
474
475SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
476
477/*
478 *  On some CPUs, RTEMS supports a software managed interrupt stack.
479 *  This stack is allocated by the Interrupt Manager and the switch
480 *  is performed in _ISR_Handler.  These variables contain pointers
481 *  to the lowest and highest addresses in the chunk of memory allocated
482 *  for the interrupt stack.  Since it is unknown whether the stack
483 *  grows up or down (in general), this give the CPU dependent
484 *  code the option of picking the version it wants to use.
485 *
486 *  NOTE: These two variables are required if the macro
487 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
488 */
489
490SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
491SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
492
493/*
494 *  With some compilation systems, it is difficult if not impossible to
495 *  call a high-level language routine from assembly language.  This
496 *  is especially true of commercial Ada compilers and name mangling
497 *  C++ ones.  This variable can be optionally defined by the CPU porter
498 *  and contains the address of the routine _Thread_Dispatch.  This
499 *  can make it easier to invoke that routine at the end of the interrupt
500 *  sequence (if a dispatch is necessary).
501 */
502
503SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
504
505/*
506 *  Nothing prevents the porter from declaring more CPU specific variables.
507 */
508
509/* XXX: if needed, put more variables here */
510
511/*
512 *  The size of the floating point context area.  On some CPUs this
513 *  will not be a "sizeof" because the format of the floating point
514 *  area is not defined -- only the size is.  This is usually on
515 *  CPUs with a "floating point save context" instruction.
516 */
517
518#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
519
520/*
521 *  Amount of extra stack (above minimum stack size) required by
522 *  system initialization thread.  Remember that in a multiprocessor
523 *  system the system intialization thread becomes the MP server thread.
524 */
525
526#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
527
528/*
529 *  This defines the number of entries in the ISR_Vector_table managed
530 *  by RTEMS.
531 */
532
533#define CPU_INTERRUPT_NUMBER_OF_VECTORS      8
534#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
535
536/*
537 *  Should be large enough to run all RTEMS tests.  This insures
538 *  that a "reasonable" small application should not have any problems.
539 */
540
541#define CPU_STACK_MINIMUM_SIZE          (2048*sizeof(unsigned32))
542
543/*
544 *  CPU's worst alignment requirement for data types on a byte boundary.  This
545 *  alignment does not take into account the requirements for the stack.
546 */
547
548#define CPU_ALIGNMENT              8
549
550/*
551 *  This number corresponds to the byte alignment requirement for the
552 *  heap handler.  This alignment requirement may be stricter than that
553 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
554 *  common for the heap to follow the same alignment requirement as
555 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
556 *  then this should be set to CPU_ALIGNMENT.
557 *
558 *  NOTE:  This does not have to be a power of 2.  It does have to
559 *         be greater or equal to than CPU_ALIGNMENT.
560 */
561
562#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
563
564/*
565 *  This number corresponds to the byte alignment requirement for memory
566 *  buffers allocated by the partition manager.  This alignment requirement
567 *  may be stricter than that for the data types alignment specified by
568 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
569 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
570 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
571 *
572 *  NOTE:  This does not have to be a power of 2.  It does have to
573 *         be greater or equal to than CPU_ALIGNMENT.
574 */
575
576#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
577
578/*
579 *  This number corresponds to the byte alignment requirement for the
580 *  stack.  This alignment requirement may be stricter than that for the
581 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
582 *  is strict enough for the stack, then this should be set to 0.
583 *
584 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
585 */
586
587#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
588
589/* ISR handler macros */
590
591/*
592 *  Disable all interrupts for an RTEMS critical section.  The previous
593 *  level is returned in _level.
594 */
595
596#define _CPU_ISR_Disable( _int_level ) \
597  do{ \
598        _int_level = mips_disable_interrupts(); \
599  }while(0)
600
601/*
602 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
603 *  This indicates the end of an RTEMS critical section.  The parameter
604 *  _level is not modified.
605 */
606
607#define _CPU_ISR_Enable( _level )  \
608  do{ \
609        mips_enable_interrupts(_level); \
610  }while(0)
611
612/*
613 *  This temporarily restores the interrupt to _level before immediately
614 *  disabling them again.  This is used to divide long RTEMS critical
615 *  sections into two or more parts.  The parameter _level is not
616 * modified.
617 */
618
619#define _CPU_ISR_Flash( _xlevel ) \
620  do{ \
621        int _scratch; \
622        _CPU_ISR_Enable( _xlevel ); \
623        _CPU_ISR_Disable( _scratch ); \
624  }while(0)
625
626/*
627 *  Map interrupt level in task mode onto the hardware that the CPU
628 *  actually provides.  Currently, interrupt levels which do not
629 *  map onto the CPU in a generic fashion are undefined.  Someday,
630 *  it would be nice if these were "mapped" by the application
631 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
632 *  8 - 255 would be available for bsp/application specific meaning.
633 *  This could be used to manage a programmable interrupt controller
634 *  via the rtems_task_mode directive.
635 */
636extern void _CPU_ISR_Set_level( unsigned32 _new_level );
637
638unsigned32 _CPU_ISR_Get_level( void );
639
640/* end of ISR handler macros */
641
642/* Context handler macros */
643
644/*
645 *  Initialize the context to a state suitable for starting a
646 *  task after a context restore operation.  Generally, this
647 *  involves:
648 *
649 *     - setting a starting address
650 *     - preparing the stack
651 *     - preparing the stack and frame pointers
652 *     - setting the proper interrupt level in the context
653 *     - initializing the floating point context
654 *
655 *  This routine generally does not set any unnecessary register
656 *  in the context.  The state of the "general data" registers is
657 *  undefined at task start time.
658 *
659 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
660 *        point thread.  This is typically only used on CPUs where the
661 *        FPU may be easily disabled by software such as on the SPARC
662 *        where the PSR contains an enable FPU bit.
663 */
664
665#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
666                                 _isr, _entry_point, _is_fp ) \
667  { \
668        unsigned32 _stack_tmp = (unsigned32)(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \
669        _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \
670        (_the_context)->sp = _stack_tmp; \
671        (_the_context)->fp = _stack_tmp; \
672        (_the_context)->ra = (unsigned64)_entry_point; \
673        (_the_context)->c0_sr = 0; \
674  }
675
676/*
677 *  This routine is responsible for somehow restarting the currently
678 *  executing task.  If you are lucky, then all that is necessary
679 *  is restoring the context.  Otherwise, there will need to be
680 *  a special assembly routine which does something special in this
681 *  case.  Context_Restore should work most of the time.  It will
682 *  not work if restarting self conflicts with the stack frame
683 *  assumptions of restoring a context.
684 */
685
686#define _CPU_Context_Restart_self( _the_context ) \
687   _CPU_Context_restore( (_the_context) );
688
689/*
690 *  The purpose of this macro is to allow the initial pointer into
691 *  A floating point context area (used to save the floating point
692 *  context) to be at an arbitrary place in the floating point
693 *  context area.
694 *
695 *  This is necessary because some FP units are designed to have
696 *  their context saved as a stack which grows into lower addresses.
697 *  Other FP units can be saved by simply moving registers into offsets
698 *  from the base of the context area.  Finally some FP units provide
699 *  a "dump context" instruction which could fill in from high to low
700 *  or low to high based on the whim of the CPU designers.
701 */
702
703#define _CPU_Context_Fp_start( _base, _offset ) \
704   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
705
706/*
707 *  This routine initializes the FP context area passed to it to.
708 *  There are a few standard ways in which to initialize the
709 *  floating point context.  The code included for this macro assumes
710 *  that this is a CPU in which a "initial" FP context was saved into
711 *  _CPU_Null_fp_context and it simply copies it to the destination
712 *  context passed to it.
713 *
714 *  Other models include (1) not doing anything, and (2) putting
715 *  a "null FP status word" in the correct place in the FP context.
716 */
717
718#define _CPU_Context_Initialize_fp( _destination ) \
719  { \
720   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
721  }
722
723/* end of Context handler macros */
724
725/* Fatal Error manager macros */
726
727/*
728 *  This routine copies _error into a known place -- typically a stack
729 *  location or a register, optionally disables interrupts, and
730 *  halts/stops the CPU.
731 */
732
733#define _CPU_Fatal_halt( _error ) \
734  { \
735    mips_disable_global_interrupts(); \
736    mips_fatal_error(_error); \
737  }
738
739/* end of Fatal Error manager macros */
740
741/* Bitfield handler macros */
742
743/*
744 *  This routine sets _output to the bit number of the first bit
745 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
746 *  This type may be either 16 or 32 bits wide although only the 16
747 *  least significant bits will be used.
748 *
749 *  There are a number of variables in using a "find first bit" type
750 *  instruction.
751 *
752 *    (1) What happens when run on a value of zero?
753 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
754 *    (3) The numbering may be zero or one based.
755 *    (4) The "find first bit" instruction may search from MSB or LSB.
756 *
757 *  RTEMS guarantees that (1) will never happen so it is not a concern.
758 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
759 *  _CPU_Priority_bits_index().  These three form a set of routines
760 *  which must logically operate together.  Bits in the _value are
761 *  set and cleared based on masks built by _CPU_Priority_mask().
762 *  The basic major and minor values calculated by _Priority_Major()
763 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
764 *  to properly range between the values returned by the "find first bit"
765 *  instruction.  This makes it possible for _Priority_Get_highest() to
766 *  calculate the major and directly index into the minor table.
767 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
768 *  is the first bit found.
769 *
770 *  This entire "find first bit" and mapping process depends heavily
771 *  on the manner in which a priority is broken into a major and minor
772 *  components with the major being the 4 MSB of a priority and minor
773 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
774 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
775 *  to the lowest priority.
776 *
777 *  If your CPU does not have a "find first bit" instruction, then
778 *  there are ways to make do without it.  Here are a handful of ways
779 *  to implement this in software:
780 *
781 *    - a series of 16 bit test instructions
782 *    - a "binary search using if's"
783 *    - _number = 0
784 *      if _value > 0x00ff
785 *        _value >>=8
786 *        _number = 8;
787 *
788 *      if _value > 0x0000f
789 *        _value >=8
790 *        _number += 4
791 *
792 *      _number += bit_set_table[ _value ]
793 *
794 *    where bit_set_table[ 16 ] has values which indicate the first
795 *      bit set
796 */
797
798#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
799#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
800
801#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
802
803#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
804  { \
805    (_output) = 0;   /* do something to prevent warnings */ \
806  }
807
808#endif
809
810/* end of Bitfield handler macros */
811
812/*
813 *  This routine builds the mask which corresponds to the bit fields
814 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
815 *  for that routine.
816 */
817
818#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
819
820#define _CPU_Priority_Mask( _bit_number ) \
821  ( 1 << (_bit_number) )
822
823#endif
824
825/*
826 *  This routine translates the bit numbers returned by
827 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
828 *  a major or minor component of a priority.  See the discussion
829 *  for that routine.
830 */
831
832#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
833
834#define _CPU_Priority_bits_index( _priority ) \
835  (_priority)
836
837#endif
838
839/* end of Priority handler macros */
840
841/* functions */
842
843/*
844 *  _CPU_Initialize
845 *
846 *  This routine performs CPU dependent initialization.
847 */
848
849void _CPU_Initialize(
850  rtems_cpu_table  *cpu_table,
851  void      (*thread_dispatch)
852);
853
854/*
855 *  _CPU_ISR_install_raw_handler
856 *
857 *  This routine installs a "raw" interrupt handler directly into the
858 *  processor's vector table.
859 */
860 
861void _CPU_ISR_install_raw_handler(
862  unsigned32  vector,
863  proc_ptr    new_handler,
864  proc_ptr   *old_handler
865);
866
867/*
868 *  _CPU_ISR_install_vector
869 *
870 *  This routine installs an interrupt vector.
871 */
872
873void _CPU_ISR_install_vector(
874  unsigned32  vector,
875  proc_ptr    new_handler,
876  proc_ptr   *old_handler
877);
878
879/*
880 *  _CPU_Install_interrupt_stack
881 *
882 *  This routine installs the hardware interrupt stack pointer.
883 *
884 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
885 *         is TRUE.
886 */
887
888void _CPU_Install_interrupt_stack( void );
889
890/*
891 *  _CPU_Internal_threads_Idle_thread_body
892 *
893 *  This routine is the CPU dependent IDLE thread body.
894 *
895 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
896 *         is TRUE.
897 */
898
899void _CPU_Thread_Idle_body( void );
900
901/*
902 *  _CPU_Context_switch
903 *
904 *  This routine switches from the run context to the heir context.
905 */
906
907void _CPU_Context_switch(
908  Context_Control  *run,
909  Context_Control  *heir
910);
911
912/*
913 *  _CPU_Context_restore
914 *
915 *  This routine is generally used only to restart self in an
916 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
917 *
918 *  NOTE: May be unnecessary to reload some registers.
919 */
920
921void _CPU_Context_restore(
922  Context_Control *new_context
923);
924
925/*
926 *  _CPU_Context_save_fp
927 *
928 *  This routine saves the floating point context passed to it.
929 */
930
931void _CPU_Context_save_fp(
932  void **fp_context_ptr
933);
934
935/*
936 *  _CPU_Context_restore_fp
937 *
938 *  This routine restores the floating point context passed to it.
939 */
940
941void _CPU_Context_restore_fp(
942  void **fp_context_ptr
943);
944
945/*  The following routine swaps the endian format of an unsigned int.
946 *  It must be static because it is referenced indirectly.
947 *
948 *  This version will work on any processor, but if there is a better
949 *  way for your CPU PLEASE use it.  The most common way to do this is to:
950 *
951 *     swap least significant two bytes with 16-bit rotate
952 *     swap upper and lower 16-bits
953 *     swap most significant two bytes with 16-bit rotate
954 *
955 *  Some CPUs have special instructions which swap a 32-bit quantity in
956 *  a single instruction (e.g. i486).  It is probably best to avoid
957 *  an "endian swapping control bit" in the CPU.  One good reason is
958 *  that interrupts would probably have to be disabled to insure that
959 *  an interrupt does not try to access the same "chunk" with the wrong
960 *  endian.  Another good reason is that on some CPUs, the endian bit
961 *  endianness for ALL fetches -- both code and data -- so the code
962 *  will be fetched incorrectly.
963 */
964 
965static inline unsigned int CPU_swap_u32(
966  unsigned int value
967)
968{
969  unsigned32 byte1, byte2, byte3, byte4, swapped;
970 
971  byte4 = (value >> 24) & 0xff;
972  byte3 = (value >> 16) & 0xff;
973  byte2 = (value >> 8)  & 0xff;
974  byte1 =  value        & 0xff;
975 
976  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
977  return( swapped );
978}
979
980#define CPU_swap_u16( value ) \
981  (((value&0xff) << 8) | ((value >> 8)&0xff))
982
983/*
984 *  Miscellaneous prototypes
985 *
986 *  NOTE:  The names should have mips64orion in them.
987 */
988
989void disable_int( unsigned32 mask );
990void enable_int( unsigned32 mask );
991
992#ifdef __cplusplus
993}
994#endif
995
996#endif
Note: See TracBrowser for help on using the repository browser.