source: rtems/cpukit/score/cpu/mips/rtems/score/cpu.h @ 0c9eaef

4.104.114.84.95
Last change on this file since 0c9eaef was 0c9eaef, checked in by Joel Sherrill <joel.sherrill@…>, on 04/03/04 at 16:29:13

2004-04-03 Art Ferrer <arturo.b.ferrer@…>

PR 598/bsps

  • cpu_asm.S, rtems/score/cpu.h: Add save of floating point status/control register on context switches. Missing this register was causing intermittent floating point errors.
  • Property mode set to 100644
File size: 42.4 KB
Line 
1/*
2 *  Mips CPU Dependent Header File
3 *
4 *  Conversion to MIPS port by Alan Cudmore <alanc@linuxstart.com> and
5 *           Joel Sherrill <joel@OARcorp.com>.
6 *
7 *    These changes made the code conditional on standard cpp predefines,
8 *    merged the mips1 and mips3 code sequences as much as possible,
9 *    and moved some of the assembly code to C.  Alan did much of the
10 *    initial analysis and rework.  Joel took over from there and
11 *    wrote the JMR3904 BSP so this could be tested.  Joel also
12 *    added the new interrupt vectoring support in libcpu and
13 *    tried to better support the various interrupt controllers.
14 *
15 *  Original MIP64ORION port by Craig Lebakken <craigl@transition.com>
16 *           COPYRIGHT (c) 1996 by Transition Networks Inc.
17 *
18 *    To anyone who acknowledges that this file is provided "AS IS"
19 *    without any express or implied warranty:
20 *      permission to use, copy, modify, and distribute this file
21 *      for any purpose is hereby granted without fee, provided that
22 *      the above copyright notice and this notice appears in all
23 *      copies, and that the name of Transition Networks not be used in
24 *      advertising or publicity pertaining to distribution of the
25 *      software without specific, written prior permission.
26 *      Transition Networks makes no representations about the suitability
27 *      of this software for any purpose.
28 *
29 *  COPYRIGHT (c) 1989-2001.
30 *  On-Line Applications Research Corporation (OAR).
31 *
32 *  The license and distribution terms for this file may be
33 *  found in the file LICENSE in this distribution or at
34 *  http://www.rtems.com/license/LICENSE.
35 *
36 *  $Id$
37 */
38
39#ifndef __CPU_h
40#define __CPU_h
41
42#ifdef __cplusplus
43extern "C" {
44#endif
45
46#include <rtems/score/mips.h>       /* pick up machine definitions */
47#ifndef ASM
48#include <rtems/score/types.h>
49#endif
50
51/* conditional compilation parameters */
52
53/*
54 *  Should the calls to _Thread_Enable_dispatch be inlined?
55 *
56 *  If TRUE, then they are inlined.
57 *  If FALSE, then a subroutine call is made.
58 *
59 *  Basically this is an example of the classic trade-off of size
60 *  versus speed.  Inlining the call (TRUE) typically increases the
61 *  size of RTEMS while speeding up the enabling of dispatching.
62 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
63 *  only be 0 or 1 unless you are in an interrupt handler and that
64 *  interrupt handler invokes the executive.]  When not inlined
65 *  something calls _Thread_Enable_dispatch which in turns calls
66 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
67 *  one subroutine call is avoided entirely.]
68 */
69
70#define CPU_INLINE_ENABLE_DISPATCH       FALSE
71
72/*
73 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
74 *  be unrolled one time?  In unrolled each iteration of the loop examines
75 *  two "nodes" on the chain being searched.  Otherwise, only one node
76 *  is examined per iteration.
77 *
78 *  If TRUE, then the loops are unrolled.
79 *  If FALSE, then the loops are not unrolled.
80 *
81 *  The primary factor in making this decision is the cost of disabling
82 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
83 *  body of the loop.  On some CPUs, the flash is more expensive than
84 *  one iteration of the loop body.  In this case, it might be desirable
85 *  to unroll the loop.  It is important to note that on some CPUs, this
86 *  code is the longest interrupt disable period in RTEMS.  So it is
87 *  necessary to strike a balance when setting this parameter.
88 */
89
90#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
91
92/*
93 *  Does RTEMS manage a dedicated interrupt stack in software?
94 *
95 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
96 *  If FALSE, nothing is done.
97 *
98 *  If the CPU supports a dedicated interrupt stack in hardware,
99 *  then it is generally the responsibility of the BSP to allocate it
100 *  and set it up.
101 *
102 *  If the CPU does not support a dedicated interrupt stack, then
103 *  the porter has two options: (1) execute interrupts on the
104 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
105 *  interrupt stack.
106 *
107 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
108 *
109 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
110 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
111 *  possible that both are FALSE for a particular CPU.  Although it
112 *  is unclear what that would imply about the interrupt processing
113 *  procedure on that CPU.
114 */
115
116#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
117
118/*
119 *  Does this CPU have hardware support for a dedicated interrupt stack?
120 *
121 *  If TRUE, then it must be installed during initialization.
122 *  If FALSE, then no installation is performed.
123 *
124 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
125 *
126 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
127 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
128 *  possible that both are FALSE for a particular CPU.  Although it
129 *  is unclear what that would imply about the interrupt processing
130 *  procedure on that CPU.
131 */
132
133#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
134
135/*
136 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
137 *
138 *  If TRUE, then the memory is allocated during initialization.
139 *  If FALSE, then the memory is allocated during initialization.
140 *
141 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
142 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
143 */
144
145#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
146
147/*
148 *  Does the RTEMS invoke the user's ISR with the vector number and
149 *  a pointer to the saved interrupt frame (1) or just the vector
150 *  number (0)?
151 *
152 */
153
154#define CPU_ISR_PASSES_FRAME_POINTER 1
155
156
157
158/*
159 *  Does the CPU have hardware floating point?
160 *
161 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
162 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
163 *
164 *  If there is a FP coprocessor such as the i387 or mc68881, then
165 *  the answer is TRUE.
166 *
167 *  The macro name "MIPS_HAS_FPU" should be made CPU specific.
168 *  It indicates whether or not this CPU model has FP support.  For
169 *  example, it would be possible to have an i386_nofp CPU model
170 *  which set this to false to indicate that you have an i386 without
171 *  an i387 and wish to leave floating point support out of RTEMS.
172 */
173
174#if ( MIPS_HAS_FPU == 1 )
175#define CPU_HARDWARE_FP     TRUE
176#else
177#define CPU_HARDWARE_FP     FALSE
178#endif
179
180/*
181 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
182 *
183 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
184 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
185 *
186 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
187 */
188
189#define CPU_ALL_TASKS_ARE_FP    FALSE
190
191/*
192 *  Should the IDLE task have a floating point context?
193 *
194 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
195 *  and it has a floating point context which is switched in and out.
196 *  If FALSE, then the IDLE task does not have a floating point context.
197 *
198 *  Setting this to TRUE negatively impacts the time required to preempt
199 *  the IDLE task from an interrupt because the floating point context
200 *  must be saved as part of the preemption.
201 */
202
203#define CPU_IDLE_TASK_IS_FP      FALSE
204
205/*
206 *  Should the saving of the floating point registers be deferred
207 *  until a context switch is made to another different floating point
208 *  task?
209 *
210 *  If TRUE, then the floating point context will not be stored until
211 *  necessary.  It will remain in the floating point registers and not
212 *  disturned until another floating point task is switched to.
213 *
214 *  If FALSE, then the floating point context is saved when a floating
215 *  point task is switched out and restored when the next floating point
216 *  task is restored.  The state of the floating point registers between
217 *  those two operations is not specified.
218 *
219 *  If the floating point context does NOT have to be saved as part of
220 *  interrupt dispatching, then it should be safe to set this to TRUE.
221 *
222 *  Setting this flag to TRUE results in using a different algorithm
223 *  for deciding when to save and restore the floating point context.
224 *  The deferred FP switch algorithm minimizes the number of times
225 *  the FP context is saved and restored.  The FP context is not saved
226 *  until a context switch is made to another, different FP task.
227 *  Thus in a system with only one FP task, the FP context will never
228 *  be saved or restored.
229 */
230
231#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
232
233/*
234 *  Does this port provide a CPU dependent IDLE task implementation?
235 *
236 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
237 *  must be provided and is the default IDLE thread body instead of
238 *  _Internal_threads_Idle_thread_body.
239 *
240 *  If FALSE, then use the generic IDLE thread body if the BSP does
241 *  not provide one.
242 *
243 *  This is intended to allow for supporting processors which have
244 *  a low power or idle mode.  When the IDLE thread is executed, then
245 *  the CPU can be powered down.
246 *
247 *  The order of precedence for selecting the IDLE thread body is:
248 *
249 *    1.  BSP provided
250 *    2.  CPU dependent (if provided)
251 *    3.  generic (if no BSP and no CPU dependent)
252 */
253
254/* we can use the low power wait instruction for the IDLE thread */
255#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
256
257/*
258 *  Does the stack grow up (toward higher addresses) or down
259 *  (toward lower addresses)?
260 *
261 *  If TRUE, then the grows upward.
262 *  If FALSE, then the grows toward smaller addresses.
263 */
264
265/* our stack grows down */
266#define CPU_STACK_GROWS_UP               FALSE
267
268/*
269 *  The following is the variable attribute used to force alignment
270 *  of critical RTEMS structures.  On some processors it may make
271 *  sense to have these aligned on tighter boundaries than
272 *  the minimum requirements of the compiler in order to have as
273 *  much of the critical data area as possible in a cache line.
274 *
275 *  The placement of this macro in the declaration of the variables
276 *  is based on the syntactically requirements of the GNU C
277 *  "__attribute__" extension.  For example with GNU C, use
278 *  the following to force a structures to a 32 byte boundary.
279 *
280 *      __attribute__ ((aligned (32)))
281 *
282 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
283 *         To benefit from using this, the data must be heavily
284 *         used so it will stay in the cache and used frequently enough
285 *         in the executive to justify turning this on.
286 */
287
288/* our cache line size is 16 bytes */
289#if __GNUC__
290#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
291#else
292#define CPU_STRUCTURE_ALIGNMENT
293#endif
294
295/*
296 *  Define what is required to specify how the network to host conversion
297 *  routines are handled.
298 */
299
300#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
301#define CPU_BIG_ENDIAN                           TRUE
302#define CPU_LITTLE_ENDIAN                        FALSE
303
304/*
305 *  The following defines the number of bits actually used in the
306 *  interrupt field of the task mode.  How those bits map to the
307 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
308 */
309
310#define CPU_MODES_INTERRUPT_MASK   0x000000ff
311
312/*
313 *  Processor defined structures
314 *
315 *  Examples structures include the descriptor tables from the i386
316 *  and the processor control structure on the i960ca.
317 */
318
319/* may need to put some structures here.  */
320
321/*
322 * Contexts
323 *
324 *  Generally there are 2 types of context to save.
325 *     1. Interrupt registers to save
326 *     2. Task level registers to save
327 *
328 *  This means we have the following 3 context items:
329 *     1. task level context stuff::  Context_Control
330 *     2. floating point task stuff:: Context_Control_fp
331 *     3. special interrupt level context :: Context_Control_interrupt
332 *
333 *  On some processors, it is cost-effective to save only the callee
334 *  preserved registers during a task context switch.  This means
335 *  that the ISR code needs to save those registers which do not
336 *  persist across function calls.  It is not mandatory to make this
337 *  distinctions between the caller/callee saves registers for the
338 *  purpose of minimizing context saved during task switch and on interrupts.
339 *  If the cost of saving extra registers is minimal, simplicity is the
340 *  choice.  Save the same context on interrupt entry as for tasks in
341 *  this case.
342 *
343 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
344 *  care should be used in designing the context area.
345 *
346 *  On some CPUs with hardware floating point support, the Context_Control_fp
347 *  structure will not be used or it simply consist of an array of a
348 *  fixed number of bytes.   This is done when the floating point context
349 *  is dumped by a "FP save context" type instruction and the format
350 *  is not really defined by the CPU.  In this case, there is no need
351 *  to figure out the exact format -- only the size.  Of course, although
352 *  this is enough information for RTEMS, it is probably not enough for
353 *  a debugger such as gdb.  But that is another problem.
354 */
355
356#ifndef ASSEMBLY_ONLY
357
358/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
359#if __mips == 1
360#define __MIPS_REGISTER_TYPE     uint32_t 
361#define __MIPS_FPU_REGISTER_TYPE uint32_t 
362#elif __mips == 3
363#define __MIPS_REGISTER_TYPE     uint64_t 
364#define __MIPS_FPU_REGISTER_TYPE uint64_t 
365#else
366#error "mips register size: unknown architecture level!!"
367#endif
368typedef struct {
369    __MIPS_REGISTER_TYPE s0;
370    __MIPS_REGISTER_TYPE s1;
371    __MIPS_REGISTER_TYPE s2;
372    __MIPS_REGISTER_TYPE s3;
373    __MIPS_REGISTER_TYPE s4;
374    __MIPS_REGISTER_TYPE s5;
375    __MIPS_REGISTER_TYPE s6;
376    __MIPS_REGISTER_TYPE s7;
377    __MIPS_REGISTER_TYPE sp;
378    __MIPS_REGISTER_TYPE fp;
379    __MIPS_REGISTER_TYPE ra;
380    __MIPS_REGISTER_TYPE c0_sr;
381    __MIPS_REGISTER_TYPE c0_epc;
382} Context_Control;
383
384/* WARNING: If this structure is modified, the constants in cpu.h
385 *          must also be updated.
386 */
387
388typedef struct {
389#if ( CPU_HARDWARE_FP == TRUE )
390    __MIPS_FPU_REGISTER_TYPE fp0;
391    __MIPS_FPU_REGISTER_TYPE fp1;
392    __MIPS_FPU_REGISTER_TYPE fp2;
393    __MIPS_FPU_REGISTER_TYPE fp3;
394    __MIPS_FPU_REGISTER_TYPE fp4;
395    __MIPS_FPU_REGISTER_TYPE fp5;
396    __MIPS_FPU_REGISTER_TYPE fp6;
397    __MIPS_FPU_REGISTER_TYPE fp7;
398    __MIPS_FPU_REGISTER_TYPE fp8;
399    __MIPS_FPU_REGISTER_TYPE fp9;
400    __MIPS_FPU_REGISTER_TYPE fp10;
401    __MIPS_FPU_REGISTER_TYPE fp11;
402    __MIPS_FPU_REGISTER_TYPE fp12;
403    __MIPS_FPU_REGISTER_TYPE fp13;
404    __MIPS_FPU_REGISTER_TYPE fp14;
405    __MIPS_FPU_REGISTER_TYPE fp15;
406    __MIPS_FPU_REGISTER_TYPE fp16;
407    __MIPS_FPU_REGISTER_TYPE fp17;
408    __MIPS_FPU_REGISTER_TYPE fp18;
409    __MIPS_FPU_REGISTER_TYPE fp19;
410    __MIPS_FPU_REGISTER_TYPE fp20;
411    __MIPS_FPU_REGISTER_TYPE fp21;
412    __MIPS_FPU_REGISTER_TYPE fp22;
413    __MIPS_FPU_REGISTER_TYPE fp23;
414    __MIPS_FPU_REGISTER_TYPE fp24;
415    __MIPS_FPU_REGISTER_TYPE fp25;
416    __MIPS_FPU_REGISTER_TYPE fp26;
417    __MIPS_FPU_REGISTER_TYPE fp27;
418    __MIPS_FPU_REGISTER_TYPE fp28;
419    __MIPS_FPU_REGISTER_TYPE fp29;
420    __MIPS_FPU_REGISTER_TYPE fp30;
421    __MIPS_FPU_REGISTER_TYPE fp31;
422    __MIPS_FPU_REGISTER_TYPE fpcs;
423#endif
424} Context_Control_fp;
425
426/*
427 *  This struct reflects the stack frame employed in ISR_Handler.  Note
428 *  that the ISR routine save some of the registers to this frame for
429 *  all interrupts and exceptions.  Other registers are saved only on
430 *  exceptions, while others are not touched at all.  The untouched
431 *  registers are not normally disturbed by high-level language
432 *  programs so they can be accessed when required.
433 *
434 *  The registers and their ordering in this struct must directly
435 *  correspond to the layout and ordering of * shown in iregdef.h,
436 *  as cpu_asm.S uses those definitions to fill the stack frame. 
437 *  This struct provides access to the stack frame for C code.
438 *
439 *  Similarly, this structure is used by debugger stubs and exception
440 *  processing routines so be careful when changing the format.
441 *
442 *  NOTE: The comments with this structure and cpu_asm.S should be kept
443 *        in sync.  When in doubt, look in the  code to see if the
444 *        registers you're interested in are actually treated as expected.
445 *        The order of the first portion of this structure follows the
446 *        order of registers expected by gdb.
447 */
448
449typedef struct
450{
451  __MIPS_REGISTER_TYPE  r0;       /*  0 -- NOT FILLED IN */
452  __MIPS_REGISTER_TYPE  at;       /*  1 -- saved always */
453  __MIPS_REGISTER_TYPE  v0;       /*  2 -- saved always */
454  __MIPS_REGISTER_TYPE  v1;       /*  3 -- saved always */
455  __MIPS_REGISTER_TYPE  a0;       /*  4 -- saved always */
456  __MIPS_REGISTER_TYPE  a1;       /*  5 -- saved always */
457  __MIPS_REGISTER_TYPE  a2;       /*  6 -- saved always */
458  __MIPS_REGISTER_TYPE  a3;       /*  7 -- saved always */
459  __MIPS_REGISTER_TYPE  t0;       /*  8 -- saved always */
460  __MIPS_REGISTER_TYPE  t1;       /*  9 -- saved always */
461  __MIPS_REGISTER_TYPE  t2;       /* 10 -- saved always */
462  __MIPS_REGISTER_TYPE  t3;       /* 11 -- saved always */
463  __MIPS_REGISTER_TYPE  t4;       /* 12 -- saved always */
464  __MIPS_REGISTER_TYPE  t5;       /* 13 -- saved always */
465  __MIPS_REGISTER_TYPE  t6;       /* 14 -- saved always */
466  __MIPS_REGISTER_TYPE  t7;       /* 15 -- saved always */
467  __MIPS_REGISTER_TYPE  s0;       /* 16 -- saved on exceptions */
468  __MIPS_REGISTER_TYPE  s1;       /* 17 -- saved on exceptions */
469  __MIPS_REGISTER_TYPE  s2;       /* 18 -- saved on exceptions */
470  __MIPS_REGISTER_TYPE  s3;       /* 19 -- saved on exceptions */
471  __MIPS_REGISTER_TYPE  s4;       /* 20 -- saved on exceptions */
472  __MIPS_REGISTER_TYPE  s5;       /* 21 -- saved on exceptions */
473  __MIPS_REGISTER_TYPE  s6;       /* 22 -- saved on exceptions */
474  __MIPS_REGISTER_TYPE  s7;       /* 23 -- saved on exceptions */
475  __MIPS_REGISTER_TYPE  t8;       /* 24 -- saved always */
476  __MIPS_REGISTER_TYPE  t9;       /* 25 -- saved always */
477  __MIPS_REGISTER_TYPE  k0;       /* 26 -- NOT FILLED IN, kernel tmp reg */
478  __MIPS_REGISTER_TYPE  k1;       /* 27 -- NOT FILLED IN, kernel tmp reg */
479  __MIPS_REGISTER_TYPE  gp;       /* 28 -- saved always */
480  __MIPS_REGISTER_TYPE  sp;       /* 29 -- saved on exceptions NOT RESTORED */
481  __MIPS_REGISTER_TYPE  fp;       /* 30 -- saved always */
482  __MIPS_REGISTER_TYPE  ra;       /* 31 -- saved always */
483  __MIPS_REGISTER_TYPE  c0_sr;    /* 32 -- saved always, some bits are */
484                                  /*    manipulated per-thread          */
485  __MIPS_REGISTER_TYPE  mdlo;     /* 33 -- saved always */
486  __MIPS_REGISTER_TYPE  mdhi;     /* 34 -- saved always */
487  __MIPS_REGISTER_TYPE  badvaddr; /* 35 -- saved on exceptions, read-only */
488  __MIPS_REGISTER_TYPE  cause;    /* 36 -- saved on exceptions NOT restored */
489  __MIPS_REGISTER_TYPE  epc;      /* 37 -- saved always, read-only register */
490                                  /*        but logically restored */
491  __MIPS_FPU_REGISTER_TYPE f0;    /* 38 -- saved if FP enabled */
492  __MIPS_FPU_REGISTER_TYPE f1;    /* 39 -- saved if FP enabled */
493  __MIPS_FPU_REGISTER_TYPE f2;    /* 40 -- saved if FP enabled */
494  __MIPS_FPU_REGISTER_TYPE f3;    /* 41 -- saved if FP enabled */
495  __MIPS_FPU_REGISTER_TYPE f4;    /* 42 -- saved if FP enabled */
496  __MIPS_FPU_REGISTER_TYPE f5;    /* 43 -- saved if FP enabled */
497  __MIPS_FPU_REGISTER_TYPE f6;    /* 44 -- saved if FP enabled */
498  __MIPS_FPU_REGISTER_TYPE f7;    /* 45 -- saved if FP enabled */
499  __MIPS_FPU_REGISTER_TYPE f8;    /* 46 -- saved if FP enabled */
500  __MIPS_FPU_REGISTER_TYPE f9;    /* 47 -- saved if FP enabled */
501  __MIPS_FPU_REGISTER_TYPE f10;   /* 48 -- saved if FP enabled */
502  __MIPS_FPU_REGISTER_TYPE f11;   /* 49 -- saved if FP enabled */
503  __MIPS_FPU_REGISTER_TYPE f12;   /* 50 -- saved if FP enabled */
504  __MIPS_FPU_REGISTER_TYPE f13;   /* 51 -- saved if FP enabled */
505  __MIPS_FPU_REGISTER_TYPE f14;   /* 52 -- saved if FP enabled */
506  __MIPS_FPU_REGISTER_TYPE f15;   /* 53 -- saved if FP enabled */
507  __MIPS_FPU_REGISTER_TYPE f16;   /* 54 -- saved if FP enabled */
508  __MIPS_FPU_REGISTER_TYPE f17;   /* 55 -- saved if FP enabled */
509  __MIPS_FPU_REGISTER_TYPE f18;   /* 56 -- saved if FP enabled */
510  __MIPS_FPU_REGISTER_TYPE f19;   /* 57 -- saved if FP enabled */
511  __MIPS_FPU_REGISTER_TYPE f20;   /* 58 -- saved if FP enabled */
512  __MIPS_FPU_REGISTER_TYPE f21;   /* 59 -- saved if FP enabled */
513  __MIPS_FPU_REGISTER_TYPE f22;   /* 60 -- saved if FP enabled */
514  __MIPS_FPU_REGISTER_TYPE f23;   /* 61 -- saved if FP enabled */
515  __MIPS_FPU_REGISTER_TYPE f24;   /* 62 -- saved if FP enabled */
516  __MIPS_FPU_REGISTER_TYPE f25;   /* 63 -- saved if FP enabled */
517  __MIPS_FPU_REGISTER_TYPE f26;   /* 64 -- saved if FP enabled */
518  __MIPS_FPU_REGISTER_TYPE f27;   /* 65 -- saved if FP enabled */
519  __MIPS_FPU_REGISTER_TYPE f28;   /* 66 -- saved if FP enabled */
520  __MIPS_FPU_REGISTER_TYPE f29;   /* 67 -- saved if FP enabled */
521  __MIPS_FPU_REGISTER_TYPE f30;   /* 68 -- saved if FP enabled */
522  __MIPS_FPU_REGISTER_TYPE f31;   /* 69 -- saved if FP enabled */
523  __MIPS_REGISTER_TYPE     fcsr;  /* 70 -- saved on exceptions */
524                                  /*    (oddly not documented on MGV) */
525  __MIPS_REGISTER_TYPE     feir;  /* 71 -- saved on exceptions */
526                                  /*    (oddly not documented on MGV) */
527
528  /* GDB does not seem to care about anything past this point */
529
530  __MIPS_REGISTER_TYPE  tlbhi;    /* 72 - NOT FILLED IN, doesn't exist on */
531                                  /*         all MIPS CPUs (at least MGV) */
532#if __mips == 1
533  __MIPS_REGISTER_TYPE  tlblo;    /* 73 - NOT FILLED IN, doesn't exist on */
534                                  /*         all MIPS CPUs (at least MGV) */
535#endif
536#if  __mips == 3
537  __MIPS_REGISTER_TYPE  tlblo0;   /* 73 - NOT FILLED IN, doesn't exist on */
538                                  /*         all MIPS CPUs (at least MGV) */
539#endif
540
541  __MIPS_REGISTER_TYPE  inx;      /* 74 -- NOT FILLED IN, doesn't exist on */
542                                  /*         all MIPS CPUs (at least MGV) */
543  __MIPS_REGISTER_TYPE  rand;     /* 75 -- NOT FILLED IN, doesn't exist on */
544                                  /*         all MIPS CPUs (at least MGV) */
545  __MIPS_REGISTER_TYPE  ctxt;     /* 76 -- NOT FILLED IN, doesn't exist on */
546                                  /*         all MIPS CPUs (at least MGV) */
547  __MIPS_REGISTER_TYPE  exctype;  /* 77 -- NOT FILLED IN (not enough info) */
548  __MIPS_REGISTER_TYPE  mode;     /* 78 -- NOT FILLED IN (not enough info) */
549  __MIPS_REGISTER_TYPE  prid;     /* 79 -- NOT FILLED IN (not need to do so) */
550  __MIPS_REGISTER_TYPE  tar ;     /* 80 -- target address register, filled on exceptions */
551  /* end of __mips == 1 so NREGS == 81 */
552#if  __mips == 3
553  __MIPS_REGISTER_TYPE  tlblo1;   /* 81 -- NOT FILLED IN */
554  __MIPS_REGISTER_TYPE  pagemask; /* 82 -- NOT FILLED IN */
555  __MIPS_REGISTER_TYPE  wired;    /* 83 -- NOT FILLED IN */
556  __MIPS_REGISTER_TYPE  count;    /* 84 -- NOT FILLED IN */
557  __MIPS_REGISTER_TYPE  compare;  /* 85 -- NOT FILLED IN */
558  __MIPS_REGISTER_TYPE  config;   /* 86 -- NOT FILLED IN */
559  __MIPS_REGISTER_TYPE  lladdr;   /* 87 -- NOT FILLED IN */
560  __MIPS_REGISTER_TYPE  watchlo;  /* 88 -- NOT FILLED IN */
561  __MIPS_REGISTER_TYPE  watchhi;  /* 89 -- NOT FILLED IN */
562  __MIPS_REGISTER_TYPE  ecc;      /* 90 -- NOT FILLED IN */
563  __MIPS_REGISTER_TYPE  cacheerr; /* 91 -- NOT FILLED IN */
564  __MIPS_REGISTER_TYPE  taglo;    /* 92 -- NOT FILLED IN */
565  __MIPS_REGISTER_TYPE  taghi;    /* 93 -- NOT FILLED IN */
566  __MIPS_REGISTER_TYPE  errpc;    /* 94 -- NOT FILLED IN */
567  __MIPS_REGISTER_TYPE  xctxt;    /* 95 -- NOT FILLED IN */
568 /* end of __mips == 3 so NREGS == 96 */
569#endif
570
571} CPU_Interrupt_frame;
572
573
574/*
575 *  The following table contains the information required to configure
576 *  the mips processor specific parameters.
577 */
578
579typedef struct {
580  void       (*pretasking_hook)( void );
581  void       (*predriver_hook)( void );
582  void       (*postdriver_hook)( void );
583  void       (*idle_task)( void );
584  boolean      do_zero_of_workspace;
585  uint32_t     idle_task_stack_size;
586  uint32_t     interrupt_stack_size;
587  uint32_t     extra_mpci_receive_server_stack;
588  void *     (*stack_allocate_hook)( uint32_t   );
589  void       (*stack_free_hook)( void* );
590  /* end of fields required on all CPUs */
591
592  uint32_t     clicks_per_microsecond;
593}   rtems_cpu_table;
594
595
596/*
597 *  Macros to access required entires in the CPU Table are in
598 *  the file rtems/system.h.
599 */
600
601/*
602 *  Macros to access MIPS specific additions to the CPU Table
603 */
604
605#define rtems_cpu_configuration_get_clicks_per_microsecond() \
606   (_CPU_Table.clicks_per_microsecond)
607
608/*
609 *  This variable is optional.  It is used on CPUs on which it is difficult
610 *  to generate an "uninitialized" FP context.  It is filled in by
611 *  _CPU_Initialize and copied into the task's FP context area during
612 *  _CPU_Context_Initialize.
613 */
614
615SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
616
617/*
618 *  On some CPUs, RTEMS supports a software managed interrupt stack.
619 *  This stack is allocated by the Interrupt Manager and the switch
620 *  is performed in _ISR_Handler.  These variables contain pointers
621 *  to the lowest and highest addresses in the chunk of memory allocated
622 *  for the interrupt stack.  Since it is unknown whether the stack
623 *  grows up or down (in general), this give the CPU dependent
624 *  code the option of picking the version it wants to use.
625 *
626 *  NOTE: These two variables are required if the macro
627 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
628 */
629
630SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
631SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
632
633/*
634 *  With some compilation systems, it is difficult if not impossible to
635 *  call a high-level language routine from assembly language.  This
636 *  is especially true of commercial Ada compilers and name mangling
637 *  C++ ones.  This variable can be optionally defined by the CPU porter
638 *  and contains the address of the routine _Thread_Dispatch.  This
639 *  can make it easier to invoke that routine at the end of the interrupt
640 *  sequence (if a dispatch is necessary).
641 *
642
643SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
644 *
645 *  NOTE: Not needed on this port.
646 */
647
648
649
650/*
651 *  Nothing prevents the porter from declaring more CPU specific variables.
652 */
653
654/* XXX: if needed, put more variables here */
655
656/*
657 *  The size of the floating point context area.  On some CPUs this
658 *  will not be a "sizeof" because the format of the floating point
659 *  area is not defined -- only the size is.  This is usually on
660 *  CPUs with a "floating point save context" instruction.
661 */
662
663#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
664
665/*
666 *  Amount of extra stack (above minimum stack size) required by
667 *  system initialization thread.  Remember that in a multiprocessor
668 *  system the system intialization thread becomes the MP server thread.
669 */
670
671#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
672
673/*
674 *  This defines the number of entries in the ISR_Vector_table managed
675 *  by RTEMS.
676 */
677
678extern unsigned int mips_interrupt_number_of_vectors;
679#define CPU_INTERRUPT_NUMBER_OF_VECTORS      (mips_interrupt_number_of_vectors)
680#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
681
682/*
683 *  Should be large enough to run all RTEMS tests.  This insures
684 *  that a "reasonable" small application should not have any problems.
685 */
686
687#define CPU_STACK_MINIMUM_SIZE          (2048*sizeof(uint32_t  ))
688
689
690/*
691 *  CPU's worst alignment requirement for data types on a byte boundary.  This
692 *  alignment does not take into account the requirements for the stack.
693 */
694
695#define CPU_ALIGNMENT              8
696
697/*
698 *  This number corresponds to the byte alignment requirement for the
699 *  heap handler.  This alignment requirement may be stricter than that
700 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
701 *  common for the heap to follow the same alignment requirement as
702 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
703 *  then this should be set to CPU_ALIGNMENT.
704 *
705 *  NOTE:  This does not have to be a power of 2.  It does have to
706 *         be greater or equal to than CPU_ALIGNMENT.
707 */
708
709#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
710
711/*
712 *  This number corresponds to the byte alignment requirement for memory
713 *  buffers allocated by the partition manager.  This alignment requirement
714 *  may be stricter than that for the data types alignment specified by
715 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
716 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
717 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
718 *
719 *  NOTE:  This does not have to be a power of 2.  It does have to
720 *         be greater or equal to than CPU_ALIGNMENT.
721 */
722
723#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
724
725/*
726 *  This number corresponds to the byte alignment requirement for the
727 *  stack.  This alignment requirement may be stricter than that for the
728 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
729 *  is strict enough for the stack, then this should be set to 0.
730 *
731 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
732 */
733
734#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
735
736/*
737 *  ISR handler macros
738 */
739
740/*
741 *  Support routine to initialize the RTEMS vector table after it is allocated.
742 */
743
744#define _CPU_Initialize_vectors()
745
746/*
747 *  Disable all interrupts for an RTEMS critical section.  The previous
748 *  level is returned in _level.
749 */
750
751#define _CPU_ISR_Disable( _level ) \
752  do { \
753    unsigned int _scratch; \
754    mips_get_sr( _scratch ); \
755    mips_set_sr( _scratch & ~SR_INTERRUPT_ENABLE_BITS ); \
756    _level = _scratch & SR_INTERRUPT_ENABLE_BITS; \
757  } while(0)
758
759/*
760 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
761 *  This indicates the end of an RTEMS critical section.  The parameter
762 *  _level is not modified.
763 */
764
765#define _CPU_ISR_Enable( _level )  \
766  do { \
767    unsigned int _scratch; \
768    mips_get_sr( _scratch ); \
769    mips_set_sr( (_scratch & ~SR_INTERRUPT_ENABLE_BITS) | (_level & SR_INTERRUPT_ENABLE_BITS) ); \
770  } while(0)
771
772/*
773 *  This temporarily restores the interrupt to _level before immediately
774 *  disabling them again.  This is used to divide long RTEMS critical
775 *  sections into two or more parts.  The parameter _level is not
776 *  modified.
777 */
778
779#define _CPU_ISR_Flash( _xlevel ) \
780  do { \
781    unsigned int _scratch2 = _xlevel; \
782    _CPU_ISR_Enable( _scratch2 ); \
783    _CPU_ISR_Disable( _scratch2 ); \
784    _xlevel = _scratch2; \
785  } while(0)
786
787/*
788 *  Map interrupt level in task mode onto the hardware that the CPU
789 *  actually provides.  Currently, interrupt levels which do not
790 *  map onto the CPU in a generic fashion are undefined.  Someday,
791 *  it would be nice if these were "mapped" by the application
792 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
793 *  8 - 255 would be available for bsp/application specific meaning.
794 *  This could be used to manage a programmable interrupt controller
795 *  via the rtems_task_mode directive.
796 *
797 *  On the MIPS, 0 is all on.  Non-zero is all off.  This only
798 *  manipulates the IEC.
799 */
800
801uint32_t   _CPU_ISR_Get_level( void );  /* in cpu.c */
802
803void _CPU_ISR_Set_level( uint32_t   );  /* in cpu.c */
804
805/* end of ISR handler macros */
806
807/* Context handler macros */
808
809/*
810 *  Initialize the context to a state suitable for starting a
811 *  task after a context restore operation.  Generally, this
812 *  involves:
813 *
814 *     - setting a starting address
815 *     - preparing the stack
816 *     - preparing the stack and frame pointers
817 *     - setting the proper interrupt level in the context
818 *     - initializing the floating point context
819 *
820 *  This routine generally does not set any unnecessary register
821 *  in the context.  The state of the "general data" registers is
822 *  undefined at task start time.
823 *
824 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
825 *        point thread.  This is typically only used on CPUs where the
826 *        FPU may be easily disabled by software such as on the SPARC
827 *        where the PSR contains an enable FPU bit.
828 *
829 *  The per-thread status register holds the interrupt enable, FP enable
830 *  and global interrupt enable for that thread.  It means each thread can
831 *  enable its own set of interrupts.  If interrupts are disabled, RTEMS
832 *  can still dispatch via blocking calls.  This is the function of the
833 *  "Interrupt Level", and on the MIPS, it controls the IEC bit and all
834 *  the hardware interrupts as defined in the SR.  Software ints
835 *  are automatically enabled for all threads, as they will only occur under
836 *  program control anyhow.  Besides, the interrupt level parm is only 8 bits,
837 *  and controlling the software ints plus the others would require 9.
838 *
839 *  If the Interrupt Level is 0, all ints are on.  Otherwise, the
840 *  Interrupt Level should supply a bit pattern to impose on the SR
841 *  interrupt bits; bit 0 applies to the mips1 IEC bit/mips3 EXL&IE, bits 1 thru 6
842 *  apply to the SR register Intr bits from bit 10 thru bit 15.  Bit 7 of
843 *  the Interrupt Level parameter is unused at this time.
844 *
845 *  These are the only per-thread SR bits, the others are maintained
846 *  globally & explicitly preserved by the Context Switch code in cpu_asm.s
847 */
848
849
850#if __mips == 3
851#define _INTON  (SR_EXL | SR_IE)
852#define _EXTRABITS      0
853#endif
854#if __mips == 1
855#define _INTON          SR_IEC
856#define _EXTRABITS      0  /* make sure we're in user mode on MIPS1 processors */
857#endif
858
859#define _CPU_Context_Initialize( _the_context, _stack_base, _size, _isr, _entry_point, _is_fp ) \
860  { \
861        uint32_t   _stack_tmp = \
862           (uint32_t  )(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \
863        uint32_t   _intlvl = _isr & 0xff; \
864        _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \
865        (_the_context)->sp = _stack_tmp; \
866        (_the_context)->fp = _stack_tmp; \
867        (_the_context)->ra = (uint64_t  )_entry_point; \
868        (_the_context)->c0_sr = ((_intlvl==0)?(0xFF00 | _INTON):( ((_intlvl<<9) & 0xfc00) | \
869                                                       0x300 | \
870                                                       ((_intlvl & 1)?_INTON:0)) ) | \
871                                SR_CU0 | ((_is_fp)?SR_CU1:0) | _EXTRABITS; \
872  }
873
874
875
876/*
877 *  This routine is responsible for somehow restarting the currently
878 *  executing task.  If you are lucky, then all that is necessary
879 *  is restoring the context.  Otherwise, there will need to be
880 *  a special assembly routine which does something special in this
881 *  case.  Context_Restore should work most of the time.  It will
882 *  not work if restarting self conflicts with the stack frame
883 *  assumptions of restoring a context.
884 */
885
886#define _CPU_Context_Restart_self( _the_context ) \
887   _CPU_Context_restore( (_the_context) );
888
889/*
890 *  The purpose of this macro is to allow the initial pointer into
891 *  A floating point context area (used to save the floating point
892 *  context) to be at an arbitrary place in the floating point
893 *  context area.
894 *
895 *  This is necessary because some FP units are designed to have
896 *  their context saved as a stack which grows into lower addresses.
897 *  Other FP units can be saved by simply moving registers into offsets
898 *  from the base of the context area.  Finally some FP units provide
899 *  a "dump context" instruction which could fill in from high to low
900 *  or low to high based on the whim of the CPU designers.
901 */
902
903#define _CPU_Context_Fp_start( _base, _offset ) \
904   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
905
906/*
907 *  This routine initializes the FP context area passed to it to.
908 *  There are a few standard ways in which to initialize the
909 *  floating point context.  The code included for this macro assumes
910 *  that this is a CPU in which a "initial" FP context was saved into
911 *  _CPU_Null_fp_context and it simply copies it to the destination
912 *  context passed to it.
913 *
914 *  Other models include (1) not doing anything, and (2) putting
915 *  a "null FP status word" in the correct place in the FP context.
916 */
917
918#if ( CPU_HARDWARE_FP == TRUE )
919#define _CPU_Context_Initialize_fp( _destination ) \
920  { \
921   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
922  }
923#endif
924
925/* end of Context handler macros */
926
927/* Fatal Error manager macros */
928
929/*
930 *  This routine copies _error into a known place -- typically a stack
931 *  location or a register, optionally disables interrupts, and
932 *  halts/stops the CPU.
933 */
934
935#define _CPU_Fatal_halt( _error ) \
936  do { \
937    unsigned int _level; \
938    _CPU_ISR_Disable(_level); \
939    loop: goto loop; \
940  } while (0)
941
942
943extern void mips_break( int error );
944
945/* Bitfield handler macros */
946
947/*
948 *  This routine sets _output to the bit number of the first bit
949 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
950 *  This type may be either 16 or 32 bits wide although only the 16
951 *  least significant bits will be used.
952 *
953 *  There are a number of variables in using a "find first bit" type
954 *  instruction.
955 *
956 *    (1) What happens when run on a value of zero?
957 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
958 *    (3) The numbering may be zero or one based.
959 *    (4) The "find first bit" instruction may search from MSB or LSB.
960 *
961 *  RTEMS guarantees that (1) will never happen so it is not a concern.
962 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
963 *  _CPU_Priority_bits_index().  These three form a set of routines
964 *  which must logically operate together.  Bits in the _value are
965 *  set and cleared based on masks built by _CPU_Priority_mask().
966 *  The basic major and minor values calculated by _Priority_Major()
967 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
968 *  to properly range between the values returned by the "find first bit"
969 *  instruction.  This makes it possible for _Priority_Get_highest() to
970 *  calculate the major and directly index into the minor table.
971 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
972 *  is the first bit found.
973 *
974 *  This entire "find first bit" and mapping process depends heavily
975 *  on the manner in which a priority is broken into a major and minor
976 *  components with the major being the 4 MSB of a priority and minor
977 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
978 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
979 *  to the lowest priority.
980 *
981 *  If your CPU does not have a "find first bit" instruction, then
982 *  there are ways to make do without it.  Here are a handful of ways
983 *  to implement this in software:
984 *
985 *    - a series of 16 bit test instructions
986 *    - a "binary search using if's"
987 *    - _number = 0
988 *      if _value > 0x00ff
989 *        _value >>=8
990 *        _number = 8;
991 *
992 *      if _value > 0x0000f
993 *        _value >=8
994 *        _number += 4
995 *
996 *      _number += bit_set_table[ _value ]
997 *
998 *    where bit_set_table[ 16 ] has values which indicate the first
999 *      bit set
1000 */
1001
1002#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1003#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1004
1005#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1006
1007#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1008  { \
1009    (_output) = 0;   /* do something to prevent warnings */ \
1010  }
1011
1012#endif
1013
1014/* end of Bitfield handler macros */
1015
1016/*
1017 *  This routine builds the mask which corresponds to the bit fields
1018 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
1019 *  for that routine.
1020 */
1021
1022#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1023
1024#define _CPU_Priority_Mask( _bit_number ) \
1025  ( 1 << (_bit_number) )
1026
1027#endif
1028
1029/*
1030 *  This routine translates the bit numbers returned by
1031 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
1032 *  a major or minor component of a priority.  See the discussion
1033 *  for that routine.
1034 */
1035
1036#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1037
1038#define _CPU_Priority_bits_index( _priority ) \
1039  (_priority)
1040
1041#endif
1042
1043/* end of Priority handler macros */
1044
1045/* functions */
1046
1047/*
1048 *  _CPU_Initialize
1049 *
1050 *  This routine performs CPU dependent initialization.
1051 */
1052
1053void _CPU_Initialize(
1054  rtems_cpu_table  *cpu_table,
1055  void      (*thread_dispatch)
1056);
1057
1058/*
1059 *  _CPU_ISR_install_raw_handler
1060 *
1061 *  This routine installs a "raw" interrupt handler directly into the
1062 *  processor's vector table.
1063 */
1064
1065void _CPU_ISR_install_raw_handler(
1066  uint32_t    vector,
1067  proc_ptr    new_handler,
1068  proc_ptr   *old_handler
1069);
1070
1071/*
1072 *  _CPU_ISR_install_vector
1073 *
1074 *  This routine installs an interrupt vector.
1075 */
1076
1077void _CPU_ISR_install_vector(
1078  uint32_t    vector,
1079  proc_ptr    new_handler,
1080  proc_ptr   *old_handler
1081);
1082
1083/*
1084 *  _CPU_Install_interrupt_stack
1085 *
1086 *  This routine installs the hardware interrupt stack pointer.
1087 *
1088 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
1089 *         is TRUE.
1090 */
1091
1092void _CPU_Install_interrupt_stack( void );
1093
1094/*
1095 *  _CPU_Internal_threads_Idle_thread_body
1096 *
1097 *  This routine is the CPU dependent IDLE thread body.
1098 *
1099 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
1100 *         is TRUE.
1101 */
1102
1103void _CPU_Thread_Idle_body( void );
1104
1105/*
1106 *  _CPU_Context_switch
1107 *
1108 *  This routine switches from the run context to the heir context.
1109 */
1110
1111void _CPU_Context_switch(
1112  Context_Control  *run,
1113  Context_Control  *heir
1114);
1115
1116/*
1117 *  _CPU_Context_restore
1118 *
1119 *  This routine is generally used only to restart self in an
1120 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1121 *
1122 *  NOTE: May be unnecessary to reload some registers.
1123 */
1124
1125void _CPU_Context_restore(
1126  Context_Control *new_context
1127);
1128
1129/*
1130 *  _CPU_Context_save_fp
1131 *
1132 *  This routine saves the floating point context passed to it.
1133 */
1134
1135void _CPU_Context_save_fp(
1136  void **fp_context_ptr
1137);
1138
1139/*
1140 *  _CPU_Context_restore_fp
1141 *
1142 *  This routine restores the floating point context passed to it.
1143 */
1144
1145void _CPU_Context_restore_fp(
1146  void **fp_context_ptr
1147);
1148
1149/*  The following routine swaps the endian format of an unsigned int.
1150 *  It must be static because it is referenced indirectly.
1151 *
1152 *  This version will work on any processor, but if there is a better
1153 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1154 *
1155 *     swap least significant two bytes with 16-bit rotate
1156 *     swap upper and lower 16-bits
1157 *     swap most significant two bytes with 16-bit rotate
1158 *
1159 *  Some CPUs have special instructions which swap a 32-bit quantity in
1160 *  a single instruction (e.g. i486).  It is probably best to avoid
1161 *  an "endian swapping control bit" in the CPU.  One good reason is
1162 *  that interrupts would probably have to be disabled to insure that
1163 *  an interrupt does not try to access the same "chunk" with the wrong
1164 *  endian.  Another good reason is that on some CPUs, the endian bit
1165 *  endianness for ALL fetches -- both code and data -- so the code
1166 *  will be fetched incorrectly.
1167 */
1168
1169static inline unsigned int CPU_swap_u32(
1170  unsigned int value
1171)
1172{
1173  uint32_t   byte1, byte2, byte3, byte4, swapped;
1174
1175  byte4 = (value >> 24) & 0xff;
1176  byte3 = (value >> 16) & 0xff;
1177  byte2 = (value >> 8)  & 0xff;
1178  byte1 =  value        & 0xff;
1179
1180  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1181  return( swapped );
1182}
1183
1184#define CPU_swap_u16( value ) \
1185  (((value&0xff) << 8) | ((value >> 8)&0xff))
1186
1187
1188#endif
1189
1190
1191
1192#ifdef __cplusplus
1193}
1194#endif
1195
1196#endif
Note: See TracBrowser for help on using the repository browser.